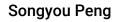


Shape As Points A Differentiable Poisson Solver



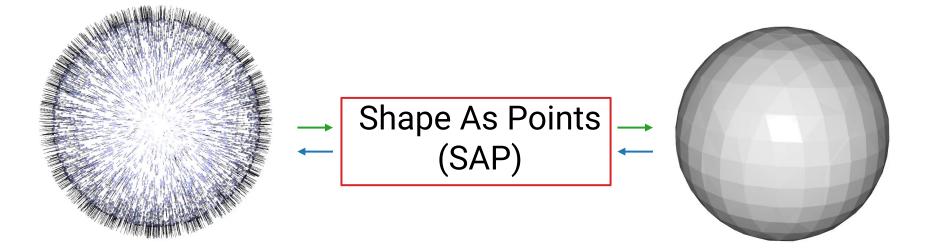
Chiyu "Max" Jiang

Yiyi Liao

Michael Niemeyer

Marc Pollefeys

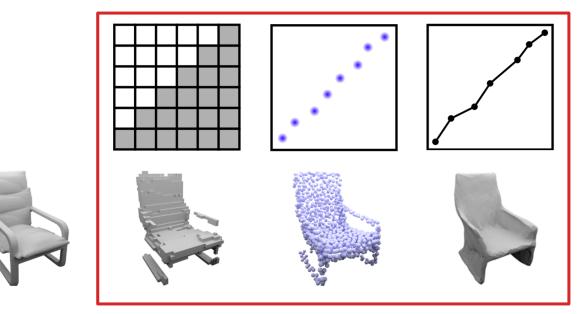
Andreas Geiger



Duality between oriented point clouds and 3D dense geometry

What is a good **3D shape representation**?

3D Shape Representations

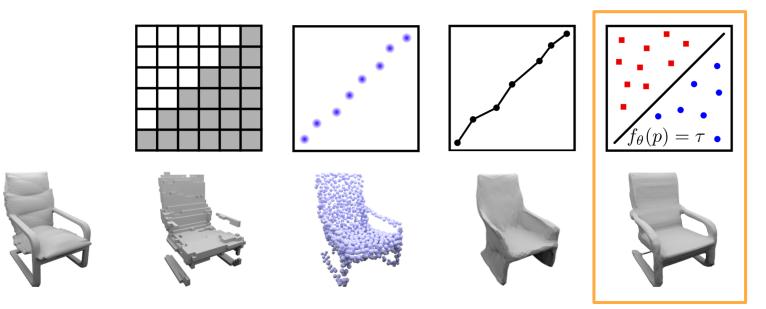


Traditional Explicit Representations

- Fast inference
- Discrete

Mescheder, Oechsle, Niemeyer, Nowozin and Geiger: Occupancy Networks: Learning 3D Reconstruction in Function Space. CVPR, 2019

3D Shape Representations

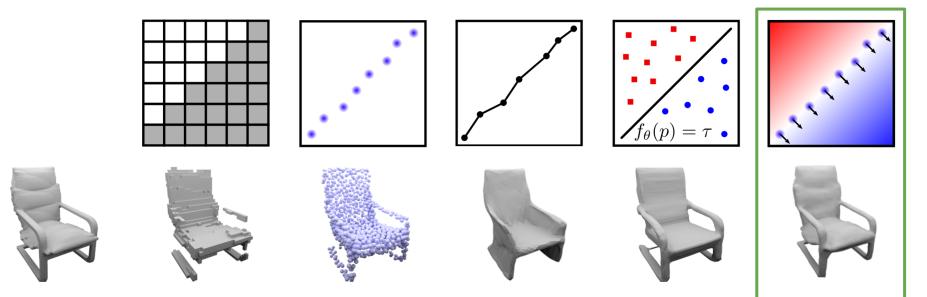


Neural Implicit Representations

- Continuous, watertight
- Slow inference
- Difficult to initialize

Mescheder, Oechsle, Niemeyer, Nowozin and Geiger: Occupancy Networks: Learning 3D Reconstruction in Function Space. CVPR, 2019

