
Compacter:
Efficient Low-Rank Hypercomplex Adapter Layers

Rabeeh Karimi Mahabadi1, 2 James Henderson2 Sebastian Ruder3

1EPFL University, 2Idiap Research Institute, 3DeepMind

1/26

Motivation

Fine-tuning large-scale pretrained language models with millions
and billions of parameters on downstream tasks is:

Sample-inefficient
Unstable in low-resource settings
Requires storing a separate copy of the model for each task

Downstream Tasks

Fine-tuned Large-scale
Pretrained Language models

2/26

Contributions

We propose Compacter

A parameter-efficient fine-tuning method
With a better trade-off between task performance, memory and training time

Benchmark recent parameter-efficient methods

Provide insights on their performance and efficiency

3/26

Background: Adapters

Freeze the model
Train adapters and layernorms [1]

Multi-head attention

Adapter

+

Transformer Layer

Layer norm

Feed forward

Adapter

+
Layer norm

Figure: Adapter integration in a pretrained transformer model.

4/26

Background: Adapters

A bottleneck architecture
Consisting of a down projection, non-linearity, and up projection

Feed forward down
projection

Nonlinearity

Adapter Layer

Feed forward
up projection

+

Figure: Adapter architecture.

5/26

Compact and Efficient Adapter Layers

Down and Up projections in adapters (W PRkˆd) are fully connected layers:

Y “Wx`b

Feed forward down
projection

Nonlinearity

Adapter Layer

Feed forward
up projection

+

Figure: Adapters’ weights.

6/26

Compact and Efficient Adapter Layers

W can be learned via parameterized hypercomplex multiplication (PHM)
layers [2].

Let W PRkˆd

Assume k and d are divisible by a user-defined hyper-parameter nPZą0

W is generated by a summation of Kronecker products between Ai PRnˆn

and Bi PR
k
nˆ

d
n

W “

n
ÿ

i“1

AibBi ,

Reduces trainable parameters by 1
n

Parameters of

+

Parameters for

Size of

Number of parameters

Figure: Parameterized Hypercomplex Multiplication Layers.

7/26

Compacter : Beyond Hypercomplex Adapters

Compacter is motivated by the followings:

There are redundancies in information captured by adapters [1].
Sharing adapters across layers can cause a small drop in performance [3].

8/26

Compacter : Beyond Hypercomplex Adapters

Each Compacter layer’s weight consists of:
Shared Weights (Ai):

Common across all adapter layers
Capturing useful information for adapting to the target task

Low-rank Weights (Bi):

Adapter-specific parameters
Capturing information relevant for adapting each individual layer

Low-rank parameterized hypercomplex multiplication layers (LPHM):

W “

n
ÿ

i“1

AibBi“

n
ÿ

i“1

AibpsitJi q.

9/26

Compacter

We compute sum of Kronecker products of shared matrices Ai and
adapter-specific matrices Bj

i

+
Size of

Size of

Independent rank
 one weights

Independent rank
 one weights

Shared
weight

Shared
weight

+

COMPACTER layer 1

COMPACTER layer 2

10/26

Compacter

“Fast” weights Bi :
Independent rank-one weights
Learns adapter-layer specific information

Weights for COMPACTER Layer 1

Weights for COMPACTER Layer 2

+
Size of

Size of

Independent rank
 one weights

Independent rank
 one weights

Shared
weight

Shared
weight

+

COMPACTER's weights

11/26

Compacter

“Slow” shared weights Ai :
Shared across all Compacter layers
Capture general information useful for adapting to the target task

+
Size of

Size of

Independent rank one weights Independent rank one weights

Shared
weight

Shared
weight

+

COMPACTER's weights

12/26

Compacter

Parameter size of Compacter weights is much smaller than the size
of the weights.

+
Parameter size of

Parameter size of

Shared parameters size

Size of

Size of

Independent rank
 one weights

Independent rank
 one weights

Shared
weight

Shared
weight

+

COMPACTER's weights

13/26

Parameter Efficiency

For a transformer of L layers and adapters of size kˆd:

Adapter parameters:

2kd parameters for down and up projections (encoder/decoder): 4kd
Total parameters’ complexity: OpLkdq

PHM-Adapter

Ai PRnˆn and Bi PR
k
nˆ

d
n define the degree of freedom for W

Total adapters’ parameters: 4Lˆpkdn `n
3q

With a mild assumption kdąn4: Op 1nLkdq

Compacter

Ai PRnˆn for all layers: n3

Two rank-one weights for each adapter: 4Lpk`dq
Total parameters: 4Lpk`dq`n3

With a mild assumption 4Lpk`dqąn3: OpLpk`dqq

14/26

Benchmarking Parameter-efficient Methods

Our Proposed Methods:

Compacter: We learn adapter weights using LPHM layers.

