Local policy search with Bayesian optimization

Sarah Müller *1,4 Alexander von Rohr *1,2,3 Sebastian Trimpe 1,2

¹Max Planck Institute for Intelligent Systems, Stuttgart, Germany

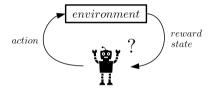
²Institute for Data Science in Mechanical Engineering, RWTH Aachen University, Germany

³IAV GmbH, Gifhorn, Germany

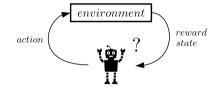
⁴Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany

* Equal contribution

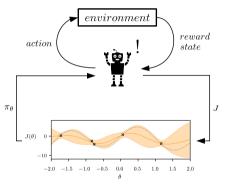
• Main principle in reinforcement learning: Find an optimal policy by interaction with an environment.



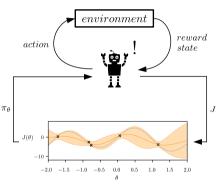
- Main principle in reinforcement learning: Find an optimal policy by interaction with an environment.
- Local **gradient-based** policy optimization achieves state-of-the-art performance.
 - Exploration is usually done via random samples.



- Main principle in reinforcement learning: Find an optimal policy by interaction with an environment.
- Local **gradient-based** policy optimization achieves state-of-the-art performance.
 - Exploration is usually done via random samples.
- Global **Bayesian optimization** (BO) promises sample-efficient optimization through active exploration.
 - Global optimization in high-dimensional search spaces is a challenging problem to solve.



- Main principle in reinforcement learning: Find an optimal policy by interaction with an environment.
- Local **gradient-based** policy optimization achieves state-of-the-art performance.
 - Exploration is usually done via random samples.
- Global **Bayesian optimization** (BO) promises sample-efficient optimization through active exploration.
 - Global optimization in high-dimensional search spaces is a challenging problem to solve.
- Our proposed algorithm (GIBO) reduces gradient uncertainty through active sampling.
 - GIBO improves sample-efficiency of gradient-based methods compared to non-active sampling baselines.



Policy search

• Find a *local* optimal policy in the space that maps policy parameters to their episodic reward:

$$J(\theta) = \mathbb{E}_{\pi_{\theta}}\left[\sum_{i=0}^{I} r_{i}\right].$$

• Update parameter with gradient-based optimizer:

$$\theta_{t+1} = \theta_t + \eta \cdot \nabla_\theta J \big|_{\theta = \theta_t}.$$

Policy search

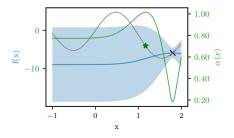
• Find a *local* optimal policy in the space that maps policy parameters to their episodic reward:

$$J(\theta) = \mathbb{E}_{\pi_{\theta}}\left[\sum_{i=0}^{I} r_i\right].$$

• Update parameter with gradient-based optimizer:

$$\theta_{t+1} = \theta_t + \eta \cdot \nabla_\theta J \big|_{\theta = \theta_t}.$$

- Global black-box optimization method.
- Probabilistic model of the objective function f(x), e.g. Gaussian process (GP).
- Acquisition function $\alpha(x)$ that determines points with the most information for the global optimum.



Policy search

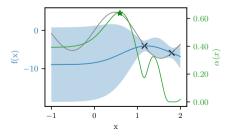
• Find a *local* optimal policy in the space that maps policy parameters to their episodic reward:

$$J(\theta) = \mathbb{E}_{\pi_{\theta}}\left[\sum_{i=0}^{I} r_{i}\right].$$

• Update parameter with gradient-based optimizer:

$$\theta_{t+1} = \theta_t + \eta \cdot \nabla_\theta J \big|_{\theta = \theta_t}.$$

- Global black-box optimization method.
- Probabilistic model of the objective function f(x), e.g. Gaussian process (GP).
- Acquisition function $\alpha(x)$ that determines points with the most information for the global optimum.



Policy search

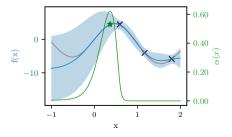
• Find a *local* optimal policy in the space that maps policy parameters to their episodic reward:

$$J(\theta) = \mathbb{E}_{\pi_{\theta}}\left[\sum_{i=0}^{I} r_i\right].$$

• Update parameter with gradient-based optimizer:

$$\theta_{t+1} = \theta_t + \eta \cdot \nabla_\theta J \big|_{\theta = \theta_t}.$$

- Global black-box optimization method.
- Probabilistic model of the objective function f(x), e.g. Gaussian process (GP).
- Acquisition function $\alpha(x)$ that determines points with the most information for the global optimum.



