

COUNTEREXAMPLE GUIDED RL POLICY REFINEMENT USING BAYESIAN OPTIMIZATION

AUTHORS: BRITI GANGOPADHYAY, Prof. PALLAB DASGUPTA DEPT. OF COMPUTER SCIENCE AND ENGINEERING IIT KHARAGPUR

INTRODUCTION

PROBLEM STATEMENT

- 1. Given a policy π_{old} , learnt from optimizing reward in a given environment, test it against parameters with uncertainties and a set of objective functions φ derived from the negation of the given safety criteria.
- 2. Using the failure trajectories selectively do a gradient update on π_{old} to construct a new policy π_{new} , that excludes the counterexample traces under the given domain uncertainties

FRAMEWORK

FINDING COUNTER-EXAMPLE TRACES

Safety Specification : The lander cannot be tilted at an angle while being close to the ground.Coordinates : $(I_x, I_y) 0 \le (I_x, I_y) \le 10$ Angle : $(I_{angle}) -1 \le I_{angle} \le 0$

 $|_{y} < 5 \rightarrow |_{angle} \geq -0.5$

Negation of the Specification ϕ : $\neg(I_y < 5 \rightarrow I_{angle} \ge -0.5) \equiv \neg(\neg(I_y < 5) \lor (I_{angle} \ge -0.5))$

 \equiv (I_y< 5) \land (I_{angle} < -0.5)

 $\mu_1: I_y^{-5} < 0$ $\mu_2: I_{angle}^{+} + 0.5 < 0$

Optimization Objective : $min(\mu_1 + \mu_2)$

Counterexample : $I_y = 1$ and $I_{angle} = -0.8$

PROXIMAL POLICY OPTIMIZATION OVERVIEW

Current policy that we want to refine : $\pi_{\theta}(a_t|s_t)$

Policy that we last used to collect samples : $\pi_{\theta_{old}}(a_t|s_t)$

Evaluate a new policy with samples collected from an older policy : maximize $\hat{\mathbb{E}}_t \left[\frac{\pi_{\theta}(a_t \mid s_t)}{\pi_{\theta_{\text{old}}}(a_t \mid s_t)} \hat{A}_t \right]$

Objective Ratio :
$$r_t(heta) = rac{\pi_ heta(a_t|s)}{\pi_{ heta_{tt}}(a_t|)}$$

Clipped Objective :
$$\mathcal{L}_{\theta_k}^{CLIP}(\theta) = \mathop{\mathbb{E}}_{\tau \sim \pi_k} \left[\sum_{t=0}^{T} \left[\min(r_t(\theta) \hat{A}_t^{\pi_k}, \operatorname{clip}(r_t(\theta), 1-\epsilon, 1+\epsilon) \hat{A}_t^{\pi_k}) \right] \right]$$

+ve advantage will make that action more

-ve advantage will make that action less

likely in the future, for that state.

likely in the future, for that state.

POLICY REFINEMENT METHODOLOGY

POLICY REFINEMENT METHODOLOGY

Clipped Objective Ratio : $r_t(heta) = rac{\pi_{old}(a_t|s_t)}{\pi_c(a_t|s_t)}$

Advantage $A_1 = 1$

Since, these corrected trajectories are to be enforced into π_{old} we set the advantage factor A_t to be 1.

Update
$$\pi_{old}$$
 to π_{new} by maximizing the PPO clip objective using π_{c}

Variation Distance between two policies:

$$D_{v}(\pi_{old} || \pi_{new}) = \frac{1}{n} \sum_{\xi_{i}, \xi_{i}' \in \xi} \sqrt{\sum_{s_{i} \in \xi_{i}, s_{i}' \in \xi_{i}'} |(s_{i})_{\pi_{old}} - (s_{i}')_{\pi_{new}}|^{2}}$$

EMPIRICAL STUDIES

Environment	Safety Criteria	Parameter Bounds	Failures	Distance
Cart-pole-v0	12.4 < position < 2.4 22.0 < momentum < 2.0 3. angle > 0.2	State : [(-0.05, 0.05)] * 4 Mass : (0.05, 0.15) Length of pole : (0.4, 0.6) force magnitude: (8.00, 12.00)	174.4 ± 0.51	1.255 ± 0.195
Pendulum-v0	1. Reward > -300	θ: (-π,π) θ: (0,1) speed: (-1,1)	80.1 ± 1.85	10.866 ± 1.379
BipedalWalker-v3	1. Hull Position > 0 20.8 < Hull Angle < 2	Hull angle : (0,2*π) Velocity x: (-1,1) Velocity y: (-1,1)	40.6 ± 4.08	11.189 ± 1.375
LunarLanderContinuous-v2	10.4 < Landing _{Positionx} <0.4 2. $Pos_y < 0.1 \rightarrow (angle > -1)$ V angle < 1) 3. Reward > 0	xδ : (0,10) yδ : (0,20) velxδ : (0,3) velyδ : (0,3)	40.85 ± 5.14	2.215 ± 0.282