Compacter++: Removing Compacter layers after the self-attention layer.

PHM-Adapter: We learn adapters’ weight using PHM layers [2].

Baselines:

T5BASE:Fine-tuning all parameters of T5BASE [4]

Adapter: Including adapters after feedforward and self-attention [1]

Pfeiffer-Adapter: Including adapters only after self-attention [5]

AdapterDrop: Dropping adapters from lower transformer layers
(first 5 layers) [3]

Adapter-LowRank: Adapter’s weights parameterized as a product of
two rank-one weights.

BitFit: Fine-tuning only biases [6, 7].

15/26

Benchmarking Parameter-efficient Methods

Intrinsic-SAID: reparameterize in a low-dimensional subspace θd 1

(d 1!D)
[8]:

θD
i “θD

i,0`λiPθd 1´m
i ,

Parameter θD
i,0 are the pretrained model’s parameters

P PRd1
´mÑRD is a random linear projection via the Fastfood transform

The total trainable parameters are θd 1
´m PRd1

´m and λPRm

Prompt Tuning: Prepends a randomly initialized continuous prompt to
the input [9].

Initializing prompts from pretrained language model’s vocabulary

Prompt A

Prompt B

Prompt C

Ta
sk

-s
pe

ci
fic

 P
ro

m
pt

s

Inputs A

Inputs B

Inputs C

Pretrained Language models

16/26

Trade-off Between Parameter Efficient Fine-tuning Methods

Trade-off between quantitative performance (score on GLUE (y axis))
Percentage of trained parameters (x axis, in log scale)
Memory footprint (size of the circles).

0.01 0.10 1.00 10.00 100.00
Percentage of the Trained Parameters Per Task (Relative to T5)

76

78

80

82

84

86

88
G

LU
E

Sc
or

e

T5Adapter

Pfeiffer-Adapter

AdapterDrop

PromptTuning

Intrinsic-SAID BitFit

PHM-AdapterCompacter
Compacter++

Adapter-LowRank

17/26

Performance Evaluation: Compacter (++)

Performs on par with full fine-tuning.

Outperforms all previous parameter-efficient methods.

Only trains 0.07% (0.047%) of parameters.

Reduces memory usage and speeds up the training.

Model

Trained
params/
per task

Avg
Memory
(MB)

∆%

Time/
Epoch
(min)

∆%

T5BASE 100% 86.5 167.99 — 42.13 —

Adapter 0.832% 85.78 124.02 -35.45% 31.81 -24.50%
Pfeiffer-Adapter 0.427% 86.32 118.4 -41.88% 28.19 -33.09%
AdapterDrop 0.494% 85.85 119.41 -40.68% 28.08 -33.35%
Adapter-LowRank 0.073% 85.82 123.8 -35.69% 32.71 -22.36%
Prompt Tuning 0.034% 75.95 222.27 24.42% 44.54 5.72%
Intrinsic-SAID 0.009% 85.45 285.40 41.14% 144.01 241.82%
BitFit 0.126% 84.97 102.31 -64.20% 27.36 -35.06%

PHM-Adapter 0.179% 86.40 123.93 -35.55% 35.55 -15.62%
Compacter 0.073% 86.62 123.91 -35.57% 36.48 -13.41%
Compacter++ 0.047% 86.47 118.35 -41.94% 30.96 -26.51%

18/26

Performance Evaluation: Prompt Tuning

Low number of parameters but high memory overhead and slow to train

Computation of self-attention scales quadratically with the sequence length

Its performance substantially lags behind full fine-tuning

High sensitivity to initialization and learning rate
Limited interaction with the model
Less suitable to deal with large contexts

Model

Trained
params/
per task

Avg
Memory
(MB)

∆%

Time/
Epoch
(min)

