
Learning Collaborative Policies to Solve NP-hard
Routing Problems

Minsu Kim, Jinkyoo Park and Joungho Kim

Korea Advanced Institute of Science and Technology (KAIST)

November 5, 2021

1 / 22



NP-hard Routing: Travelling Salesman Problem (TSP)

Task: Visit every city and back to start city.

Objective: Minimization of Tour Length.

2 / 22



Motivation of Deep Reinforcement Learning (DRL) for
Combinatorial Optimization (CO)

Can DRL method reach a state-of-the-art (SOTA) in TSP task? NO!
The Concorde is much faster and accurate than SOTA DRL solver.

Can DRL method applied to REAL WORLD TASKS ? Yes!
2020 Hardware Routing
2020 Molecular Design
2020 Uber-dispatching
2020 System-on-chip (SoC) scheduling
2021 Hardware Chip Placement

Figure by Sykora et al., "Multi-agent Routing Value Iteration Network", ICML 2020

3 / 22



Background: Constructive DRL heuristic

Action: Constructing solution from partial solution.
State: Partial solution.

Initial state: Empty solution.
Terminal state: Complete solution.

Reward: Cost for the terminal state or transition between state,
2015 Vinyards et al., Bello et al.: Seq-to-seq scheme (PointerNet)
2017 Dai et al.: Graph Neural Network (S2V-DQN)
2019 Kool et al.: Transformer-style PointerNet (AM)
2020 Kwan et al., Xin et al.: AM-variants (POMO; MDAM)

Benefit 1

Construction scheme is expanding to other similar problems without
problem-specific knowledge.

Benefit 2

Construction scheme is usually fast; the number of neural net inferences is
proportional to problem size.

4 / 22



Background: Improvement DRL heuristic

Action: Improve complete solution (local-search)

State: Complete solution.

Initial state: Initial feasible solution.
Terminal state: Improved solution.

Reward: Improved cost between consecutive states.

2020 Hottung et al.: Neural Large Neigborhood Search (NLNS)

2020 Costa et al.: DRL-based 2opt (DRL-2opt)

Benefit 1

Improvement heuristic can reduce optimal gap (than constructive
heuristic), when enough iterations are provided.

Negative 1

Improvement heuristic is slower than constructive heuristics.

5 / 22



Background: Hybrid ML method with classic OR tools

Supervised Learning by Labeled data of classical solvers + Search
Method

2019 Joshi et al.: GNN with beam search
2021 Fu et al.: GNN with MCTS
2021 Kool et al, GNN with Dynamic Programming

Controls classical solvers with DNN

2020 Lu et al.: AM-controller + Classic Solver
2020 Song et al.: GNN-controller + Classic Solver
2021 Sonnerat et al.: GNN-controller + Classic Solver

Benefit 1

Promising performances on target tasks.

Negative 1

Not fully DRL method; No advantages on task scalability that DRL
researches usually pursue.

6 / 22



Learning Collaborative Policies (LCP): Research Objective

We focus on building a reusable scheme based on policy
collaboration for accelerating RL-based constructive heuristics
without modifying neural network.

We target AM-style constructive heuristics: PointerNet and AM.
We solve TSP-variants: TSP, Prize Collecting TSP (PCTSP) and
Capacitated Vehicle Routing Problem (CVRP).

Keeping advantages of constructive heuristics and increase
performances with a simple hierarchical solving strategy.

7 / 22



Learning Collaborative Policies (LCP): Method Outline

This research proposed a two-policies collaboration system with
Seeder and Reviser.

Seeder generates multiple candidate solutions, trained to explorer
various near-optimal solutions.

Reviser exploits the policy to solves multiple candidate solutions in a
parallel manner, iteratively with restricted solution spaces.

The seeder and reviser is parameterized by existing constructive
model (AM or PointerNet)

8 / 22



Formulation of Routing Problem (EX. TSP)

Routing tasks: Routing problems are a type of NP-hard
combinatorial optimization where a sequential order of input
arguments strongly affects the quality of the solutions.

Problem: The TSP graph can be represented as a sequence of N
nodes in 2D Euclidean space, s = fxigNi=1, where xi 2 R2.

Solution: represented as the permutation � of input sequences:

� =
t=N[
t=1

f�tg; �t 2 f1; :::;Ng; �t1 6= �t2 if t1 6= t2

9 / 22



Markov Decision Process (MDP) of TSP

State. State of MDP is represented as a partial solution of TSP or a
sequence of previously selected actions: �1:t�1.
Action. Action is defined as selecting one of un-served tasks. Therefore,
action is represented as �t where the �t 2 ff1; :::;Ng n f�1:t�1gg.
Cumulative Reward. We define cumulative reward for solution (a
sequence of assignments) from problem instance s as negative of
tourlength: �L(�js).
Constructive Policy. Finally we define constructive policy p(�js) that
generates a solution � from TSP graph s. The constructive policy p(�js)
is decomposed as:

p(�js) =
t=NY
t=1

p�(�t j�1:t�1; s)

Where p�(�t j�1:t�1; s) is a single-step assignment policy parameterized by
parameter �.

