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Motivation

Fine-tuning large-scale pretrained language models with millions
and billions of parameters on downstream tasks is:

Sample-inefficient
Unstable in low-resource settings
Requires storing a separate copy of the model for each task

Downstream Tasks

Fine-tuned Large-scale  
Pretrained Language models 
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Contributions

We propose Compacter

A parameter-efficient fine-tuning method
With a better trade-off between task performance, memory and training time

Benchmark recent parameter-efficient methods

Provide insights on their performance and efficiency
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Background: Adapters

Freeze the model
Train adapters and layernorms [1]

Multi-head attention

Adapter

+

Transformer Layer

Layer norm

Feed forward

Adapter

+
Layer norm

Figure: Adapter integration in a pretrained transformer model.
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Background: Adapters

A bottleneck architecture
Consisting of a down projection, non-linearity, and up projection

Feed forward down
projection

Nonlinearity

Adapter Layer

Feed forward  
up projection

+

Figure: Adapter architecture.
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Compact and Efficient Adapter Layers

Down and Up projections in adapters (W PRkˆd) are fully connected layers:

Y “Wx`b

Feed forward down
projection

Nonlinearity

Adapter Layer

Feed forward  
up projection

+

Figure: Adapters’ weights.
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Compact and Efficient Adapter Layers

W can be learned via parameterized hypercomplex multiplication (PHM)
layers [2].

Let W PRkˆd

Assume k and d are divisible by a user-defined hyper-parameter nPZą0

W is generated by a summation of Kronecker products between Ai PRnˆn

and Bi PR
k
nˆ

d
n

W “

n
ÿ

i“1

AibBi ,

Reduces trainable parameters by 1
n

Parameters of 
 

+
 

Parameters for 

Size of 

Number of parameters

Figure: Parameterized Hypercomplex Multiplication Layers.
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Compacter : Beyond Hypercomplex Adapters

Compacter is motivated by the followings:

There are redundancies in information captured by adapters [1].
Sharing adapters across layers can cause a small drop in performance [3].
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Compacter : Beyond Hypercomplex Adapters

Each Compacter layer’s weight consists of:
Shared Weights (Ai):

Common across all adapter layers
Capturing useful information for adapting to the target task

Low-rank Weights (Bi):

Adapter-specific parameters
Capturing information relevant for adapting each individual layer

Low-rank parameterized hypercomplex multiplication layers (LPHM):

W “

n
ÿ

i“1

AibBi“

n
ÿ

i“1

AibpsitJi q.
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Compacter

We compute sum of Kronecker products of shared matrices Ai and
adapter-specific matrices Bj

i

+
Size of 

Size of 

Independent rank
 one weights

Independent rank
 one weights

Shared 
weight 

Shared
weight 

+

COMPACTER layer 1

COMPACTER layer 2
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Compacter

“Fast” weights Bi :
Independent rank-one weights
Learns adapter-layer specific information

Weights for COMPACTER Layer 1

Weights for COMPACTER Layer 2

+
Size of 

Size of 

Independent rank
 one weights

Independent rank
 one weights

Shared 
weight 

Shared
weight 

+

COMPACTER's weights
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Compacter

“Slow” shared weights Ai :
Shared across all Compacter layers
Capture general information useful for adapting to the target task

+
Size of 

Size of 

Independent rank one weights Independent rank one weights

Shared 
weight 

Shared
weight 

+

COMPACTER's weights
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Compacter

Parameter size of Compacter weights is much smaller than the size
of the weights.

+
Parameter size of 

Parameter size of 

Shared parameters size

Size of 

Size of 

Independent rank
 one weights

Independent rank
 one weights

Shared 
weight 

Shared
weight 

+
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Parameter Efficiency

For a transformer of L layers and adapters of size kˆd:

Adapter parameters:

2kd parameters for down and up projections (encoder/decoder): 4kd
Total parameters’ complexity: OpLkdq

PHM-Adapter

Ai PRnˆn and Bi PR
k
nˆ

d
n define the degree of freedom for W

Total adapters’ parameters: 4Lˆpkdn `n
3q

With a mild assumption kdąn4: Op 1nLkdq

Compacter

Ai PRnˆn for all layers: n3

Two rank-one weights for each adapter: 4Lpk`dq
Total parameters: 4Lpk`dq`n3

With a mild assumption 4Lpk`dqąn3: OpLpk`dqq
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Benchmarking Parameter-efficient Methods

Our Proposed Methods:

Compacter: We learn adapter weights using LPHM layers.

Compacter++: Removing Compacter layers after the self-attention layer.

