

Federated Split Task-Agnostic Vison Transformer for COVID-19 CXR Diagnosis

Sangjoon Park*, Gwanghyun Kim*, Jeongsol Kim, Boah Kim, Jong Chul Ye

BISPL - Biolmaging, Signal Processing, and Learning Lab. Dept. of Bio and Brain Engineering KAIST, Korea

Federated learning & Split learning

Vision Transformer for COVID-19 Diagnosis

Park and Kim et al. under review, 2021

Federated Split Task-Agnostic Vison Transformer

Here we propose a novel Federated Split Task-Agnostic (FeSTA) framework equipped with Vision Transformer (ViT) to simultaneously process multiple CXR tasks including diagnosis of COVID-19.

- Feasibility of FeSTA (amalgamate pros of FL and SL) method
- Benefit of Multi-task learning (MTL) with ViT and FeSTA

Federated Split Task-Agnostic Vison Transformer

Split Task-Agnostic Transformer

--> Feature flows from Heads --> Feature flows from Body --- Gradient flows via backprop Task 1 Data --> Weight flows of Heads & Tails **Client A** Tai Share Loss Data Server Client B Tai Loss Task-Global agnostic parameters Transformer Task 2 Data (Head / Tail) Body Client C Tail Loss Data Aggregate **Client D** Tai Loss

FeSTA framework

Function ServerMain:

Initialize the body weight $w_{\mathcal{B}}^{(1)}$ and client head/tail weights $(\bar{w}_{\mathcal{H},k}, \bar{w}_{\mathcal{T},k})$ for each task $k \in \{1, ..., K\}$ in server for rounds $i = 1, 2, \ldots R$ do for tasks $k \in \{1, 2, \dots, K\}$ do in parallel for clients $c \in C_k$ do in parallel if i = 1 or $(i - 1) \in$ UnifyingRounds then Set client $(w_{\mathcal{H}}^{(i)}, w_{\mathcal{T}}^{(i)}) \leftarrow (\bar{w}_{\mathcal{H},k}, \bar{w}_{\mathcal{T},k})$ $h_c^{(i)} \leftarrow \texttt{ClientHead}(c)$ $b_c^{(i)} \leftarrow \mathcal{B}(h_c^{(i)})$ $\frac{\partial L_c^{(i)}}{\partial b^{(i)}} \leftarrow \texttt{ClientTail}(c, b_c^{(i)}) \& \texttt{Backprop}.$ $\left| \quad (w_{\mathcal{H}_c}^{(i+1)}, w_{\mathcal{T}_c}^{(i+1)}) \leftarrow \texttt{ClientUpdate}(c, \frac{\partial L_c^{(i)}}{\partial L_c^{(i)}}) \right.$ Update body $w_{\mathcal{B}}^{(i+1)} \leftarrow w_{\mathcal{B}}^{(i)} - \frac{\eta}{K} \sum_{k=1}^{K} \sum_{\substack{i \in \mathcal{I} \\ N_k \partial w_{\mathcal{B}}^{(i)}}} \frac{\partial L_c^{(i)}}{N_k \partial w_{\mathcal{B}}^{(i)}}$ if $i \in UnifyingRounds$ then for tasks $k \in \{1, 2, ..., K\}$ do Update $(\bar{w}_{\mathcal{H},k}, \bar{w}_{\mathcal{T},k}) \leftarrow (\frac{1}{N_k} \sum_{c \in C_k} w_{\mathcal{H}_c}^{(i+1)}, \frac{1}{N_k} \sum_{c \in C_k} w_{\mathcal{T}_c}^{(i+1)})$