Policy search

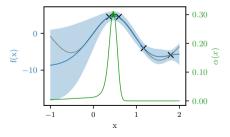
• Find a *local* optimal policy in the space that maps policy parameters to their episodic reward:

$$J(\theta) = \mathbb{E}_{\pi_{\theta}}\left[\sum_{i=0}^{I} r_i\right].$$

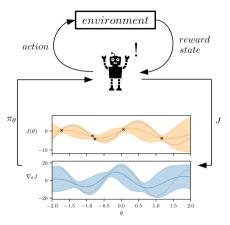
• Update parameter with gradient-based optimizer:

$$\theta_{t+1} = \theta_t + \eta \cdot \nabla_\theta J \big|_{\theta = \theta_t}.$$

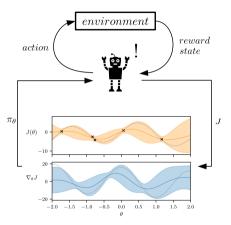
- Global black-box optimization method.
- Probabilistic model of the objective function f(x), e.g. Gaussian process (GP).
- Acquisition function $\alpha(x)$ that determines points with the most information for the global optimum.



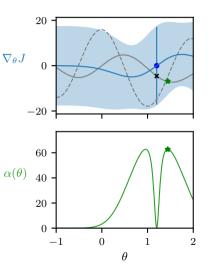
• Combine the strengths of both worlds: Local search can handle high-dimensional search spaces and global BO is sample-efficient with active exploration.



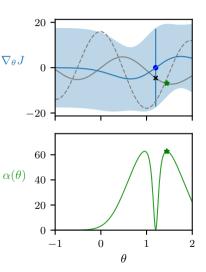
- Combine the strengths of both worlds: Local search can handle high-dimensional search spaces and global BO is sample-efficient with active exploration.
- Probabilistic surrogate model of objective function $J(\theta)$ and its Jacobian $\nabla_{\theta} J$.



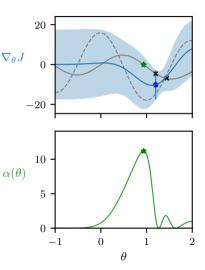
- Combine the strengths of both worlds: Local search can handle high-dimensional search spaces and global BO is sample-efficient with active exploration.
- Probabilistic surrogate model of objective function $J(\theta)$ and its Jacobian $\nabla_{\theta} J$.
- Acquisition function α(θ) that determines points for an accurate gradient estimate at the current point θ_t.
 - Measures the decrease in the Jacobian's variance at θ_t when observing a new point θ .



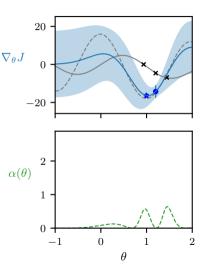
- Combine the strengths of both worlds: Local search can handle high-dimensional search spaces and global BO is sample-efficient with active exploration.
- Probabilistic surrogate model of objective function $J(\theta)$ and its Jacobian $\nabla_{\theta} J$.
- Acquisition function α(θ) that determines points for an accurate gradient estimate at the current point θ_t.
 - Measures the decrease in the Jacobian's variance at θ_t when observing a new point θ .
- Iterative algorithm:
 - 1. Sample points with acquisition function for a gradient estimate.
 - 2. Update with gradient based optimizer.



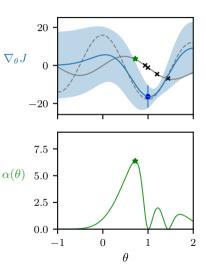
- Combine the strengths of both worlds: Local search can handle high-dimensional search spaces and global BO is sample-efficient with active exploration.
- Probabilistic surrogate model of objective function $J(\theta)$ and its Jacobian $\nabla_{\theta} J$.
- Acquisition function $\alpha(\theta)$ that determines points for an accurate gradient estimate at the current point θ_t .
 - Measures the decrease in the Jacobian's variance at θ_t when observing a new point θ .
- Iterative algorithm:
 - 1. Sample points with acquisition function for a gradient estimate.
 - 2. Update with gradient based optimizer.



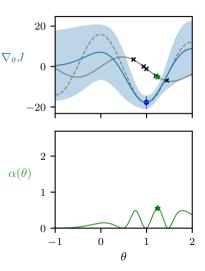
- Combine the strengths of both worlds: Local search can handle high-dimensional search spaces and global BO is sample-efficient with active exploration.
- Probabilistic surrogate model of objective function $J(\theta)$ and its Jacobian $\nabla_{\theta} J$.
- Acquisition function $\alpha(\theta)$ that determines points for an accurate gradient estimate at the current point θ_t .
 - Measures the decrease in the Jacobian's variance at θ_t when observing a new point θ .
- Iterative algorithm:
 - 1. Sample points with acquisition function for a gradient estimate.
 - 2. Update with gradient based optimizer.



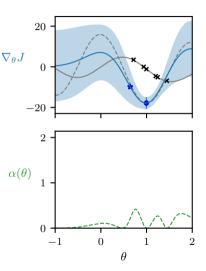
- Combine the strengths of both worlds: Local search can handle high-dimensional search spaces and global BO is sample-efficient with active exploration.
- Probabilistic surrogate model of objective function $J(\theta)$ and its Jacobian $\nabla_{\theta} J$.
- Acquisition function $\alpha(\theta)$ that determines points for an accurate gradient estimate at the current point θ_t .
 - Measures the decrease in the Jacobian's variance at θ_t when observing a new point θ.
- Iterative algorithm:
 - 1. Sample points with acquisition function for a gradient estimate.
 - 2. Update with gradient based optimizer.