3D Shape Representations



Shape As Points (SAP) - Hybrid Representation

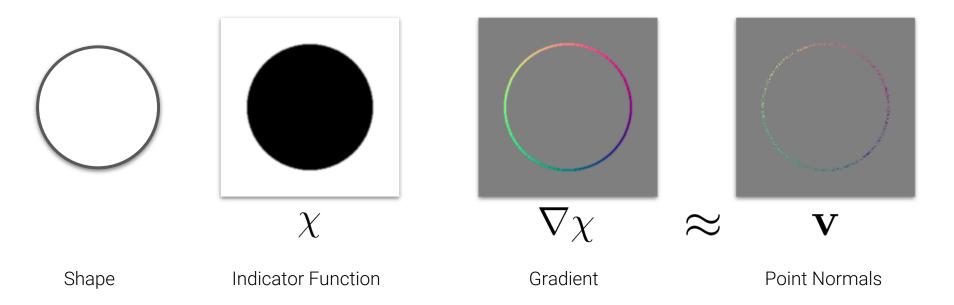
- Discrete \Rightarrow Continuous
- Fast inference
- Easy initialization

Method

Differentiable Poisson Solver

Intuition of Poisson Equation

$$\nabla^2 \chi := \nabla \cdot \nabla \chi = \nabla \cdot \mathbf{v}$$



Our Poisson Solver

$$\nabla^2 \chi := \nabla \cdot \nabla \chi = \nabla \cdot \mathbf{v}$$

• **Discretization** allows to invert the divergence operator

$$\chi = (\nabla^2)^{-1} \nabla \cdot \mathbf{v}$$

- Spectral methods to solve the Poisson equation
 - Derivatives of signals in spectral domain are computed analytically
 - Fast Fourier Transform (FFT) are highly optimized on GPUs/TPUs
 - Only **25-line code**

$$\tilde{\mathbf{v}} = \text{FFT}(\mathbf{v}) \longrightarrow \tilde{\chi} = \tilde{g}_{\sigma,r}(\mathbf{u}) \odot \frac{i\mathbf{u} \cdot \tilde{\mathbf{v}}}{-2\pi \|\mathbf{u}\|^2} \longrightarrow \chi' = \text{IFFT}(\tilde{\chi})$$

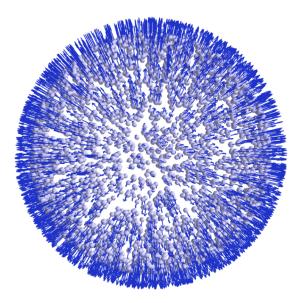
Surface Reconstruction from Unoriented Point Clouds

- 1. SAP for **Optimization-based** 3D Reconstruction
- 2. SAP for Learning-based 3D Reconstruction

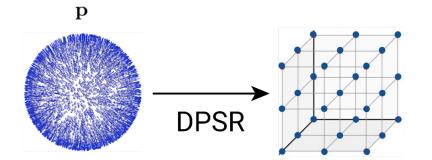
SAP for Optimization-based 3D Reconstruction

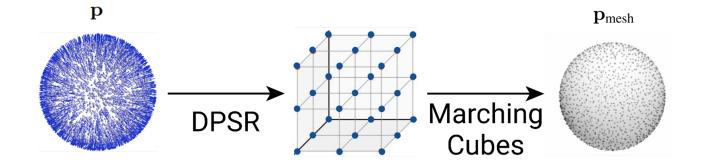
Input an initial oriented point cloud

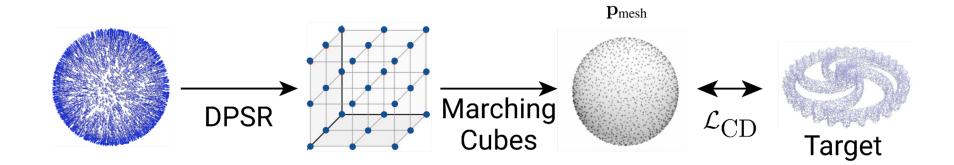
(noisy / incomplete observations)