Function ServerMain: Initialize the body weight $w_{\mathcal{B}}^{(1)}$ and client head/tail weights $(\bar{w}_{\mathcal{H},k}, \bar{w}_{\mathcal{T},k})$ for each task $k \in \{1, \dots, K\}$ in server for rounds $i = 1, 2, \ldots R$ do for tasks $k \in \{1, 2, \dots, K\}$ do in parallel for clients $c \in C_k$ do in parallel if i = 1 or $(i - 1) \in$ UnifyingRounds then Set client $(w_{\mathcal{H}_{c}}^{(i)}, w_{\mathcal{T}_{c}}^{(i)}) \leftarrow (\bar{w}_{\mathcal{H},k}, \bar{w}_{\mathcal{T},k})$ $h_c^{(i)} \leftarrow \texttt{ClientHead}(c)$ $b_c^{(i)} \leftarrow \mathcal{B}(h_c^{(i)})$ $\frac{\partial L_c^{(i)}}{\partial b^{(i)}} \leftarrow \texttt{ClientTail}(c, b_c^{(i)}) \& \texttt{Backprop}.$ $(w_{\mathcal{H}_c}^{(i+1)}, w_{\mathcal{T}_c}^{(i+1)}) \leftarrow \texttt{ClientUpdate}(c, \frac{\partial L_c^{(i)}}{\partial h^{(i)}})$ Update body $w_{\mathcal{B}}^{(i+1)} \leftarrow w_{\mathcal{B}}^{(i)} - \frac{\eta}{K} \sum_{k=1}^{K} \sum_{\substack{i \in \mathcal{I} \\ N_k \partial w_{\mathcal{B}}^{(i)}}} \frac{\partial L_c^{(i)}}{N_k \partial w_{\mathcal{B}}^{(i)}}$ if $i \in UnifyingRounds$ then for tasks $k \in \{1, 2, ..., K\}$ do Update $(\bar{w}_{\mathcal{H},k}, \bar{w}_{\mathcal{T},k}) \leftarrow (\frac{1}{N_k} \sum_{c \in C_{+}} w_{\mathcal{H}_c}^{(i+1)}, \frac{1}{N_k} \sum_{c \in C_{+}} w_{\mathcal{T}_c}^{(i+1)})$

Function ClientHead(c): $x_c \leftarrow \text{Current batch of input from client } c$ return $\mathcal{H}_c(x_c)$

Initialize the body weight $w_{\mathcal{B}}^{(1)}$ and client head/tail weights $(\bar{w}_{\mathcal{H},k}, \bar{w}_{\mathcal{T},k})$ for each task $k \in \{1, \dots, K\}$ in server for rounds $i = 1, 2, \ldots R$ do for tasks $k \in \{1, 2, \dots, K\}$ do in parallel Task 1 for clients $c \in C_k$ do in parallel if i = 1 or $(i - 1) \in$ UnifyingRounds then Set client $(w_{\mathcal{H}}^{(i)}, w_{\mathcal{T}}^{(i)}) \leftarrow (\bar{w}_{\mathcal{H},k}, \bar{w}_{\mathcal{T},k})$ $h_c^{(i)} \leftarrow \texttt{ClientHead}(c)$ $b_c^{(i)} \leftarrow \mathcal{B}(h_c^{(i)})$ Task 2 $\frac{\partial L_c^{(i)}}{\partial b^{(i)}} \leftarrow \texttt{ClientTail}(c, b_c^{(i)}) \& \texttt{Backprop}.$ $\left| (w_{\mathcal{H}_{c}}^{(i+1)}, w_{\mathcal{T}_{c}}^{(i+1)}) \leftarrow \texttt{ClientUpdate}(c, \frac{\partial L_{c}^{(i)}}{\partial L^{(i)}}) \right.$ Update body $w_{\mathcal{B}}^{(i+1)} \leftarrow w_{\mathcal{B}}^{(i)} - \frac{\eta}{K} \sum_{k=1}^{K} \sum_{\substack{i \in \mathcal{O} \\ N_k \partial w_{\mathcal{B}}^{(i)}}} \frac{\partial L_c^{(i)}}{N_k \partial w_{\mathcal{B}}^{(i)}}$ if $i \in UnifyingRounds$ then for tasks $k \in \{1, 2, ..., K\}$ do Update $(\bar{w}_{\mathcal{H},k}, \bar{w}_{\mathcal{T},k}) \leftarrow (\frac{1}{N_k} \sum_{c \in C} w_{\mathcal{H}_c}^{(i+1)}, \frac{1}{N_k} \sum_{c \in C} w_{\mathcal{T}_c}^{(i+1)})$

