Exploiting Domain-Specific Features to Enhance Domain Generalization

Manh-Ha Bui¹, Toan Tran¹, Anh Tuan Tran¹, Dinh Phung^{1,2}

¹VinAl Research, ²Monash University

Advances in Neural Information Processing Systems, Dec 2021

Problem setting and Definitions

A theoretical analysis under the Information bottleneck method

3 Algorithm: meta-Domain Specific-Domain Invariant (mDSDI)

Experiments

Problem setting and Definitions

- 2 A theoretical analysis under the Information bottleneck method
 - 3 Algorithm: meta-Domain Specific-Domain Invariant (mDSDI)

Experiments

5 Summary

Domain Generalization (DG)

Set up

Given N source domains $S^{(i)} = \{(x_j^{(i)}, y_j^{(i)})\}_{j=1}^{n_i}, i = 1, ..., N$, where n_i is the number of data points in $S^{(i)}$, i.e., $(x_j^{(i)}, y_j^{(i)}) \stackrel{iid}{\sim} P^{(i)}(x, y)$ where $P^{(i)}(x, y) \sim \mathcal{P}$; and $x_j^{(i)} \sim P_{\mathcal{X}}^{(i)}$, in which $P_{\mathcal{X}}^{(i)} \sim P_{\mathcal{X}}$.

Goal

Training a model only on the set of source domains $\{S^{(i)}\}_{i=1}^{N}$ without any access to the data points but still perform well on the test dataset $S^{T} = \{(x_{j}^{T}, y_{j}^{T})\}_{j=1}^{n_{T}}$, where $(x_{j}^{T}, y_{j}^{T}) \stackrel{iid}{\sim} P^{T}(x, y)$ and $P^{T}(x, y) \sim \mathcal{P}$.

Examples

Background-Colored-MNIST: Sketch color different across domains.

Domain-invariant

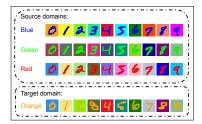
Definition 1: Domain-invariant

A feature extraction mapping $Q: \mathcal{X} \to \mathcal{Z}$ is said to be **domain-invariant** if the distribution $P_Q(Q(X))$ is unchanged across the source domains, i.e., $\forall i, j = 1, ..., N$, $i \neq j$ we have $P_Q^{(i)}(Q(X)) \equiv P_Q^{(j)}(Q(X))$, where $P_Q^{(i)}(Q(X)) = P_Q(Q(X)|X \sim P_{\mathcal{X}}^{(i)})$, i = 1, ..., N. In this case, the corresponding latent representation $Z_I = Q(X)$ is then called the domain-invariant representation.

Examples

The sketch of digits.

- Current methods often try to learn domain-invariant
- Ignore all color information, only concentrate on the sketch
- But, what if the sketch is blurred?



< □ > < 同 > < 回 > < 回 >

Domain-specific

Definition 2: Domain-specific

A feature extraction mapping $R: \mathcal{X} \to \mathcal{Z}$ is said to be **domain-specific** if $\forall i, j = 1, ..., N$, $i \neq j$ we have $P_R^{(i)}(R(X)) \neq P_R^{(j)}(R(X))$, where $P_R^{(i)}(R(X)) = P_R(R(X)|X \sim P_{\mathcal{X}}^{(i)})$, i = 1, ..., N. In this case, given $X \sim P_{\mathcal{X}}^{(i)}$ the corresponding latent representation $Z_S^{(i)} = R(X)$ is then called the domain-specific representation w.r.t. the domain $S^{(i)}$.

Examples

The background color.

- The background-color different across class and domain
- In the target domain, one of these is similar to the source
- If the sketch is blurry, we can rely on the background to classify digits!

< □ > < 同 > < 回 > < 回 >

Problem setting and Definitions

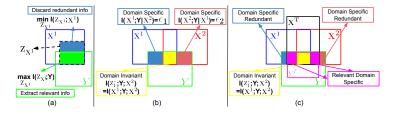
A theoretical analysis under the Information bottleneck method

Algorithm: meta-Domain Specific-Domain Invariant (mDSDI)

Experiments

5 Summary

Label-correlated domain-specificity

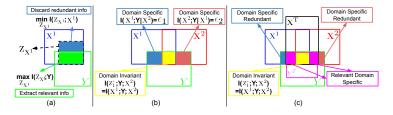


Assumption 1: Label-correlated domain-specificity

Assuming that there exists a domain-specific representation $Z_S^{(1)}$ extracted by the deterministic mapping $Z_S^{(1)} = R(X^1)$ in definition 2, which correlates with label in domain S^1 such that $I(Z_S^{(1)}; Y|X^2) = I(X^1; Y|X^2) = \varepsilon_1$, where $\varepsilon_1 > 0$ is a constant.

