

Efficient Low-Rank Hypercomplex Adapter Layers

Rabeeh Karimi Mahabadi^{1, 2} James Henderson² Sebastian Ruder³

¹EPFL University, ²Idiap Research Institute, ³DeepMind

Motivation

- Fine-tuning large-scale pretrained language models with millions and billions of parameters on downstream tasks is:
 - Sample-inefficient
 - Unstable in low-resource settings
 - Requires storing a separate copy of the model for each task

Fine-tuned Large-scale Pretrained Language models

Downstream Tasks

- We propose COMPACTER
 - A parameter-efficient fine-tuning method
 - With a better trade-off between task performance, memory and training time
- Benchmark recent parameter-efficient methods
 - Provide insights on their performance and efficiency

Background: Adapters

- Freeze the model
- Train adapters and layernorms [1]

Figure: Adapter integration in a pretrained transformer model.

Background: Adapters

- A bottleneck architecture
- Consisting of a down projection, non-linearity, and up projection

Figure: Adapter architecture.

Compact and Efficient Adapter Layers

• Down and Up projections in adapters ($W \in \mathbb{R}^{k \times d}$) are fully connected layers:

Y = Wx + b

Figure: Adapters' weights.

Compact and Efficient Adapter Layers

- *W* can be learned via parameterized hypercomplex multiplication (PHM) layers [2].
 - Let $\boldsymbol{W} \in \mathbb{R}^{k \times d}$
 - Assume k and d are divisible by a user-defined hyper-parameter $n \in \mathbb{Z}_{>0}$
 - W is generated by a summation of Kronecker products between $A_i \in \mathbb{R}^{n \times n}$ and $B_i \in \mathbb{R}^{\frac{k}{n} \times \frac{d}{n}}$

$$\boldsymbol{W} = \sum_{i=1}^{n} \boldsymbol{A}_{i} \otimes \boldsymbol{B}_{i},$$

• Reduces trainable parameters by $\frac{1}{n}$

Figure: Parameterized Hypercomplex Multiplication Layers.

- COMPACTER is motivated by the followings:
 - There are redundancies in information captured by adapters [1].
 - Sharing adapters across layers can cause a small drop in performance [3].

- Each COMPACTER layer's weight consists of:
 - Shared Weights (A_i):
 - Common across all adapter layers
 - Capturing useful information for adapting to the target task
 - Low-rank Weights (B_i):
 - Adapter-specific parameters
 - Capturing information relevant for adapting each individual layer

• Low-rank parameterized hypercomplex multiplication layers (LPHM):

$$\boldsymbol{W} = \sum_{i=1}^{n} \boldsymbol{A}_{i} \otimes \boldsymbol{B}_{i} = \sum_{i=1}^{n} \boldsymbol{A}_{i} \otimes (\boldsymbol{s}_{i} \boldsymbol{t}_{i}^{\top}).$$

We compute sum of Kronecker products of *shared* matrices A_i and *adapter-specific* matrices Bⁱ_i

COMPACTER layer 2

- "Fast" weights *B_i*:
 - Independent rank-one weights
 - Learns adapter-layer specific information

Weights for COMPACTER Layer 2

- "Slow" shared weights A_i:
 - \bullet Shared across all $\operatorname{COMPACTER}$ layers
 - Capture general information useful for adapting to the target task

• Parameter size of COMPACTER weights is much smaller than the size of the weights.

Parameter Efficiency

For a transformer of *L* layers and adapters of size $k \times d$:

- ADAPTER parameters:
 - 2kd parameters for down and up projections (encoder/decoder): 4kd
 - Total parameters' complexity: $\boldsymbol{\mathcal{O}}(\boldsymbol{\textit{Lkd}})$
- PHM-Adapter
 - $A_i \in \mathbb{R}^{n \times n}$ and $B_i \in \mathbb{R}^{\frac{k}{n} \times \frac{d}{n}}$ define the degree of freedom for W
 - Total adapters' parameters: $4L \times (\frac{kd}{n} + n^3)$
 - With a mild assumption $kd > n^4$: $\mathcal{O}(\frac{1}{n}Lkd)$

- Compacter
 - $A_i \in \mathbb{R}^{n \times n}$ for all layers: n^3
 - Two rank-one weights for each adapter: 4L(k+d)
 - Total parameters: $4L(k+d) + n^3$
 - With a mild assumption $4L(k+d) > n^3$: $\mathcal{O}(L(k+d))$

Our Proposed Methods:

- Compacter: We learn adapter weights using LPHM layers.
- **Compacter++:** Removing COMPACTER layers after the self-attention layer.
- PHM-Adapter: We learn adapters' weight using PHM layers [2].