REWARD PLOTS

-7

Random Observations

Failure Trajectory Observations

COMPARISON WITH BASELINES

- A) PPO policy trained from scratch with negative penalty for property violation,
- B) PPO policy trained from scratch with only counterexample traces and negative penalty after one iteration of testing with BO same as π_c
- C) PPO policy trained from scratch with original training traces, counterexample traces and negative penalty after testing with one iteration of BO, and
- D) The refined policy Π_{new}

Environment	Policy A	Policy B	Policy C	Policy D
Cart-pole-v0	Failures: 179	Failures: 52	Failures: 0	Failures: 0
	Training Steps: 900K	Training Steps: 150K	Training Steps: 1M	Training Steps: 150K+ 80K (Update)
Pendulum-v0	Failures: 89	Failures: 102	Failures: 0	Failures: 0
	Training Steps: 1.6M	Training Steps: 850K	Training Steps: 1.8M	Training Steps: 850K+ 20K (Update)
BipedalWalker-	Failures: 45	Failures: 145	Failures: 41	Failures: 0
v3	Training Steps: 7.5M	Training Steps: 2.8M	Training Steps: 8M	Training Steps: 2.8M+ 20K (Update)
LunarLanderCon	Failures: 42	Failures: 18	Failures: 5	Failures: 0
tinuous-v2	Training Steps: 1.1M	Training Steps: 400K	Training Steps: 1.2M	Training Steps: 400K+ 20K (Update)

EXAMPLES OF FAILURES AND CORRECTIONS

REFERENCES

- 1. Javier García, Fern, and o Fernández. A comprehensive survey on safe reinforcement learning. Journal of Machine Learning Research, 16(42):1437–1480, 2015. URL http://jmlr.org/papers/v16/garcia15a.html.
- 2. Rajeev Alur, Thao Dang, and Franjo Ivanci^{*} c. Counterexample-guided predicate abstraction of ['] hybrid systems. Theoretical Computer Science, 354(2):250–271, 2006. ISSN 0304-3975. Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2003).
- 3. Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.
- 4. Steven Carr, Nils Jansen, Ralf Wimmer, Alexandru Serban, Bernd Becker, and Ufuk Topcu. Counterexample-guided strategy improvement for pomdps using recurrent neural networks. In IJCAI, pages 5532–5539, 08 2019. doi: 10.24963/ijcai.2019/768.
- 5. Gal Dalal, Krishnamurthy Dvijotham, Matej Vecerík, T. Hester, Cosmin Paduraru, and Y. Tassa. Safe exploration in continuous action spaces. ArXiv, abs/1801.08757, 2018.
- B. Gangopadhyay, S. Khastgir, S. Dey, P. Dasgupta, G. Montana, and P. Jennings. Identification of test cases for automated driving systems using bayesian optimization. In 2019 IEEE Intelligent Transportation Systems Conference (ITSC), pages 1961–1967, 2019. doi: 10.1109/ITSC.2019. 8917103.
- 7. John Schulman, F. Wolski, Prafulla Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization algorithms. ArXiv, abs/1707.06347, 2017.
- 8. Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical bayesian optimization of machine learning algorithms. In Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 2, NIPS'12, page 2951–2959, Red Hook, NY, USA, 2012. Curran Associates Inc.
- 9. Weichao Zhou and Wenchao Li. Safety-aware apprenticeship learning. In Hana Chockler and Georg Weissenbacher, editors, Computer Aided Verification, pages 662–680, Cham, 2018. Springer International Publishing
- S. Ghosh, F. Berkenkamp, G. Ranade, S. Qadeer, and A. Kapoor. Verifying controllers against adversarial examples with bayesian optimization. In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages 7306–7313, 2018. doi: 10.1109/ICRA.2018.8460635.
- 11. Briti Gangopadhyay, Harshit Soora, and Pallab Dasgupta. Hierarchical program-triggered reinforcement learning agents for automated driving. IEEE Transactions on Intelligent Transportation Systems, pages 1–10, 2021. doi: 10.1109/TITS.2021.3096998.