return $\mathcal{H}_c(x_c)$

Function ServerMain: Initialize the body weight $w_{\mathcal{B}}^{(1)}$ and client head/tail weights $(\bar{w}_{\mathcal{H},k}, \bar{w}_{\mathcal{T},k})$ for each task $k \in \{1, \dots, K\}$ in server for rounds $i = 1, 2, \ldots R$ do for tasks $k \in \{1, 2, \dots, K\}$ do in parallel for clients $c \in C_k$ do in parallel if i = 1 or $(i - 1) \in$ UnifyingRounds then Set client $(w_{\mathcal{U}}^{(i)}, w_{\mathcal{T}}^{(i)}) \leftarrow (\bar{w}_{\mathcal{H},k}, \bar{w}_{\mathcal{T},k})$ $h_c^{(i)} \leftarrow \texttt{ClientHead}(c)$ $\begin{array}{c} b_c^{(i)} & \leftarrow \mathcal{B}(h_c^{(i)}) \\ \hline \frac{\partial L_c^{(i)}}{\partial b^{(i)}} & \leftarrow \texttt{ClientTail}(c, b_c^{(i)}) \ \& \ \texttt{Backprop.} \end{array}$ $(w_{\mathcal{H}_c}^{(i+1)}, w_{\mathcal{T}_c}^{(i+1)}) \leftarrow \texttt{ClientUpdate}(c, \frac{\partial L_c^{(i)}}{\partial L^{(i)}})$ Update body $w_{\mathcal{B}}^{(i+1)} \leftarrow w_{\mathcal{B}}^{(i)} - \frac{\eta}{K} \sum_{k=1}^{K} \sum_{\substack{i \in \mathcal{O} \\ N_k \partial w_{\mathcal{B}}^{(i)}}} \frac{\partial L_c^{(i)}}{N_k \partial w_{\mathcal{B}}^{(i)}}$ if $i \in UnifyingRounds$ then for tasks $k \in \{1, 2, ..., K\}$ do Update $(\bar{w}_{\mathcal{H},k}, \bar{w}_{\mathcal{T},k}) \leftarrow (\frac{1}{N_k} \sum_{c \in C_{+}} w_{\mathcal{H}_c}^{(i+1)}, \frac{1}{N_k} \sum_{c \in C_{+}} w_{\mathcal{T}_c}^{(i+1)})$

Function ServerMain: Initialize the body weight $w_{\mathcal{B}}^{(1)}$ and client head/tail weights $(\bar{w}_{\mathcal{H},k}, \bar{w}_{\mathcal{T},k})$ for each task $k \in \{1, \dots, K\}$ in server for rounds $i = 1, 2, \ldots R$ do for tasks $k \in \{1, 2, \dots, K\}$ do in parallel for clients $c \in C_k$ do in parallel if i = 1 or $(i - 1) \in$ UnifyingRounds then Set client $(w_{\mathcal{H}}^{(i)}, w_{\mathcal{T}}^{(i)}) \leftarrow (\bar{w}_{\mathcal{H},k}, \bar{w}_{\mathcal{T},k})$ $h_c^{(i)} \leftarrow \texttt{ClientHead}(c)$ $b_c^{(i)} \leftarrow \mathcal{B}(h_c^{(i)})$ $\frac{\partial L_c^{(i)}}{\partial b_c^{(i)}} \leftarrow \texttt{ClientTail}(c, b_c^{(i)}) \& \texttt{Backprop.} \\ (w_{\mathcal{H}_c}^{(i+1)}, w_{\mathcal{T}_c}^{(i+1)}) \leftarrow \texttt{ClientUpdate}(c, \frac{\partial L_c^{(i)}}{\partial b^{(i)}})$ Update body $w_{\mathcal{B}}^{(i+1)} \leftarrow w_{\mathcal{B}}^{(i)} - \frac{\eta}{K} \sum_{k=1}^{K} \sum_{l=0}^{K} \frac{\partial L_{c}^{(i)}}{N_{k} \partial w_{c}^{(i)}}$ if $i \in UnifyingRounds$ then for tasks $k \in \{1, 2, ..., K\}$ do Update $(\bar{w}_{\mathcal{H},k}, \bar{w}_{\mathcal{T},k}) \leftarrow (\frac{1}{N_k} \sum_{c \in C} w_{\mathcal{H}_c}^{(i+1)}, \frac{1}{N_k} \sum_{c \in C} w_{\mathcal{T}_c}^{(i+1)})$