PHM-Adapter: We learn adapters’ weight using PHM layers [2].

Baselines:

T5BASE:Fine-tuning all parameters of T5BASE [4]

Adapter: Including adapters after feedforward and self-attention [1]

Pfeiffer-Adapter: Including adapters only after self-attention [5]

AdapterDrop: Dropping adapters from lower transformer layers
(first 5 layers) [3]

Adapter-LowRank: Adapter’s weights parameterized as a product of
two rank-one weights.

BitFit: Fine-tuning only biases [6, 7].
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Benchmarking Parameter-efficient Methods

Intrinsic-SAID: reparameterize in a low-dimensional subspace θd 1

(d 1!D)
[8]:

θD
i “θD

i,0`λiPθd 1´m
i ,

Parameter θD
i,0 are the pretrained model’s parameters

P PRd1
´mÑRD is a random linear projection via the Fastfood transform

The total trainable parameters are θd 1
´m PRd1

´m and λPRm

Prompt Tuning: Prepends a randomly initialized continuous prompt to
the input [9].

Initializing prompts from pretrained language model’s vocabulary

Prompt A

Prompt B

Prompt C

Ta
sk

-s
pe

ci
fic

 P
ro

m
pt

s

Inputs A

Inputs B

Inputs C

Pretrained Language models
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Trade-off Between Parameter Efficient Fine-tuning Methods

Trade-off between quantitative performance (score on GLUE (y axis))
Percentage of trained parameters (x axis, in log scale)
Memory footprint (size of the circles).
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Performance Evaluation: Compacter (++)

Performs on par with full fine-tuning.

Outperforms all previous parameter-efficient methods.

Only trains 0.07% (0.047%) of parameters.

Reduces memory usage and speeds up the training.

Model

Trained
params/
per task

Avg
Memory
(MB)

∆%

Time/
Epoch
(min)

∆%

T5BASE 100% 86.5 167.99 — 42.13 —

Adapter 0.832% 85.78 124.02 -35.45% 31.81 -24.50%
Pfeiffer-Adapter 0.427% 86.32 118.4 -41.88% 28.19 -33.09%
AdapterDrop 0.494% 85.85 119.41 -40.68% 28.08 -33.35%
Adapter-LowRank 0.073% 85.82 123.8 -35.69% 32.71 -22.36%
Prompt Tuning 0.034% 75.95 222.27 24.42% 44.54 5.72%
Intrinsic-SAID 0.009% 85.45 285.40 41.14% 144.01 241.82%
BitFit 0.126% 84.97 102.31 -64.20% 27.36 -35.06%

PHM-Adapter 0.179% 86.40 123.93 -35.55% 35.55 -15.62%
Compacter 0.073% 86.62 123.91 -35.57% 36.48 -13.41%
Compacter++ 0.047% 86.47 118.35 -41.94% 30.96 -26.51%
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Performance Evaluation: Prompt Tuning

Low number of parameters but high memory overhead and slow to train

Computation of self-attention scales quadratically with the sequence length

Its performance substantially lags behind full fine-tuning

High sensitivity to initialization and learning rate
Limited interaction with the model
Less suitable to deal with large contexts

Model

Trained
params/
per task

Avg
Memory
(MB)

∆%

Time/
Epoch
(min)

∆%

T5BASE 100% 86.5 167.99 — 42.13 —

Adapter 0.832% 85.78 124.02 -35.45% 31.81 -24.50%
Pfeiffer-Adapter 0.427% 86.32 118.4 -41.88% 28.19 -33.09%
AdapterDrop 0.494% 85.85 119.41 -40.68% 28.08 -33.35%
Adapter-LowRank 0.073% 85.82 123.8 -35.69% 32.71 -22.36%
Prompt Tuning 0.034% 75.95 222.27 24.42% 44.54 5.72%
Intrinsic-SAID 0.009% 85.45 285.40 41.14% 144.01 241.82%
BitFit 0.126% 84.97 102.31 -64.20% 27.36 -35.06%

PHM-Adapter 0.179% 86.40 123.93 -35.55% 35.55 -15.62%
Compacter 0.073% 86.62 123.91 -35.57% 36.48 -13.41%
Compacter++ 0.047% 86.47 118.35 -41.94% 30.96 -26.51%
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Performance Evaluation: Intrinsic-SAID

Tunes only 0.009% of parameters

Performs worse than fine-tuning

High memory overhead and slow to train

Requires storing large random projection matrices.
Computing projections via FastFood transform [10] is slow in practice
Not suitable for large-scale pretrained language models

Model

Trained
params/
per task

Avg
Memory
(MB)