イロト イボト イヨト イヨト

Minimal and sufficient representations with label

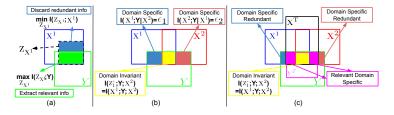


Definition 3: Minimal and sufficient representations with label

Let $Z_{\chi^1} = G(X^1)$ is the output of a deterministic latent mapping G. A representation Z_{sup} is said to be the sufficient label-related representation and Z_{sup^*} is said to be the minimal and sufficient representation if:

$$Z_{sup} = \underset{G}{\operatorname{argmax}} I(Z_{X^1}; Y) \text{ and } Z_{sup^*} = \underset{Z_{sup}}{\operatorname{argmin}} I(Z_{sup}; X^1) \text{ s.t. } I(Z_{sup}; Y) \text{ is maximized.}$$

Minimal and sufficient representations with domain-invariance



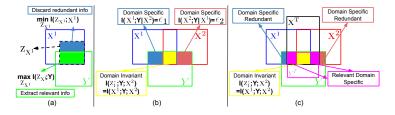
Definition 4: Minimal and sufficient representations with domain-invariance

Let $Z_{\chi^1} = Q(\chi^1)$ is the output of a deterministic domain invariant mapping Q in the definition 1. Then Z_I is said to be the sufficient domain-invariant representation and Z_{I^*} is said to be the minimal and sufficient representation if:

$$Z_l = \operatorname*{argmax}_Q I(Z_{X^1}; X^2)$$
 and $Z_{l^*} = \operatorname*{argmin}_{Z_l} I(Z_l; X^1)$ s.t. $I(Z_l; X^2)$ is maximized.

イロト イヨト イヨト

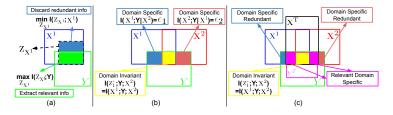
Label-related information with domain-specificity



Lemma 1: Determinism

If $P(Z_{X^1}|X^1)$ is a Dirac delta function, then the following conditional independence holds: $Y \perp \!\!\!\perp Z_{X^1}|X^1$ and $X^2 \perp \!\!\!\perp Z_{X^1}|X^1$, inducing a Markov chain $X^2 \leftrightarrow Y \leftrightarrow X^1 \rightarrow Z_{X^1}$.

Label-related information with domain-specificity



Lemma 1: Determinism

If $P(Z_{X^1}|X^1)$ is a Dirac delta function, then the following conditional independence holds: $Y \perp \!\!\!\perp Z_{X^1}|X^1$ and $X^2 \perp \!\!\!\perp Z_{X^1}|X^1$, inducing a Markov chain $X^2 \leftrightarrow Y \leftrightarrow X^1 \rightarrow Z_{X^1}$.

Theorem 1: Label-related information with domain-specificity

Assuming that there exists a domain-specific value $\varepsilon_1 > 0$ in domain S^1 (see Assumption 1), the label-related representation - based learning approach (i.e., using Z_{sup} and Z_{sup^*}) provides better prediction performance than the domain-invariant representation - based method (i.e., using Z_l and Z_{l^*}). Formally,

$$I(X^{1}; Y) = I(Z_{sup}; Y) = I(Z_{sup}^{*}; Y) = I(Z_{I^{*}}; Y) + \varepsilon_{1} > I(Z_{I^{*}}; Y).$$

イロト イポト イヨト イヨト

Problem setting and Definitions

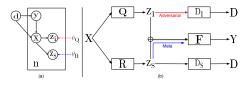
2 A theoretical analysis under the Information bottleneck method

3 Algorithm: meta-Domain Specific-Domain Invariant (mDSDI)

4 Experiments

Summary

Domain-Invariant and Domain-Specific Extraction



Objectives funcitons:

• Domain-Invariant Extraction

$$\min_{\theta_Q} \max_{\theta_{D_l}} \left\{ L_{Z_l} := -\mathbb{E}_{x, d \sim X, D} \left[d \log D_l(Q(x)) \right] \right\}.$$
(1)

Domain-Specific Extraction

$$\min_{\theta_{D_S},\theta_R} \left\{ L_{Z_S} := -\mathbb{E}_{\mathbf{x},d\sim X,D} \left[d \log D_S(R(\mathbf{x})) \right] \right\}.$$
(2)

• Domain-Invariant and Domain-Specific Disentanglement

r

$$\min_{\theta_{Q},\theta_{R}} \left\{ L_{D} := \mathbb{E}_{x \sim X} \left[\left\| \mathsf{Cov}(Q(x), R(x)) \right\|_{2} \right] \right\},$$
(3)

イロト イヨト イヨト イヨ

where $\|\cdot\|_2$ is the L_2 norm.

Domain-Invariant and Domain-Specific Extraction



Sufficiency of domain-specific and domain-invariant w.r.t. the classification task:

$$\hat{Y} = F_{\theta_F}(Z_I \oplus Z_S), \tag{4}$$

where \oplus denotes the concatenation operation. Then, the training process of ${\it F}$ is then performed by solving

$$\min_{\theta_{Q},\theta_{R},\theta_{F}} \left\{ L_{T} := -\mathbb{E}_{x,y \sim X,Y} \left[y \log F(Q(x), R(x)) \right] \right\}.$$
(5)

Meta-training Domain-specific

$$\min_{w} \left\{ L_{T_m} := f\left(w - \nabla f\left(w, S_{mr}\right), S_{me}\right) \right\},\tag{6}$$

where $w = (\theta_R, \theta_F)$ and

$$f(w, S_m) = -\mathbb{E}_{x, y \sim X, Y}\left[y \log F(Z_I, R(x))\right].$$
(7)

イロト イヨト イヨト イヨ

Training and Inference

Each iteration of the training process consists of two steps:

i) Integrating the objective functions (1), (2), (3) and (5) to construct L_A :

$$\min_{\theta_{Q},\theta_{D_{S}},\theta_{R},\theta_{F}}\max_{\theta_{D_{I}}}\left\{L_{A}:=\lambda_{Z_{I}}L_{Z_{I}}+\lambda_{Z_{S}}L_{Z_{S}}+\lambda_{D}L_{D}+L_{T}\right\}.$$
(8)

where λ_{Z_I} , λ_{Z_S} and λ_D are selected as the balanced parameters.

 ii) In each mini-batch, the meta-train and meta-test are split, then the gradient transformation step from meta-train domains to the meta-test domain is performed by solving the optimization problem (6).

Algorithm 1: Training and Inference processes of mDSDI

 $\begin{array}{l|ll} \label{eq:constraint} \textbf{Training Input: Source domain } S^{(i)}, \mbox{ endows of } P_{\theta_Q}, R_{\theta_R}, \mbox{ domain classifier } D_{\theta_{D_I}}, D_{\theta_{D_S}} \mbox{ for } Z_I, \\ Z_S, \mbox{ task classifier } F_{\theta_F}, \mbox{ batch size } B, \mbox{ learning rate } \eta. \mbox{ Output: The optimal: } Q^*_{\theta_Q}, R^*_{\theta_R}, F^*_{\theta_F}; \\ \textbf{for } ite = 1 \rightarrow iterations \mbox{ do} \\ & \mbox{ Sample } S_B \mbox{ with a mini-batch } B \mbox{ for each domain } S^{(i)}; \\ & \mbox{ Compute } L_A \mbox{ using Eq. (8) and perform gradient update } \nabla_{\theta_Q,\theta_R,\theta_D_I,\theta_{D_S},\theta_F}L_A \mbox{ with } \eta.; \\ & \mbox{ for } j = 1 \rightarrow N(\mbox{ number } of source \mbox{ domains) } \mbox{ do} \\ & \mbox{ Split Meta-train } S_{B/j}, \mbox{ Meta-test } S_j; \\ & \mbox{ Meta-train: Perform gradient update } \nabla_{\theta_R,\theta_F}L_{m} \mbox{ by minimizing Eq. (7) with } S_{B/j} \mbox{ and } \eta; \\ & \mbox{ Meta-test: Compute } L_{T_m} \mbox{ using Eq. (6) with } S_j \mbox{ and updated gradient from Meta-train; } \\ & \mbox{ meta-test: Compute } L_{T_m} \mbox{ using Eq. (6) with } S_j \mbox{ and update } \nabla_{\theta_R,\theta_F}L_{T_m} \mbox{ with } \eta; \\ & \mbox{ end} \\ & \mbox{ end} \end{aligned}$