Function ServerMain: Initialize the body weight $w_{\mathcal{B}}^{(1)}$ and client head/tail weights $(\bar{w}_{\mathcal{H},k}, \bar{w}_{\mathcal{T},k})$ for each task $k \in \{1, \dots, K\}$ in server for rounds $i = 1, 2, \ldots R$ do for tasks $k \in \{1, 2, \dots, K\}$ do in parallel for clients $c \in C_k$ do in parallel if i = 1 or $(i - 1) \in$ UnifyingRounds then Set client $(w_{\mathcal{H}}^{(i)}, w_{\mathcal{T}}^{(i)}) \leftarrow (\bar{w}_{\mathcal{H},k}, \bar{w}_{\mathcal{T},k})$ $h_c^{(i)} \leftarrow \texttt{ClientHead}(c)$ $b_c^{(i)} \leftarrow \mathcal{B}(h_c^{(i)})$ $\frac{\partial L_c^{(i)}}{\partial b^{(i)}} \leftarrow \texttt{ClientTail}(c, b_c^{(i)}) \& \text{Backprop}.$ $(w_{\mathcal{H}_c}^{(i+1)}, w_{\mathcal{T}_c}^{(i+1)}) \leftarrow \texttt{ClientUpdate}(c, \frac{\partial L_c^{(i)}}{\partial L^{(i)}})$ Update body $w_{\mathcal{B}}^{(i+1)} \leftarrow w_{\mathcal{B}}^{(i)} - \frac{\eta}{K} \sum_{k=1}^{K} \sum_{\substack{i \in \mathcal{I} \\ N_k \partial w_{\mathcal{B}}^{(i)}}} \frac{\partial L_c^{(i)}}{N_k \partial w_{\mathcal{B}}^{(i)}}$ if $i \in UnifyingRounds$ then for tasks $k \in \{1, 2, ..., K\}$ do Update $(\bar{w}_{\mathcal{H},k}, \bar{w}_{\mathcal{T},k}) \leftarrow (\frac{1}{N_k} \sum_{c \in C_1} w_{\mathcal{H}_c}^{(i+1)}, \frac{1}{N_k} \sum_{c \in C_1} w_{\mathcal{T}_c}^{(i+1)})$


```
Function ServerMain:
       Initialize the body weight w_{\mathcal{B}}^{(1)} and client head/tail weights (\bar{w}_{\mathcal{H},k}, \bar{w}_{\mathcal{T},k}) for each task
         k \in \{1, \dots, K\} in server
       for rounds i = 1, 2, \ldots R do
               for tasks k \in \{1, 2, \dots, K\} do in parallel
                      for clients c \in C_k do in parallel
                              if i = 1 or (i - 1) \in UnifyingRounds then
                                Set client (w_{\mathcal{H}}^{(i)}, w_{\mathcal{T}}^{(i)}) \leftarrow (\bar{w}_{\mathcal{H},k}, \bar{w}_{\mathcal{T},k})
                              h_c^{(i)} \leftarrow \texttt{ClientHead}(c)
                             b_c^{(i)} \leftarrow \mathcal{B}(h_c^{(i)})
                              \frac{\partial L_c^{(i)}}{\partial b^{(i)}} \leftarrow \texttt{ClientTail}(c, b_c^{(i)}) \ \& \ \texttt{Backprop}.
                           (w_{\mathcal{H}_c}^{(i+1)}, w_{\mathcal{T}_c}^{(i+1)}) \leftarrow \texttt{ClientUpdate}(c, \frac{\partial L_c^{(i)}}{\partial L_c^{(i)}})
              Update body w_{\mathcal{B}}^{(i+1)} \leftarrow w_{\mathcal{B}}^{(i)} - \frac{\eta}{K} \sum_{k=1}^{K} \sum_{\substack{i \in \mathcal{I} \\ N_k \partial w_{\mathcal{B}}^{(i)}}} \frac{\partial L_c^{(i)}}{N_k \partial w_{\mathcal{B}}^{(i)}}
               if i \in UnifyingRounds then
                      for tasks k \in \{1, 2, ..., K\} do
                          Update (\bar{w}_{\mathcal{H},k}, \bar{w}_{\mathcal{T},k}) \leftarrow (\frac{1}{N_k} \sum_{c \in C_1} w_{\mathcal{H}_c}^{(i+1)}, \frac{1}{N_k} \sum_{c \in C_1} w_{\mathcal{T}_c}^{(i+1)})
```