Baselines:

- T5_{BASE}: Fine-tuning all parameters of T5_{BASE} [4]
- Adapter: Including adapters after feedforward and self-attention [1]
- Pfeiffer-Adapter: Including adapters only after self-attention [5]
- AdapterDrop: Dropping adapters from lower transformer layers (first 5 layers) [3]
- Adapter-LowRank: Adapter's weights parameterized as a product of two rank-one weights.
- **BitFit:** Fine-tuning only biases [6, 7].

Benchmarking Parameter-efficient Methods

Intrinsic-SAID: reparameterize in a low-dimensional subspace θ^{d'} (d' « D)
[8]:

$$\theta_i^D = \theta_{i,0}^D + \lambda_i P \theta_i^{d'-m}$$

- Parameter $\theta_{i,0}^D$ are the pretrained model's parameters
- $P \in \mathbb{R}^{d'-m} \to \mathbb{R}^{D}$ is a random linear projection via the Fastfood transform
- The total trainable parameters are $heta^{d'-m} \in \mathbb{R}^{d'-m}$ and $\lambda \in \mathbb{R}^m$
- **Prompt Tuning:** Prepends a randomly initialized continuous prompt to the input [9].
 - Initializing prompts from pretrained language model's vocabulary

Trade-off Between Parameter Efficient Fine-tuning Methods

- Trade-off between quantitative performance (score on GLUE (y axis))
- Percentage of trained parameters (x axis, in log scale)
- Memory footprint (size of the circles).

Performance Evaluation: COMPACTER (++)

- Performs on par with full fine-tuning.
- Outperforms all previous parameter-efficient methods.
- Only trains 0.07% (0.047%) of parameters.
- Reduces memory usage and speeds up the training.

Model	Trained params/ per task	Avg	Memory (MB)	$\Delta\%$	Time/ Epoch (min)	$\Delta\%$
T5 _{base}	100%	86.5	167.99	—	42.13	
Adapter	0.832%	85.78	124.02	-35.45%	31.81	-24.50%
Pfeiffer-Adapter	0.427%	86.32	118.4	-41.88%	28.19	-33.09%
AdapterDrop	0.494%	85.85	119.41	-40.68%	28.08	-33.35%
Adapter-LowRank	0.073%	85.82	123.8	-35.69%	32.71	-22.36%
Prompt Tuning	0.034%	75.95	222.27	24.42%	44.54	5.72%
INTRINSIC-SAID	0.009%	85.45	285.40	41.14%	144.01	241.82%
BitFit	0.126%	84.97	102.31	-64.20%	27.36	-35.06%
PHM-Adapter	0.179%	86.40	123.93	-35.55%	35.55	-15.62%
Compacter	0.073%	86.62	123.91	-35.57%	36.48	-13.41%
Compacter++	0.047%	86.47	118.35	-41.94%	30.96	-26.51%

Performance Evaluation: PROMPT TUNING

- Low number of parameters but high memory overhead and slow to train
 - Computation of self-attention scales quadratically with the sequence length
- Its performance substantially lags behind full fine-tuning
 - High sensitivity to initialization and learning rate
 - Limited interaction with the model
 - Less suitable to deal with large contexts

