

Online

December 6-14, 2021

NeurIPS 2021

Information Processing Systems

35<sup>th</sup> Conference on Neural



**Predicting Event** Memorability from **Contextual Visual** Semantics

**Qianli Xu<sup>1</sup>**, Fen Fang<sup>1</sup>, Ana Garcia del Molino<sup>2</sup>, Vigneshwaran Subbaraju<sup>3</sup>, Joo-Hwee Lim<sup>1,4</sup>

- 1. Institute for Infocomm Research, A\*STAR, Singapore
- 2. ByteDance AI Lab, Singapore
- 3. Institute of High Performance Computing, A\*STAR, Singapore
- 4. Nanyang Technological University

Octboer 2021



## Background

#### Image Memorability (Isola et al., 2011)<sup>[1]</sup>





## **Motivation**

#### **Event Memorability**



**Event** memorability ≠ **Image** memorability

- What factors affect event memorability?
- Can we predict a person's memory of individual events?
- [Future work] Can we design cognitive intervention programs to enhance subjects' episodic memory by leveraging on the <u>knowledge of event</u> <u>memorability</u>?

# (B)

# **Related works**

- Image Memorability
  - What makes an [image/object/graph/scene/] memorable? [1-5]
  - Video memorability [6,7]
- Dataset
  - SUN-Mem [1], LaMem [2], FIGRIM [3], Mem-Cat [4], LNSIM [5]
- Predictive models
  - MemNet [2], AMNet [8], DeepNSM [5], ICNet [9]
- Event Memorability
  - Neuro-psychological studies [10]: only study memorability of event categories
  - Neural imaging [11,12]: intrusive and expensive, difficult to get data



### **Our Approach**



- An experiment protocol: lifelogging, systematic training, standardized testing
- A dataset (R3): Sophisticated mechanisms to extract visual semantic features
- A predictive model: compute item-wise event memorability

01001 1001

•



# **Experiment design and dataset**



- Pilot study (8 young + 5 old); formal study (47 old, reported in this study)
- 1 month lifelog recording from each subject; >13K hours, >1.5M photos with meta-data
- >10K samples of event recall (reported in this study; privacy sensitive information removed)

Retrieve Replay

#### **Visual Semantic Features in Context**

- Intrinsic (pure visual; from image cue)
  - Saliency: image memorability, multiple benchmarking models used
  - Face: presence of human face
  - Human: presence of human body
- Extrinsic
  - Encoding context
    - Event distinctiveness: Rare events are remembered better (Hunt and Worthen, 2006); computed using CES method (del Molino et al., 2018)
    - Event boundary condition: Event segmentation theory (Gold et al. 2017)
    - Activity: Manually annotated based on local context
    - Place: Manually annotated based on local context
  - Testing context
    - Event distinctiveness: computed based on information-theoretic entropy (Bylinskii et al., 2015)
    - Encode-test interval: time between event occurrence and testing
    - Training (treatment): event has been re-consolidated before
  - Demographic
    - Age
    - gender
    - Etc.

(1001) 1001)

\*

()



### **Memory Mnemonics**







(b) Encode test outcome as 10-level graded memory types

**CREATING GROWTH, ENHANCING LIVES** 

# **Linear regression analysis**

**Hypothesis**: event memorability is dependent on both intrinsic and extrinsic features

- Intrinsic feature (i.e., image memorability) predicts event memory to vary extends based on different predictive models.
  - MemNet [28]: r = 0.02, p = 0.04,
  - DeepNSM [33]: r = 0.01, p = 0.54
  - AMNet [15]: *r* = 0.19, *p* < 0.001
- Linear mixed-effect analysis: features are used as fixed effects and "subject" modelled as a random effect.

| <b>Intrinsic Factors</b>                                     | t-statistics           | <b>Encoding Context</b>                                              | t-statistics                                | <b>Testing Context</b>                        | t-statistics            |
|--------------------------------------------------------------|------------------------|----------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------|-------------------------|
| Image memorability<br>Presence of faces<br>Presence of human | 11.14<br>10.55<br>2.08 | Encode distinctiveness<br>Boundary condition<br>Activities<br>Places | <b>7.45</b><br>-0.73<br><b>7.34</b><br>1.38 | Test distinctiveness<br>Treatment<br>Interval | 3.93<br>10.00<br>-14.22 |

Table 1: Factors that affects event memorability. *t*-value in bold font means the factor significantly correlated with memory (p < 0.05).