∆%

T5BASE 100% 86.5 167.99 — 42.13 —

Adapter 0.832% 85.78 124.02 -35.45% 31.81 -24.50%
Pfeiffer-Adapter 0.427% 86.32 118.4 -41.88% 28.19 -33.09%
AdapterDrop 0.494% 85.85 119.41 -40.68% 28.08 -33.35%
Adapter-LowRank 0.073% 85.82 123.8 -35.69% 32.71 -22.36%
Prompt Tuning 0.034% 75.95 222.27 24.42% 44.54 5.72%
Intrinsic-SAID 0.009% 85.45 285.40 41.14% 144.01 241.82%
BitFit 0.126% 84.97 102.31 -64.20% 27.36 -35.06%

PHM-Adapter 0.179% 86.40 123.93 -35.55% 35.55 -15.62%
Compacter 0.073% 86.62 123.91 -35.57% 36.48 -13.41%
Compacter++ 0.047% 86.47 118.35 -41.94% 30.96 -26.51%

19/26

Performance Evaluation: Intrinsic-SAID

Tunes only 0.009% of parameters

Performs worse than fine-tuning

High memory overhead and slow to train

Requires storing large random projection matrices.
Computing projections via FastFood transform [10] is slow in practice
Not suitable for large-scale pretrained language models

Model

Trained
params/
per task

Avg
Memory
(MB)

∆%

Time/
Epoch
(min)

∆%

T5BASE 100% 86.5 167.99 — 42.13 —

Adapter 0.832% 85.78 124.02 -35.45% 31.81 -24.50%
Pfeiffer-Adapter 0.427% 86.32 118.4 -41.88% 28.19 -33.09%
AdapterDrop 0.494% 85.85 119.41 -40.68% 28.08 -33.35%
Adapter-LowRank 0.073% 85.82 123.8 -35.69% 32.71 -22.36%
Prompt Tuning 0.034% 75.95 222.27 24.42% 44.54 5.72%
Intrinsic-SAID 0.009% 85.45 285.40 41.14% 144.01 241.82%
BitFit 0.126% 84.97 102.31 -64.20% 27.36 -35.06%

PHM-Adapter 0.179% 86.40 123.93 -35.55% 35.55 -15.62%
Compacter 0.073% 86.62 123.91 -35.57% 36.48 -13.41%
Compacter++ 0.047% 86.47 118.35 -41.94% 30.96 -26.51%

20/26

Performance Evaluation: BitFit

Performs worse than fine-tuning (-1.53 points).

Tuning only biases is not sufficient

Lowest memory overhead and the fastest to train

Does not store intermediate activations.

Model

Trained
params/
per task

Avg
Memory
(MB)

∆%

Time/
Epoch
(min)

∆%

T5BASE 100% 86.5 167.99 — 42.13 —

Adapter 0.832% 85.78 124.02 -35.45% 31.81 -24.50%
Pfeiffer-Adapter 0.427% 86.32 118.4 -41.88% 28.19 -33.09%
AdapterDrop 0.494% 85.85 119.41 -40.68% 28.08 -33.35%
Adapter-LowRank 0.073% 85.82 123.8 -35.69% 32.71 -22.36%
Prompt Tuning 0.034% 75.95 222.27 24.42% 44.54 5.72%
Intrinsic-SAID 0.009% 85.45 285.40 41.14% 144.01 241.82%
BitFit 0.126% 84.97 102.31 -64.20% 27.36 -35.06%

PHM-Adapter 0.179% 86.40 123.93 -35.55% 35.55 -15.62%
Compacter 0.073% 86.62 123.91 -35.57% 36.48 -13.41%
Compacter++ 0.047% 86.47 118.35 -41.94% 30.96 -26.51%

21/26

Performance Evaluation: Adapter-based methods

Low memory-overhead and fast to train

Generally perform worse than finetuning (exception:Pfeiffer-Adapter)

AdapterDrop: Adapting lower layer of T5 is important.
Adapter-LowRank is not expressive enough.