Function ClientUpdate $(c, \frac{\partial L_c}{\partial h})$: Backprop. & $(w_{\mathcal{H}_c}, w_{\mathcal{T}_c}) \leftarrow (w_{\mathcal{H}_c} - \eta \frac{\partial L_c}{\partial w_{\mathcal{H}_c}}, w_{\mathcal{T}_c} - \eta \frac{\partial L_c}{\partial w_{\mathcal{T}_c}})$ return $(w_{\mathcal{H}_a}, w_{\mathcal{T}_a})$

```
Function ServerMain:
      Initialize the body weight w_{\mathcal{B}}^{(1)} and client head/tail weights (\bar{w}_{\mathcal{H},k}, \bar{w}_{\mathcal{T},k}) for each task
         k \in \{1, ..., K\} in server
       for rounds i = 1, 2, \ldots R do
              for tasks k \in \{1, 2, \dots, K\} do in parallel
                      for clients c \in C_k do in parallel
                             if i = 1 or (i - 1) \in UnifyingRounds then
                               Set client (w_{\mathcal{H}_s}^{(i)}, w_{\mathcal{T}_s}^{(i)}) \leftarrow (\bar{w}_{\mathcal{H},k}, \bar{w}_{\mathcal{T},k})
                            h_c^{(i)} \leftarrow \texttt{ClientHead}(c)
                           b_c^{(i)} \leftarrow \mathcal{B}(h_c^{(i)})
                           \frac{\partial L_c^{(i)}}{\partial b^{(i)}} \leftarrow \texttt{ClientTail}(c, b_c^{(i)}) \& \texttt{Backprop}.
                        (w_{\mathcal{H}_c}^{(i+1)}, w_{\mathcal{T}_c}^{(i+1)}) \leftarrow \texttt{ClientUpdate}(c, \frac{\partial L_c^{(i)}}{\partial L^{(i)}})
             Update body w_{\mathcal{B}}^{(i+1)} \leftarrow w_{\mathcal{B}}^{(i)} - \frac{\eta}{K} \sum_{k=1}^{K} \sum_{c \in C_k} \frac{\partial L_c^{(i)}}{N_k \partial w_{\mathcal{B}}^{(i)}}
              if i \in \text{UnifyingRounds} then
                     for tasks k \in \{1, 2, ..., K\} do
                          Update (\bar{w}_{\mathcal{H},k}, \bar{w}_{\mathcal{T},k}) \leftarrow (\frac{1}{N_k} \sum_{c \in C_l} w_{\mathcal{H}_c}^{(i+1)}, \frac{1}{N_k} \sum_{c \in C_l} w_{\mathcal{T}_c}^{(i+1)})
```