Model	Trained params/ per task	Avg	Memory (MB)	$\Delta\%$	Time/ Epoch (min)	$\Delta\%$
T5 _{BASE}	100%	86.5	167.99	—	42.13	—
Adapter	0.832%	85.78	124.02	-35.45%	31.81	-24.50%
Pfeiffer-Adapter	0.427%	86.32	118.4	-41.88%	28.19	-33.09%
AdapterDrop	0.494%	85.85	119.41	-40.68%	28.08	-33.35%
Adapter-LowRank	0.073%	85.82	123.8	-35.69%	32.71	-22.36%
Prompt Tuning	0.034%	75.95	222.27	24.42%	44.54	5.72%
Intrinsic-SAID	0.009%	85.45	285.40	41.14%	144.01	241.82%
BitFit	0.126%	84.97	102.31	-64.20%	27.36	-35.06%
PHM-Adapter	0.179%	86.40	123.93	-35.55%	35.55	-15.62%
Compacter	0.073%	86.62	123.91	-35.57%	36.48	-13.41%
Compacter++	0.047%	86.47	118.35	-41.94%	30.96	-26.51%

Performance Evaluation: INTRINSIC-SAID

- Tunes only 0.009% of parameters
- Performs worse than fine-tuning
- High memory overhead and slow to train
 - Requires storing large random projection matrices.
 - Computing projections via FastFood transform [10] is slow in practice
 - Not suitable for large-scale pretrained language models

Model	Trained params/ per task	Avg	Memory (MB)	$\Delta\%$	Time/ Epoch (min)	$\Delta\%$
T5 _{BASE}	100%	86.5	167.99	—	42.13	—
Adapter	0.832%	85.78	124.02	-35.45%	31.81	-24.50%
Pfeiffer-Adapter	0.427%	86.32	118.4	-41.88%	28.19	-33.09%
AdapterDrop	0.494%	85.85	119.41	-40.68%	28.08	-33.35%
Adapter-LowRank	0.073%	85.82	123.8	-35.69%	32.71	-22.36%
Prompt Tuning	0.034%	75.95	222.27	24.42%	44.54	5.72%
INTRINSIC-SAID	0.009%	85.45	285.40	41.14%	144.01	241.82%
BitFit	0.126%	84.97	102.31	-64.20%	27.36	-35.06%
PHM-Adapter	0.179%	86.40	123.93	-35.55%	35.55	-15.62%
Compacter	0.073%	86.62	123.91	-35.57%	36.48	-13.41%
Compacter++	0.047%	86.47	118.35	-41.94%	30.96	-26.51%

Performance Evaluation: BITFIT

- Performs worse than fine-tuning (-1.53 points).
 - Tuning only biases is not sufficient
- Lowest memory overhead and the fastest to train
 - Does not store intermediate activations.

Model	Trained params/ per task	Avg	Memory (MB)	$\Delta\%$	Time/ Epoch (min)	$\Delta\%$
T5 _{BASE}	100%	86.5	167.99	—	42.13	—
Adapter	0.832%	85.78	124.02	-35.45%	31.81	-24.50%
Pfeiffer-Adapter	0.427%	86.32	118.4	-41.88%	28.19	-33.09%
AdapterDrop	0.494%	85.85	119.41	-40.68%	28.08	-33.35%
Adapter-LowRank	0.073%	85.82	123.8	-35.69%	32.71	-22.36%
Prompt Tuning	0.034%	75.95	222.27	24.42%	44.54	5.72%
INTRINSIC-SAID	0.009%	85.45	285.40	41.14%	144.01	241.82%
BitFit	0.126%	84.97	102.31	-64.20%	27.36	-35.06%
PHM-Adapter	0.179%	86.40	123.93	-35.55%	35.55	-15.62%
Compacter	0.073%	86.62	123.91	-35.57%	36.48	-13.41%
COMPACTER++	0.047%	86.47	118.35	-41.94%	30.96	-26.51%

Performance Evaluation: ADAPTER-based methods

- Low memory-overhead and fast to train
- Generally perform worse than finetuning (exception: PFEIFFER-ADAPTER)
 - ADAPTERDROP: Adapting lower layer of T5 is important.
 - $\bullet~{\rm Adapter-LowRank}$ is not expressive enough.
- Order of magnitude more trainable parameters cf. COMPACTER++