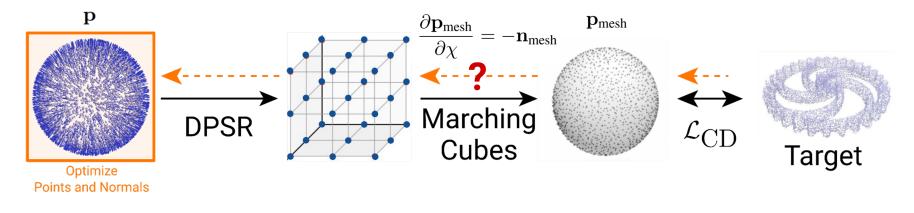
p



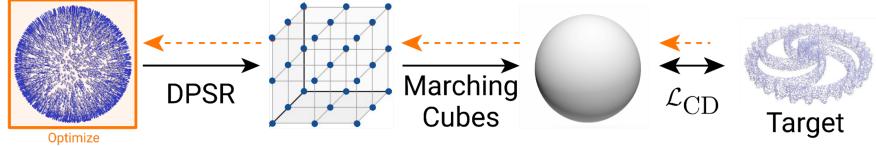




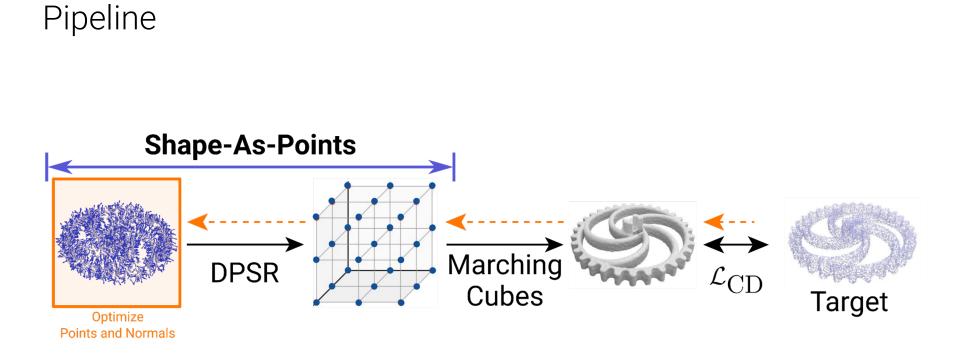
Pipeline - Backward Pass

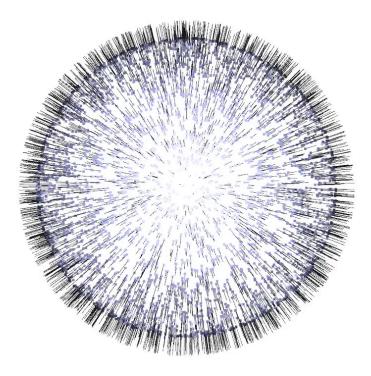


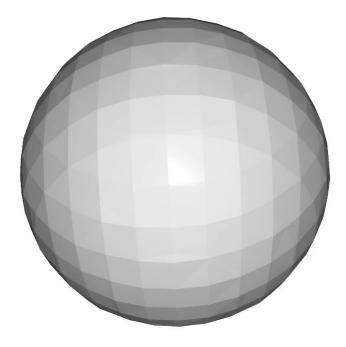
$$\frac{\partial \mathcal{L}_{\text{CD}}}{\partial \mathbf{p}} = \frac{\partial \mathcal{L}_{\text{CD}}}{\partial \mathbf{p}_{\text{mesh}}} \frac{\partial \mathbf{p}_{\text{mesh}}}{\partial \chi} \frac{\partial \chi}{\partial \mathbf{p}}$$