∆%

Time/
Epoch
(min)

∆%

T5BASE 100% 86.5 167.99 — 42.13 —

Adapter 0.832% 85.78 124.02 -35.45% 31.81 -24.50%
Pfeiffer-Adapter 0.427% 86.32 118.4 -41.88% 28.19 -33.09%
AdapterDrop 0.494% 85.85 119.41 -40.68% 28.08 -33.35%
Adapter-LowRank 0.073% 85.82 123.8 -35.69% 32.71 -22.36%
Prompt Tuning 0.034% 75.95 222.27 24.42% 44.54 5.72%
Intrinsic-SAID 0.009% 85.45 285.40 41.14% 144.01 241.82%
BitFit 0.126% 84.97 102.31 -64.20% 27.36 -35.06%

PHM-Adapter 0.179% 86.40 123.93 -35.55% 35.55 -15.62%
Compacter 0.073% 86.62 123.91 -35.57% 36.48 -13.41%
Compacter++ 0.047% 86.47 118.35 -41.94% 30.96 -26.51%
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Performance Evaluation: BitFit

Performs worse than fine-tuning (-1.53 points).

Tuning only biases is not sufficient

Lowest memory overhead and the fastest to train

Does not store intermediate activations.

Model

Trained
params/
per task

Avg
Memory
(MB)

∆%

Time/
Epoch
(min)

∆%

T5BASE 100% 86.5 167.99 — 42.13 —

Adapter 0.832% 85.78 124.02 -35.45% 31.81 -24.50%
Pfeiffer-Adapter 0.427% 86.32 118.4 -41.88% 28.19 -33.09%
AdapterDrop 0.494% 85.85 119.41 -40.68% 28.08 -33.35%
Adapter-LowRank 0.073% 85.82 123.8 -35.69% 32.71 -22.36%
Prompt Tuning 0.034% 75.95 222.27 24.42% 44.54 5.72%
Intrinsic-SAID 0.009% 85.45 285.40 41.14% 144.01 241.82%
BitFit 0.126% 84.97 102.31 -64.20% 27.36 -35.06%

PHM-Adapter 0.179% 86.40 123.93 -35.55% 35.55 -15.62%
Compacter 0.073% 86.62 123.91 -35.57% 36.48 -13.41%
Compacter++ 0.047% 86.47 118.35 -41.94% 30.96 -26.51%
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Performance Evaluation: Adapter-based methods

Low memory-overhead and fast to train

Generally perform worse than finetuning (exception:Pfeiffer-Adapter)

AdapterDrop: Adapting lower layer of T5 is important.
Adapter-LowRank is not expressive enough.

Order of magnitude more trainable parameters cf. Compacter++

Model

Trained
params/
per task

Avg
Memory
(MB)

∆%

Time/
Epoch
(min)

∆%

T5BASE 100% 86.5 167.99 — 42.13 —

Adapter 0.832% 85.78 124.02 -35.45% 31.81 -24.50%
Pfeiffer-Adapter 0.427% 86.32 118.4 -41.88% 28.19 -33.09%
AdapterDrop 0.494% 85.85 119.41 -40.68% 28.08 -33.35%
Adapter-LowRank 0.073% 85.82 123.8 -35.69% 32.71 -22.36%
Prompt Tuning 0.034% 75.95 222.27 24.42% 44.54 5.72%
Intrinsic-SAID 0.009% 85.45 285.40 41.14% 144.01 241.82%
BitFit 0.126% 84.97 102.31 -64.20% 27.36 -35.06%

PHM-Adapter 0.179% 86.40 123.93 -35.55% 35.55 -15.62%
Compacter 0.073% 86.62 123.91 -35.57% 36.48 -13.41%
Compacter++ 0.047% 86.47 118.35 -41.94% 30.96 -26.51%
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Low-resource Fine-tuning

Subsampling GLUE for varying sizes (100,500,1000,2000,4000).
Compacter++:

Generalizes substantially better in resource-limited settings.
Offers a more effective fine-tuning in this regime.
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Figure: Results on GLUE for low-resource setting.
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Takeaways

Compacter (++)

Is a light-weight fine-tuning method for large-scale language models.

Generates adapter’s weights by summing Kronecker products between:

shared “slow” weights
“fast” rank-one matrices, specific to each adapter layer.

Reduces the number of parameters substantially from Opkdq to Opk`dq.
Learns only 0.073% (0.047%) parameters, still:

Obtains comparable performance in a full-data setting.
Outperforms fine-tuning in data-limited scenarios.

Questions?

Please join our poster presentation during NeurIPS, 2021.
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