Inference Input: Target domain S^T , optimal: $Q^*_{\theta_O}$, $R^*_{\theta_B}$, $F^*_{\theta_F}$. **Output:** Y^T using Eq. (4);

Problem setting and Definitions

A theoretical analysis under the Information bottleneck method

Algorithm: meta-Domain Specific-Domain Invariant (mDSDI)

Experiments

Summary

イロト イヨト イヨト イヨト

Results on benchmark dataset

Dataset	Domains					
Colored MNIST	10% flip	20% flip	90% flip			
Rotated MNIST	2	2	30'	45' V	~	75°
Background- Colored MNIST	Blue	Green	Red	Orange		
VLCS	Caltech101	LabelMe	SUN09	VOC2007		
PACS	Art	Cartoon	Photo	Sketch		
Office Home	Art	Clipart	Product	Photo		
Terra Incognita	L100	L38	L43	L46		
DomainNet	Clipart	Infographic	Painting	QuickDraw	Photo	Sketch

Manh-Ha Bui (VinAl Research)

イロト 不良 とくほとくほう

Results on benchmark dataset

Method	CMNIST	RMNIST	VLCS	PACS	OfficeHome	TerraInc	DomainNet	Average
ERM [25]	51.5 ± 0.1	98.0±0.0	77.5 ± 0.4	85.5±0.2	66.5±0.3	46.1±1.8	40.9 ± 0.1	66.6
IRM [18]	52.0 ± 0.1	97.7±0.1	78.5 ± 0.5	$83.5 {\pm} 0.8$	64.3±2.2	47.6 ± 0.8	33.9 ± 2.8	65.4
GroupDRO [26]	52.1 ± 0.0	$98.0 {\pm} 0.0$	76.7 ± 0.6	$84.4 {\pm} 0.8$	66.0 ± 0.7	43.2 ± 1.1	33.3 ± 0.2	64.8
Mixup [34, 35, 36]	52.1 ± 0.2	98.0 ± 0.1	77.4 ± 0.6	$84.6 {\pm} 0.6$	68.1 ± 0.3	47.9 ± 0.8	39.2 ± 0.1	66.7
MLDG [11]	51.5 ± 0.1	97.9 ± 0.0	77.2 ± 0.4	84.9 ± 1.0	66.8 ± 0.6	47.7±0.9	41.2 ± 0.1	66.7
CORAL [29]	51.5 ± 0.1	$98.0 {\pm} 0.1$	$78.8 {\pm} 0.6$	86.2 ± 0.3	68.7±0.3	47.6 ± 1.0	41.5 ± 0.1	67.5
MMD [30]	51.5 ± 0.2	97.9±0.0	77.5 ± 0.9	$84.6 {\pm} 0.5$	66.3 ± 0.1	42.2 ± 1.6	23.4 ± 9.5	63.3
DANN [31]	51.5 ± 0.3	97.8 ± 0.1	78.6 ± 0.4	$83.6 {\pm} 0.4$	65.9 ± 0.6	46.7 ± 0.5	38.3 ± 0.1	66.1
CDANN [32]	51.7 ± 0.1	97.9 ± 0.1	77.5 ± 0.1	$82.6 {\pm} 0.9$	65.8±1.3	45.8 ± 1.6	38.3 ± 0.3	65.6
MTL [1, 27]	51.4 ± 0.1	97.9 ± 0.0	77.2 ± 0.4	$84.6 {\pm} 0.5$	66.4 ± 0.5	45.6 ± 1.2	40.6 ± 0.1	66.2
SagNets [37]	51.7 ± 0.0	$98.0 {\pm} 0.0$	77.8 ± 0.5	86.3±0.2	68.1 ± 0.1	48.6±1.0	40.3 ± 0.1	67.2
ARM [28]	56.2±0.2	$98.2 {\pm} 0.1$	77.6±0.3	85.1 ± 0.4	64.8 ± 0.3	45.5 ± 0.3	35.5 ± 0.2	66.1
VREx [33]	$51.8 {\pm} 0.1$	97.9 ± 0.1	78.3 ± 0.2	$84.9 {\pm} 0.6$	66.4 ± 0.6	46.4 ± 0.6	33.6 ± 2.9	65.6
RSC [38]	51.7 ± 0.2	97.6±0.1	77.1 ± 0.5	85.2 ± 0.9	65.5 ± 0.9	46.6 ± 1.0	38.9 ± 0.5	66.1
mDSDI (Ours)	52.2 ± 0.2	$98.0 {\pm} 0.1$	79.0±0.3	$86.2 {\pm} 0.2$	69.2 ± 0.4	48.1 ± 1.4	$42.8 {\pm} 0.1$	67.9