Model	Trained params/ per task	Avg	Memory (MB)	$\Delta\%$	Time/ Epoch (min)	$\Delta\%$
T5 _{BASE}	100%	86.5	167.99		42.13	
Adapter	0.832%	85.78	124.02	-35.45%	31.81	-24.50%
Pfeiffer-Adapter	0.427%	86.32	118.4	-41.88%	28.19	-33.09%
AdapterDrop	0.494%	85.85	119.41	-40.68%	28.08	-33.35%
Adapter-LowRank	0.073%	85.82	123.8	-35.69%	32.71	-22.36%
Prompt Tuning	0.034%	75.95	222.27	24.42%	44.54	5.72%
Intrinsic-SAID	0.009%	85.45	285.40	41.14%	144.01	241.82%
BitFit	0.126%	84.97	102.31	-64.20%	27.36	-35.06%
PHM-Adapter	0.179%	86.40	123.93	-35.55%	35.55	-15.62%
Compacter	0.073%	86.62	123.91	-35.57%	36.48	-13.41%
Compacter++	0.047%	86.47	118.35	-41.94%	30.96	-26.51%

Low-resource Fine-tuning

- Subsampling GLUE for varying sizes (100,500,1000,2000,4000).
- Compacter++:
 - Generalizes substantially better in resource-limited settings.
 - Offers a more effective fine-tuning in this regime.

Takeaways

- Is a light-weight fine-tuning method for large-scale language models.
- Generates adapter's weights by summing Kronecker products between:
 - shared "slow" weights
 - "fast" rank-one matrices, specific to each adapter layer.
- Reduces the number of parameters substantially from $\mathcal{O}(kd)$ to $\mathcal{O}(k+d)$.
- Learns only 0.073% (0.047%) parameters, still:
 - Obtains comparable performance in a full-data setting.
 - Outperforms fine-tuning in data-limited scenarios.

Questions?

Please join our poster presentation during NeurIPS, 2021.

References I

[1] Neil Houlsby, Andrei Giurgiu,

Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp. In *ICML*, 2019.

- [2] Aston Zhang, Yi Tay, SHUAI Zhang, Alvin Chan, Anh Tuan Luu, Siu Hui, and Jie Fu. Beyond fully-connected layers with quaternions: Parameterization of hypercomplex multiplications with 1/n parameters. In *ICLR*, 2021.
- [3] Andreas Rücklé, Gregor Geigle, Max Glockner, Tilman Beck, Jonas Pfeiffer, Nils Reimers, and Iryna Gurevych. AdapterDrop: On the Efficiency of Adapters in Transformers. arXiv preprint arXiv:2010.11918, 2020.
- [4] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. JMLR, 2020.
- [5] Jonas Pfeiffer, Aishwarya Kamath, Andreas Rückle, Cho Kyunghyun, and Iryna Gurevych. AdapterFusion: Non-destructive task composition for transfer learning. In *EACL*, 2021.
- [6] Han Cai, Chuang Gan, Ligeng Zhu, and Song Han. Tinytl: Reduce memory, not parameters for efficient on-device learning. *NeurIPS*, 2020.
- [7] Shauli Ravfogel, Elad Ben-Zaken, and Yoav Goldberg. Bitfit: Simple parameter-efficient fine-tuning for transformer-based masked languagemodels. 2021.

- [8] Armen Aghajanyan, Luke Zettlemoyer, and Sonal Gupta. Intrinsic dimensionality explains the effectiveness of language model fine-tuning. arXiv preprint arXiv:2012.13255, 2020.
- [9] Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt tuning. arXiv preprint arXiv:2104.08691, 2021.
- [10] Quoc Le, Tamás Sarlós, and Alex Smola. Fastfood-approximating kernel expansions in loglinear time. In ICML, 2013.
- [11] Tianyi Zhang, Felix Wu, Arzoo Katiyar, Kilian Q Weinberger, and Yoav Artzi. Revisiting Few-sample BERT Fine-tuning. In ICLR, 2021.
- [12] Hyung Won Chung, Thibault Févry, Henry Tsai, Melvin Johnson, and Sebastian Ruder. Rethinking Embedding Coupling in Pre-trained Language Models. In ICLR, 2021.