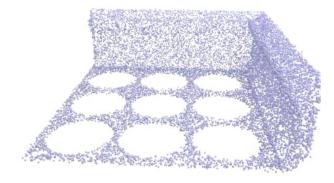


Points and Normals



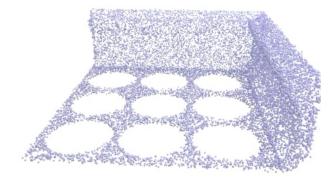






Unoriented Point Clouds

GT Mesh

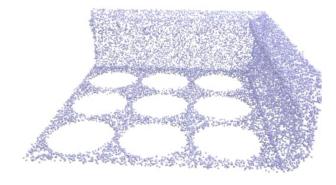


Unoriented Point Clouds

Point2Mesh

Runtime: 62 mins

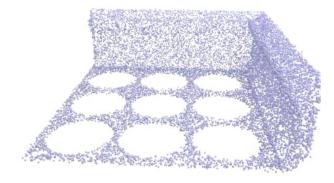
Hanocka, Metzer, Giryes, Cohen-Or: Point2Mesh: A Self-Prior for Deformable Meshes. SIGGRAPH, 2020



Unoriented Point Clouds

Runtime: 30 mins

Gropp, Yariv, Haim, Atzmon and Lipman: Implicit Geometric Regularization for Learning Shapes. ICML, 2020



Unoriented Point Clouds

Runtime: ~6 mins

SPSR

Runtime: ~9 sec

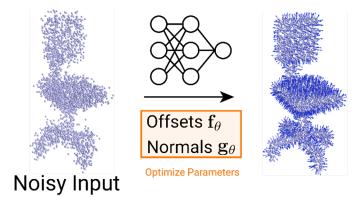
SAP

Runtime: ~6 mins

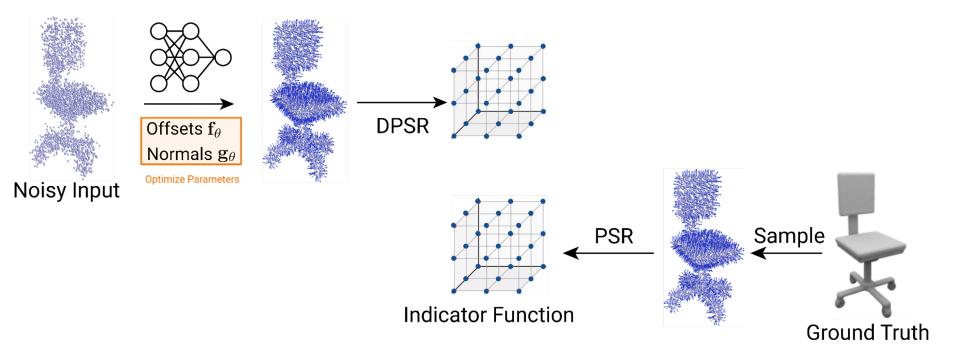
Kazhdan and Hoppe: Screened Poisson Surface Reconstruction. SIGGRAPH, 2013

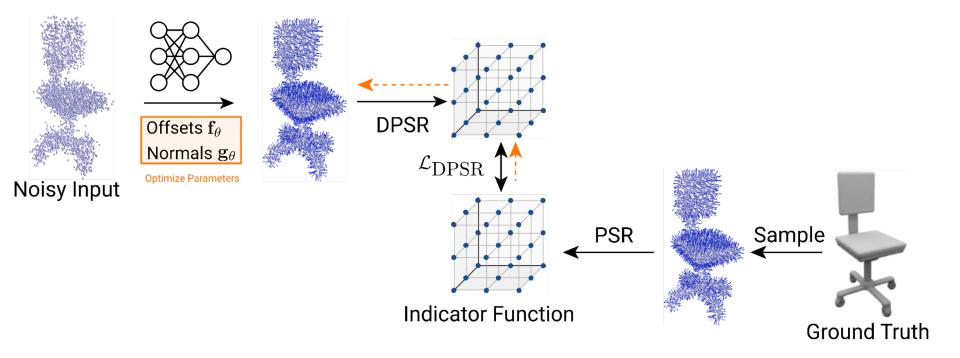
Can we further leverage the **differentiability** of the Poisson solver for **deep neural networks**?