Order of magnitude more trainable parameters cf. Compacter++

Model

Trained
params/
per task

Avg
Memory
(MB)

∆%

Time/
Epoch
(min)

∆%

T5BASE 100% 86.5 167.99 — 42.13 —

Adapter 0.832% 85.78 124.02 -35.45% 31.81 -24.50%
Pfeiffer-Adapter 0.427% 86.32 118.4 -41.88% 28.19 -33.09%
AdapterDrop 0.494% 85.85 119.41 -40.68% 28.08 -33.35%
Adapter-LowRank 0.073% 85.82 123.8 -35.69% 32.71 -22.36%
Prompt Tuning 0.034% 75.95 222.27 24.42% 44.54 5.72%
Intrinsic-SAID 0.009% 85.45 285.40 41.14% 144.01 241.82%
BitFit 0.126% 84.97 102.31 -64.20% 27.36 -35.06%

PHM-Adapter 0.179% 86.40 123.93 -35.55% 35.55 -15.62%
Compacter 0.073% 86.62 123.91 -35.57% 36.48 -13.41%
Compacter++ 0.047% 86.47 118.35 -41.94% 30.96 -26.51%

22/26

Low-resource Fine-tuning

Subsampling GLUE for varying sizes (100,500,1000,2000,4000).
Compacter++:

Generalizes substantially better in resource-limited settings.
Offers a more effective fine-tuning in this regime.

0 1000 2000 3000 4000
Samples per task

76

78

80

82

84

A
ve

ra
ge

sc
or

es
on

G
L

U
E

T5BASE

Compacter++

Figure: Results on GLUE for low-resource setting.

23/26

Takeaways

Compacter (++)

Is a light-weight fine-tuning method for large-scale language models.

Generates adapter’s weights by summing Kronecker products between:

shared “slow” weights
“fast” rank-one matrices, specific to each adapter layer.

Reduces the number of parameters substantially from Opkdq to Opk`dq.
Learns only 0.073% (0.047%) parameters, still:

Obtains comparable performance in a full-data setting.
Outperforms fine-tuning in data-limited scenarios.

Questions?

Please join our poster presentation during NeurIPS, 2021.

24/26

References I

[1] Neil Houlsby, Andrei Giurgiu,
Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, Andrea Gesmundo, Mona
Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp. In ICML, 2019.

[2] Aston Zhang, Yi Tay, SHUAI Zhang, Alvin Chan,
Anh Tuan Luu, Siu Hui, and Jie Fu. Beyond fully-connected layers with quaternions:
Parameterization of hypercomplex multiplications with 1/n parameters. In ICLR, 2021.

[3] Andreas Rückĺe, Gregor Geigle, Max
Glockner, Tilman Beck, Jonas Pfeiffer, Nils Reimers, and Iryna Gurevych. AdapterDrop:
On the Efficiency of Adapters in Transformers. arXiv preprint arXiv:2010.11918, 2020.

[4] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Exploring
the limits of transfer learning with a unified text-to-text transformer. JMLR, 2020.

[5] Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücḱle, Cho Kyunghyun, and Iryna Gurevych.
AdapterFusion: Non-destructive task composition for transfer learning. In EACL, 2021.

[6] Han Cai, Chuang Gan, Ligeng Zhu, and Song Han.
Tinytl: Reduce memory, not parameters for efficient on-device learning. NeurIPS, 2020.

[7] Shauli Ravfogel, Elad Ben-Zaken, and Yoav Goldberg. Bitfit: Simple
parameter-efficient fine-tuning for transformer-based masked languagemodels. 2021.

25/26

References II

[8] Armen Aghajanyan, Luke Zettlemoyer, and Sonal Gupta. Intrinsic dimensionality explains
the effectiveness of language model fine-tuning. arXiv preprint arXiv:2012.13255, 2020.

[9] Brian Lester, Rami Al-Rfou, and Noah Constant. The power
of scale for parameter-efficient prompt tuning. arXiv preprint arXiv:2104.08691, 2021.

[10] Quoc Le, Tamás Sarlós, and
Alex Smola. Fastfood-approximating kernel expansions in loglinear time. In ICML, 2013.

[11] Tianyi Zhang, Felix Wu, Arzoo Katiyar, Kilian Q
Weinberger, and Yoav Artzi. Revisiting Few-sample BERT Fine-tuning. In ICLR, 2021.

[12] Hyung Won Chung, Thibault Févry, Henry Tsai, Melvin Johnson, and Sebastian
Ruder. Rethinking Embedding Coupling in Pre-trained Language Models. In ICLR, 2021.

26/26

	Experimental Results
	References