Table 1: Classification accuracy (%) for all algorithms and datasets summarization. Our mDSDI method achieves highest accuracy on average when comparing 14 popular DG algorithms across 7 benchmark datasets.

Observations:

- Our mDSDI still preserves domain-invariant information
- Our mDSDI could capture the usefulness of domain-specific information
- Extending beyond the invariance view to usefulness domain-specific information is important

イロト イヨト イヨト イヨト

How does mDSDI work?

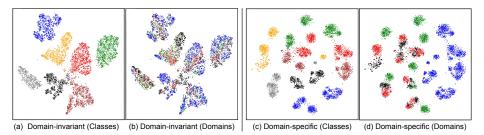


Figure: Feature visualization for domain-invariant: (a): different colors represent different classes; (b): different colors indicate different domains. Feature visualization for domain-specific: (c): different colors represent different classes; (d): different colors indicate different domains. Source domain includes: art (red), cartoon (green), sketch (blue) while target domain is photo (black) in the domain plots.

Observations:

- Our domain-invariant extractor can minimize the distance between the distribution of the domains (b)
- These domain-invariant features still make mistakes on the classification task (a)
- The domain-specific representation better distinguishes points by class label (c)
- The photo domain's specific features (black) are close to the art domain (red) (d)

A D > A B > A B > A B >

Ablation study: Important of mDSDI on the Background-Colored-MNIST dataset

Figure 4: Background-Colored-MNIST Dataset, where source domains include {red, green, blue} digit colors and target domain has {orange} color.

Table 2: Classification accuracy (%) on Background-Colored-MNIST. Ablation study shows impact of domain-invariant when combined with meta-training on domain-specific in our method.

Method	Accuracy		
DI	65.7±4.6		
DI-Meta	63.6 ± 5.1		
DS	70.7 ± 4.8		
DS-Meta	75.3±3.4		
DSDI-Without L_D	81.4±2.6		
DSDI-Without Meta	80.4 ± 1.7		
DSDI-Meta	82.1 ± 1.4		
DSDI-Meta DI	79.0±2.3		
mDSDI-Meta DS (Ours)	89.7±0.8		

Observations:

- Combining domain-invariant and domain-specific is crucial
- Adding disentanglement loss L_D is essential to boost our model performance
- Meta-training is necessary but only for the domain-specific
- Our combination with domain-invariant and domain-specific is not easy: a deep ensemble between two neural networks

Problem setting and Definitions

A theoretical analysis under the Information bottleneck method

3 Algorithm: meta-Domain Specific-Domain Invariant (mDSDI)

4 Experiments

イロト イヨト イヨト イヨト

Summary

Contributions:

- Provide theoretical analysis to point out the limitation of only learning domain-invariant and prove the essential of domain-specific
- Propose the meta-Domain Specific-Domain Invariant (mDSDI) a novel theoretically sound framework that extends beyond the invariance view to further capture the usefulness of domain-specific information
- Empirically show that mDSDI provides competitive results with state-of-the-art techniques in DG and confirms the hypothesis that domain-specific is essential in ablation studies

For more information:

- PDF, code available at https://github.com/VinAIResearch/mDSDI
- Come see our poster!

See you at the NeurIPS 2021 conference!

イロト イヨト イヨト