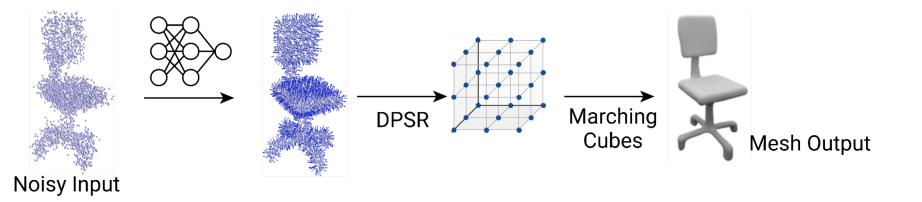
SAP for Learning-based 3D Reconstruction



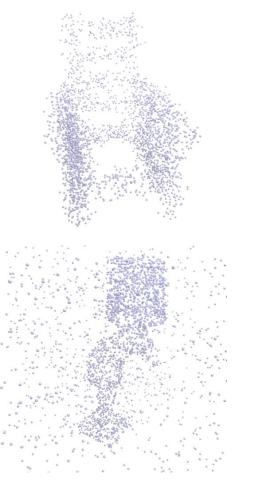






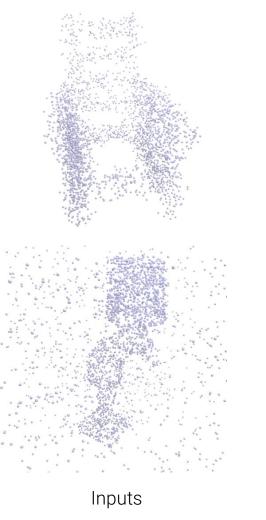


Results

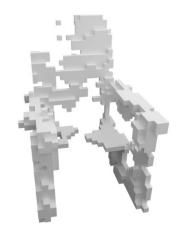


Inputs

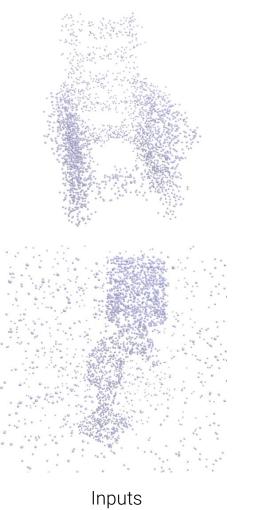
GT Mesh



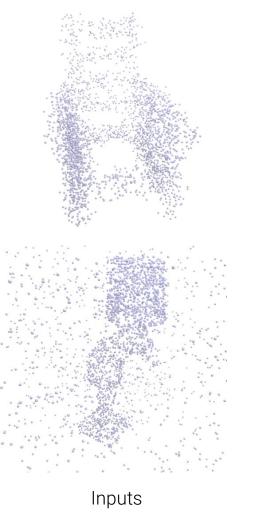
GT Mesh



AtlasNet 25 ms



ConvONet 327 ms



ConvONet 327 ms Ours 64 ms

Benefit of Geometric Initialization

Chamfer distance over the training process

Iterations	10K	50K	100K	200K	Best
ConvONet Ours	0.082	0.058	0.055	0.050	0.044
	0.041	0.036	0.035	0.034	0.034

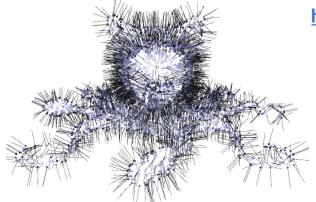
SAP converges much faster!

Conclusions

- SAP is interpretable, lightweight and guarantees HQ watertight meshes
- SAP is also topology agnostic, enables fast inference
- Our Poisson solver is **differentiable** and **GPU-accelerated**

Limitation: Cubic memory requirements limits SAP for small scenes

Thank You!



https://pengsongyou.github.io/sap