10 / 22



Seeding Process

Solution space. Solution space of seeder is a set of full trajectory
solutions : f�(1); :::;�(M)g.
Policy structure. Seeder is a constructive policy:

pS(�js) =
t=NY
t=1

p�S (�t j�1:t�1; s)

The segment policy p�S (�t j�1:t�1; s), parameterized by �S , is derived
form AM.
Entropy Reward. To force the seeder policy pS to sample diverse
solutions, we trained pS such that the entropy H of pS to be maximized.

Scaled Entropy Maximization by Minsu Kim et al. (2021)

RS = H

 
� �

t=NY
t=1

p�S (�t j�1:t�1; s)

!
�

NX
t=1

wtH (�t � p�S (�t j�1:t�1; s))

11 / 22



Weighted Entropy Maximization Scheme

We use a linear scheduler (time-varying weights) wt = N�t
Nw

to boost
exploration at the earlier stage of composing a solution.

Higher randomness imposed by the higher weight wt at the early
stage tends to generate more diversified full trajectories later.

12 / 22



Training scheme for Seeder.

To train the seeder, we use the REINFORCE algorithm with rollout
baseline b introduced by Kool et al.

Then the gradient of each objective function is expressed as follows:

rJ(�S js) = E��pS [(L(�js)� �RS(pS
1:N ;�)� b(s))rlog(pS)]

rJ(�R js) = E��pR [(L(�js)� b(s))rlog(pR)]

rLIL(�jx) = Ea∗�pex [�rlog(p(a∗))]

rLRL(�jx) = Ea�p[(�R(ajx)� b(x))rlog(p(a))]

13 / 22



Revision Process

Solution space. Solution space of reviser is a partial segment of full
trajectory solution represented as �k+1:k+l . .
Policy structure. Reviser is a constructive policy as follows:

pR(�k+1:k+l js) =
t=lY
t=1

p�R (�k+t j�k:k+t�1; �k+l+1; s)

Revision Reward: negative of partial tour length:

LR(�k+1:k+l js) =
l+1X
t=1

jjx�k+t
� x�k+t−1

jj2:
14 / 22



Experimental Setup and Baseline

Experimental Results of LCP is presented with three main
perspectives.

1 Improvement from baseline of LCP (constructive model): i.e. AM or
PointerNet.

2 Comparison with the SOTA DRL-based improvement heuristics: e.g.
NLNS, DRL-2opt.

3 Comparison with problem-specific heuristic or MILP optimizer for
proving near-optimality: e.g. Concorde, LKH, ILS, Gurobi,
OR-tools.

15 / 22



Results (TSP)

Method Type
N = 20 N = 50 N = 100

Cost Gap Cost Gap Cost Gap

Gurobi Solver 3.84 0.00% 5.70 0.00% 7.76 0.00%
Concorde H 3.84 0.00% 5.70 0.00% 7.76 0.00%

S2V-DQN RL 3.89 1.42% 5.99 5.16% 8.31 7.03%
Drl-2opt RL, I 3.84 0.00% 5.70 0.12% 7.83 0.87%
AM RL, S 3.84 0.05% 5.72 0.39% 7.93 2.13%

AM + LCP RL, S - 5.70 0.10% 7.85 1.13%
AM + LCP* RL, S - 5.70 0.02% 7.81 0.54%

16 / 22



Results (PCTSP)

Method Type
N = 20 N = 50 N = 100

Cost Gap Cost Gap Cost Gap

Gurobi Solver 3.13 0.00% OB OB
OR Tools H 3.14 0.05% 4.51 0.70% 6.35 6.21%
ILS (C++) H 3.16 0.77% 4.50 0.67% 5.98 0.00%

AM RL, S 3.15 0.41% 4.51 0.72% 6.07 1.57%

AM + LCP RL, S 3.14 0.17% 4.50 0.51% 6.06 1.42%
AM + LCP* RL, S 3.14 0.08% 4.49 0.32% 6.04 1.00%

17 / 22



Results (CVRP)

Method Type
N = 20 N = 50 N = 100

Cost Gap Cost Gap Cost Gap

Gurobi Solver 6.10 0.00% OB OB
OR Tools H 6.43 5.41% 11.31 9.01% 17.16 9.67%
LKH3 H 6.14 0.58% 10.38 0.00% 15.65 0.00%

RL f10g RL, S 6.40 4.92% 11.15 7.46% 16.96 8.39%
NLNS RL, I 6.19 1.47% 10.54 1.54% 16.00 2.17%
AM RL, S 6.24 2.24% 10.59 2.06% 16.14 3.11%

AM+LCP RL, S 6.15 0.84% 10.52 1.38% 16.00 2.24%
AM+LCP* RL, S - - 15.98 2.11%

18 / 22