> Feature flows from Heads
> Feature flows from Body
Gradient flows via backprop
→ Weight flows of Heads & Tails


```
Function ServerMain:
       Initialize the body weight w_{\mathcal{B}}^{(1)} and client head/tail weights (\bar{w}_{\mathcal{H},k}, \bar{w}_{\mathcal{T},k}) for each task
         k \in \{1, \dots, K\} in server
       for rounds i = 1, 2, \ldots R do
              for tasks k \in \{1, 2, \dots, K\} do in parallel
                     for clients c \in C_k do in parallel
                             if i = 1 or (i - 1) \in UnifyingRounds then
                                Set client (w_{\mathcal{H}}^{(i)}, w_{\mathcal{T}}^{(i)}) \leftarrow (\bar{w}_{\mathcal{H},k}, \bar{w}_{\mathcal{T},k})
                             h_c^{(i)} \leftarrow \texttt{ClientHead}(c)
                            b_c^{(i)} \leftarrow \mathcal{B}(h_c^{(i)})
                            \frac{\partial L_c^{(i)}}{\partial b^{(i)}} \leftarrow \texttt{ClientTail}(c, b_c^{(i)}) \& \texttt{Backprop}.
                        (w_{\mathcal{H}_c}^{(i+1)}, w_{\mathcal{T}_c}^{(i+1)}) \leftarrow \texttt{ClientUpdate}(c, \frac{\partial L_c^{(i)}}{\partial L_c^{(i)}})
              Update body w_{\mathcal{B}}^{(i+1)} \leftarrow w_{\mathcal{B}}^{(i)} - \frac{\eta}{K} \sum_{k=1}^{K} \sum_{c \in C_{L}} \frac{\partial L_{c}^{(i)}}{N_{k} \partial w_{\mathcal{B}}^{(i)}}
              if i \in UnifyingRounds then
                     for tasks k \in \{1, 2, ..., K\} do
                           Update (\bar{w}_{\mathcal{H},k}, \bar{w}_{\mathcal{T},k}) \leftarrow (\frac{1}{N_k} \sum_{c \in C_1} w_{\mathcal{H}_c}^{(i+1)}, \frac{1}{N_k} \sum_{c \in C_1} w_{\mathcal{T}_c}^{(i+1)})
```



```
Function ServerMain:
       Initialize the body weight w_{\mathcal{B}}^{(1)} and client head/tail weights (\bar{w}_{\mathcal{H},k}, \bar{w}_{\mathcal{T},k}) for each task
         k \in \{1, \dots, K\} in server
       for rounds i = 1, 2, \ldots R do
              for tasks k \in \{1, 2, \dots, K\} do in parallel
                      for clients c \in C_k do in parallel
                             if i = 1 or (i - 1) \in UnifyingRounds then
                             Set client (w_{\mathcal{H}_{c}}^{(i)}, w_{\mathcal{T}_{c}}^{(i)}) \leftarrow (\bar{w}_{\mathcal{H},k}, \bar{w}_{\mathcal{T},k})
                             h_c^{(i)} \leftarrow \texttt{ClientHead}(c)
                            b_c^{(i)} \leftarrow \mathcal{B}(h_c^{(i)})
                           \frac{\partial L_c^{(i)}}{\partial b^{(i)}} \leftarrow \texttt{ClientTail}(c, b_c^{(i)}) \& \texttt{Backprop}.
                    (w_{\mathcal{H}_{c}}^{(i+1)}, w_{\mathcal{T}_{c}}^{(i+1)}) \leftarrow \texttt{ClientUpdate}(c, \frac{\partial L_{c}^{(i)}}{\partial L^{(i)}})
              Update body w_{\mathcal{B}}^{(i+1)} \leftarrow w_{\mathcal{B}}^{(i)} - \frac{\eta}{K} \sum_{k=1}^{K} \sum_{c \in \mathcal{C}} \frac{\partial L_{c}^{(i)}}{N_{k} \partial w_{\mathcal{B}}^{(i)}}
              if i \in UnifyingRounds then
                     for tasks k \in \{1, 2, ..., K\} do
                        Update (\bar{w}_{\mathcal{H},k}, \bar{w}_{\mathcal{T},k}) \leftarrow (\frac{1}{N_k} \sum_{c \in C} w_{\mathcal{H}_c}^{(i+1)}, \frac{1}{N_k} \sum_{c \in C} w_{\mathcal{T}_c}^{(i+1)})
```



```
Function ServerMain:
       Initialize the body weight w_{\mathcal{B}}^{(1)} and client head/tail weights (\bar{w}_{\mathcal{H},k}, \bar{w}_{\mathcal{T},k}) for each task
         k \in \{1, \dots, K\} in server
       for rounds i = 1, 2, \ldots R do
              for tasks k \in \{1, 2, \dots, K\} do in parallel
                      for clients c \in C_k do in parallel
                              if i = 1 or (i - 1) \in UnifyingRounds then
                                 Set client (w_{\mathcal{U}}^{(i)}, w_{\mathcal{T}}^{(i)}) \leftarrow (\bar{w}_{\mathcal{H},k}, \bar{w}_{\mathcal{T},k})
                             h_c^{(i)} \leftarrow \texttt{ClientHead}(c)
                            b_c^{(i)} \leftarrow \mathcal{B}(h_c^{(i)})
                            \frac{\partial L_c^{(i)}}{\partial b^{(i)}} \leftarrow \texttt{ClientTail}(c, b_c^{(i)}) \& \texttt{Backprop}.
                        (w_{\mathcal{H}_c}^{(i+1)}, w_{\mathcal{T}_c}^{(i+1)}) \leftarrow \texttt{ClientUpdate}(c, \frac{\partial L_c^{(i)}}{\partial L^{(i)}})
              Update body w_{\mathcal{B}}^{(i+1)} \leftarrow w_{\mathcal{B}}^{(i)} - \frac{\eta}{K} \sum_{k=1}^{K} \sum_{c \in \mathcal{C}} \frac{\partial L_{c}^{(i)}}{N_{k} \partial w_{\mathcal{B}}^{(i)}}
              if i \in \text{UnifyingRounds} then
                      for tasks k \in \{1, 2, ..., K\} do
                          Update (\bar{w}_{\mathcal{H},k}, \bar{w}_{\mathcal{T},k}) \leftarrow (\frac{1}{N_k} \sum_{c \in C_{\ell}} w_{\mathcal{H}_c}^{(i+1)}, \frac{1}{N_k} \sum_{c \in C_{\ell}} w_{\mathcal{T}_c}^{(i+1)})
```