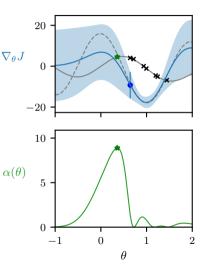
- Combine the strengths of both worlds: Local search can handle high-dimensional search spaces and global BO is sample-efficient with active exploration.
- Probabilistic surrogate model of objective function $J(\theta)$ and its Jacobian $\nabla_{\theta} J$.
- Acquisition function $\alpha(\theta)$ that determines points for an accurate gradient estimate at the current point θ_t .
 - Measures the decrease in the Jacobian's variance at θ_t when observing a new point θ .
- Iterative algorithm:
 - 1. Sample points with acquisition function for a gradient estimate.
 - 2. Update with gradient based optimizer.



- Combine the strengths of both worlds: Local search can handle high-dimensional search spaces and global BO is sample-efficient with active exploration.
- Probabilistic surrogate model of objective function $J(\theta)$ and its Jacobian $\nabla_{\theta} J$.
- Acquisition function $\alpha(\theta)$ that determines points for an accurate gradient estimate at the current point θ_t .
 - Measures the decrease in the Jacobian's variance at θ_t when observing a new point θ .
- Iterative algorithm:
 - 1. Sample points with acquisition function for a gradient estimate.
 - 2. Update with gradient based optimizer.



- Combine the strengths of both worlds: Local search can handle high-dimensional search spaces and global BO is sample-efficient with active exploration.
- Probabilistic surrogate model of objective function $J(\theta)$ and its Jacobian $\nabla_{\theta} J$.
- Acquisition function $\alpha(\theta)$ that determines points for an accurate gradient estimate at the current point θ_t .
 - Measures the decrease in the Jacobian's variance at θ_t when observing a new point θ .
- Iterative algorithm:
 - 1. Sample points with acquisition function for a gradient estimate.
 - 2. Update with gradient based optimizer.



Acquisition function

• Measures the decrease in the Jacobian's variance at θ_t when observing a new point θ :

 $\alpha(\theta \mid \theta_t, \mathcal{D}) = \mathbb{E}\left[\operatorname{Tr}\left(\Sigma'(\theta_t \mid \mathcal{D})\right) - \operatorname{Tr}\left(\Sigma'(\theta_t \mid \{\mathcal{D}, (\theta, y)\})\right)\right].$

- Expected difference between the Jacobian's variance $\Sigma'(\theta_t | D)$ before and the Jacobian's variance $\Sigma'(\theta_t | \{D, (\theta, y)\})$ after observing a new point (θ, y) .
- Where $\Sigma'(\theta_t | D)$ is the variance of the Jacobian's GP model evaluated at θ_t .

Acquisition function

• Measures the decrease in the Jacobian's variance at θ_t when observing a new point θ :

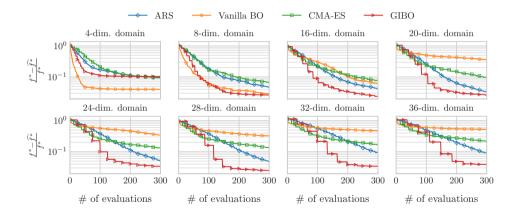
 $\alpha(\theta \mid \theta_t, \mathcal{D}) = \mathbb{E} \left[\operatorname{Tr} \left(\Sigma'(\theta_t \mid \mathcal{D}) \right) - \operatorname{Tr} \left(\Sigma'(\theta_t \mid \{\mathcal{D}, (\theta, y)\}) \right) \right].$

- Expected difference between the Jacobian's variance $\Sigma'(\theta_t | D)$ before and the Jacobian's variance $\Sigma'(\theta_t | \{D, (\theta, y)\})$ after observing a new point (θ, y) .
- Where $\Sigma'(\theta_t | D)$ is the variance of the Jacobian's GP model evaluated at θ_t .
- A property of the Gaussian distribution is that the covariance function is independent of the observed targets *y*:

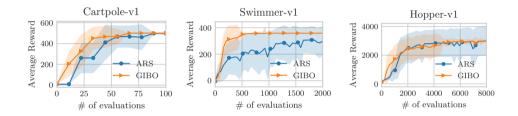
$$\underset{\theta}{\arg\max} \alpha(\theta \mid \theta_t, \mathcal{D}) = \underset{\theta}{\arg\min} \operatorname{Tr} \left(\Sigma' \left(\theta_t \mid [X, \theta] \right) \right),$$

with the virtual data set $[\theta_1, \ldots, \theta_n, \theta] =: [X, \theta].$

Synthetic experiments



Gym and MuJoCo



Summary and contributions

- Novel policy search algorithm that combines
 - active sampling,
 - surrogate modeling,
 - local search with approximate gradient descent.

Summary and contributions

- Novel policy search algorithm that combines
 - active sampling,
 - surrogate modeling,
 - local search with approximate gradient descent.
- Contributions
 - Significantly improved sample complexity on synthetic objective functions.
 - Solved RL benchmarks in a sample efficient manner.
 - Reduce reward variance compared to non-active sampling baselines.