01001 1001

\*

# **CEMNet – Predicting item-wise event memory**



| Pipeline | AMNet                | ICNet                | MLP | CEMNet wt<br>AMNet | CEMNet wt<br>ICNet |  |
|----------|----------------------|----------------------|-----|--------------------|--------------------|--|
| 1        | -                    | -                    | MLP | MLP                | MLP                |  |
| 2        | AMNet <sup>[8]</sup> | ICNet <sup>[9]</sup> | -   | AMNet              | ICNet              |  |

Code available @ <u>https://github.com/ffzzy840304/Predicting-Event-Memorability</u>

01001 1001

**()** 



# **Experiment results**

| Method           | Input Features        | <b>Precision</b> <sup>↑</sup> | <b>Recall</b> ↑ | <b>F1</b> ↑ | Mean error↓ |
|------------------|-----------------------|-------------------------------|-----------------|-------------|-------------|
| AMNet [8]        | Image                 | 0.171                         | 0.179           | 0.150       | 3.03        |
| ICNet[9]         | Image                 | 0.153                         | 0.155           | 0.140       | 3.11        |
| MLP              | Extrinsic Features*   | 0.389                         | 0.385           | 0.333       | 0.91        |
| CEMNet w/t AMNet | Intrinsic + Extrinsic | 0.408                         | 0.414           | 0.368       | 0.85        |
| CEMNet w/t ICNet | Intrinsic + Extrinsic | 0.369                         | 0.340           | 0.340       | 0.97        |

Table 2: Comparing performance of models. \*Intrinsic features, *i.e.*, human face & body, are included.

- Intrinsic features (i.e., using only image cues) have limited predictive power; above chance accuracy.
- Extrinsic features (MLP model) can predict event memorability with considerable accuracy.
- Combining intrinsic and extrinsic gives best prediction outcome; Especially using more comprehensive DCNN model (e.g., AMNet)



## **Ablation Study** – *which feature has higher predictive value?*



- Using all features generally gives better performance
- Most features are conducive to the performance, except "human" and "interval"
- Some factors co-vary with each other, which may have caused inconsistent outcome. No causal relationship is established.

#### () \*\* \*\*

# Summary

- Event memory can be effectively predicted with intrinsic + extrinsic factors
- Extrinsic factors are more important in event memory prediction
- R3 experiment and dataset may inspire new experiments to investigate on event memory
- We can leverage on the outcome of predicted event memory to design memory intervention programs

#### References

- 1. P. Isola, D. Parikh, A. Torralba, and A. Oliva. Understanding the intrinsic memorability of images. NIPS'11, pages 2429–2437, 2011.
- 2. A. Khosla, A. S. Raju, A. Torralba, and A. Oliva. Understanding and predicting image memorability at a large scale. *ICCV*, pages 2390–2398, 2015.
- 3. Z. Bylinskii, P. Isola, C. Bainbridge, A. Torralba, and A. Oliva. Intrinsic and extrinsic effects on image memorability. *Vision Research*, 116(Pt B):165–178, 2015.
- 4. L. Goetschalckx and J. Wagemans. Memcat: a new category-based image set quantified on memorability. *PeerJ*, 7, 2019.
- 5. J. Lu, M. Xu, R. Yang, and Z. Wang. Understanding and predicting the memorability of outdoor natural scenes. *IEEE Transactions on Image Processing*, 29:4927–4941, 2020.
- 6. Anelise Newman, Camilo Luciano Fosco, Vincent Casser, Allen Lee, Barry, Mcnamara, and Aude Oliva. Multimodal memorability: Modeling effects of semantics and decay on video memorability. *ArXiv*, abs/2009.02568, 2020.
- 7. Romain Cohendet, Claire-Hélène Demarty, Ngoc Q. K. Duong, and Martin Engilberge. Videomem: Constructing, analyzing, predicting short-term and long-term video memorability. 2531–2540, 2019.
- 8. J. Fajtl, V. Argyriou, D. Monekosso, and P. Remagnino. Amnet: Memorability estimation with attention. 2018 CVPR, 6363–6372, 2018.
- 9. H. Squalli-Houssaini, N.Q.K. Duong, G. Marquant, and C. Demarty. Deep learning for predicting image memorability. *ICASSP*, pages 2371–2375, 2018.
- 10. P.L. St Jacques, C. Olma, and D.L. Schacter. Neural mechanisms of reactivation-induced updating that enhance and distort memory. *PNAS*, 110(49):19671–78, 2013.
- 11. J. Rissman, T.E. Chow, N. Reggente, and A.D. Wagner. Decoding fMRI signatures of real-world autobiographical memory retrieval. *Journal of Cognitive Neuroscience*, 28(4):604–620, 2016.
- 12. W. A. Bainbridge, Daniel D. Dilks, and A. Oliva. Memorability: A stimulus-driven perceptual neural signature distinctive from memory. *NeuroImage*, 149:141–152, 2017.

(1001) 1001

\*





# **THANK YOU**

#### <u>qxu@i2r.a-star.edu.sg</u>

www.a-star.edu.sg

This research is partially funded by the Singapore Agency for Science, Technology and Research (A\*STAR) JCO REVIVE Project (1335h0009).