Optimization in FeSTA

Task-agnostic body update

$$\min_{\mathcal{B}} \sum_{c \in \mathcal{C}} \sum_{i=1}^{N_c} \ell_c(y_c^{(i)}, \mathcal{T}_c(\mathcal{B}(\mathcal{H}_c(x_c^{(i)}))))$$

Task-specific head & tail update

$$\min_{\mathcal{H}_c, \mathcal{T}_c} \sum_{i=1}^{N_c} \ell_c(y_c^{(i)}, \mathcal{T}_c(\mathcal{B}(\mathcal{H}_c(x_c^{(i)}))))$$

Task-agnostic Body: Shared

「ask-agnostic Body: Shared

fask-agnostic Body: Shared

Fask-agnostic Body: Shared

Datasets for CXR Tasks

COVID-19 classification

				Traini	Training and validation dataset		set	
Total CXR images		External	Client 1	Client 2	Client 3	Client 4	Client 5	Client 6
		Hospital 1	Hospital 2	Hospital 3	Hospital 4	NIH	Brixia	BIMCV
Normal	13,649	320	300	400	8,861	3,768	-	-
Other infection	1,468	39	144	308	977	-	-	-
COVID-19	2,431	6	8	80	-	-	1,929	408
Total CXR	17,548	365	452	788	9,838	3,768	1,929	408

Pneumothorax segmentation (SIIM-ACR challenge)

 12,047 subjects for training (→ randomly assigned 4:1 ratio for training and validation datasets) and 3,205 subjects for testing

Pneumonia detection (RSNA challenge)

• 26,684 subjects \rightarrow Randomly assigned 3:1 ratio to training and testing datasets

(b) Single-task learning scheme (e.g. classification)

Training for 12,000 rounds

(a) Classification (b) Single-task learning scheme (e.g. classification) Single body Client 1 ucls Training for 12,000 rounds Client 1 \mathcal{H}^{cls} _]₽ Client 6 ... \mathcal{H}_6^{cls} τ cls Client 6 \mathcal{H}_6^{cls} Segmentation Client 7 \mathcal{T}_6^{cls} Task-agnostic Transformer Body Client 8 \mathcal{H}_2^{se} \mathcal{B} Detection Client 9 Client 10.

.....

(a) Classification Single body Client 1 rels -cls Client 6... \mathcal{H}_6^{cls} τ^{cls} Segmentation Client 7 1 seg Task-agnostic Transformer Body Client 8 \mathcal{H}_2^{seg} B Detection Client 9 Client 10...

(b) Single-task learning scheme (e.g. classification)

Results

Comparison of the FeSTA with other strategies

_	AUC				
Strategy	Average	COVID-19	Others	Normal	
Data-centralized	0.911 ± 0.016	0.883 ± 0.036	0.927 ± 0.013	0.923 ± 0.004	
Federated learning	0.891 ± 0.019	0.840 ± 0.035	0.926 ± 0.018	0.906 ± 0.028	
Split learning	0.863 ± 0.005	0.807 ± 0.012	0.892 ± 0.007	0.889 ± 0.019	
FESTA (STL)	$\textbf{0.909} \pm \textbf{0.021}$	$\textbf{0.880} \pm \textbf{0.008}$	$\textbf{0.916} \pm \textbf{0.038}$	$\textbf{0.931} \pm \textbf{0.021}$	
FESTA (MTL)	$\textbf{0.931} \pm \textbf{0.004}$	$\textbf{0.926} \pm \textbf{0.023}$	$\textbf{0.929} \pm \textbf{0.016}$	$\textbf{0.938} \pm \textbf{0.013}$	

Comparison between single-task & multi-task learning

Tasks	Metrics	Single-task learning	Multi-task learning
Classification Segmentation Detection	AUC Dice mAP	$\begin{array}{c} 0.909 \pm 0.021 \\ 0.798 \pm 0.016 \\ 0.202 \pm 0.008 \end{array}$	$\begin{array}{c} 0.931 \pm 0.004 \\ 0.821 \pm 0.003 \\ 0.204 \pm 0.002 \end{array}$

Results

Comparison with task-specific expert network & CNN-based MTL model

Tasks	Metrics	Task-specific experts	CNN-based MTL model	Transformer-based MTL model (ours)
Classification	AUC	0.898 ± 0.004	0.907 ± 0.011	$\textbf{0.931} \pm \textbf{0.004}$
Segmentation	Dice	0.736 ± 0.014	0.797 ± 0.018	0.821 ± 0.003
Detection	mAP	0.190 ± 0.006	0.159 ± 0.035	$\textbf{0.204} \pm \textbf{0.002}$

Statistical comparison of performance between model with & without the transformer

	COVID-19		Others		Normal	
Method	AUC (95% CI)	p-value	AUC (95% CI)	p-value	AUC (95% CI)	p-value
w/o Transformer body	0.867 (0.696 - 1.000)	-	0.883 (0.817 - 0.948)	-	0.889 (0.837 - 0.941)	-
w Transformer body (STL)	0.868 (0.749 - 0.987)	0.988	0.905 (0.852 - 0.958)	0.498	0.927 (0.889 - 0.965)	0.019
w Transformer body (MTL)	0.945 (0.896 - 0.995)	0.266	0.893 (0.833 - 0.954)	0.768	0.938 (0.903 - 0.974)	0.010

Model Sizes & Communicative Benefit

Parameter numbers & model sizes of sub-networks

	Head		Body		Tai	l
Task	Parameters	Size	Parameters	Size	Parameters	Size
Classification Segmentation Detection	13.313 M 15.041 M 27.085 M	54.1 MB 60.2 MB 108.8 MB	66.367 M	265.5 MB	0.002 M 7.387 M 19.773 M	11.7 KB 29.6 MB 79.1 MB

Note: Model sizes were estimated by parameter numbers and file sizes of saved weights.

Enables efficient communication under limited transmission speed and network capacities

Model Sizes & Communicative Benefit

Communication cost per 1 Federated Averaging (FedAvg)

	Total transmission	Feature and gradient transmission	Network parameter transmission
Classification			
Federated learning	159.365M	-	159.365M
Split learning	78.950M	78.950M	-
FESTA	105.580M	78.950M	26.630M
Segmentation			
Federated learning	177.592M	-	177.592M
Split learning	78.950M	78.950M	-
FESTA	123.808M	78.950M	44.858M
Detection			
Federated learning	226.450M	-	226.450M
Split learning	78.950M	78.950M	-
FESTA	172.665M	78.950M	93.715M

When period between FedAvg is k, transmission of features, gradients and network parameters are F,
G and P respectively, total transmission from Server to Client T can be represented as follows:

 $T = k \times (F + G) + P$

T for each strategies can be formulated as follows:

 $T_{FL} = P_h + P_b + P_t$ $T_{SL} = 100 \times (F + G)$ $T_{FESTA} = 100 \times (F + G) + (P_h + P_t)$

• If the transmission from Server to Client *T* and that from Client to Server $T_{C \to S}$ are assumed to be equal $(T_{C \to S} = T)$, total transmission *T'* is as follows: T' = 2T

Summary

- A novel Federated Split Task-Agnostic (FeSTA) framework suitable to leverage the benefit of ViT to process multiple CXR tasks are proposed.
- We showed that the proposed method outperforms the existing distributed learning methods, showing comparable performance to data-centralized method even under the extremely skewed data distribution.
- Our framework alongside with clients to process multiple related tasks also improves the performances of individual task.

Thank you!

Sangjoon Park*

Ph.D. Student

depecher@kaist.ac.kr

Jeongsol Kim M.S. Student wjdthf3927@kaist.ac.kr

Boah Kim Ph.D. Student boahkim@kaist.ac.kr

Jong Chul Ye Professor jong.ye@kaist.ac.kr