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NP-hard Routing: Travelling Salesman Problem (TSP)

Task: Visit every city and back to start city.

Objective: Minimization of Tour Length.
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Motivation of Deep Reinforcement Learning (DRL) for
Combinatorial Optimization (CO)

Can DRL method reach a state-of-the-art (SOTA) in TSP task? NO!
The Concorde is much faster and accurate than SOTA DRL solver.

Can DRL method applied to REAL WORLD TASKS ? Yes!
2020 Hardware Routing
2020 Molecular Design
2020 Uber-dispatching
2020 System-on-chip (SoC) scheduling
2021 Hardware Chip Placement

Figure by Sykora et al., ”Multi-agent Routing Value Iteration Network”, ICML 2020
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Background: Constructive DRL heuristic

Action: Constructing solution from partial solution.
State: Partial solution.

Initial state: Empty solution.
Terminal state: Complete solution.

Reward: Cost for the terminal state or transition between state,
2015 Vinyards et al., Bello et al.: Seq-to-seq scheme (PointerNet)
2017 Dai et al.: Graph Neural Network (S2V-DQN)
2019 Kool et al.: Transformer-style PointerNet (AM)
2020 Kwan et al., Xin et al.: AM-variants (POMO; MDAM)

Benefit 1

Construction scheme is expanding to other similar problems without
problem-specific knowledge.

Benefit 2

Construction scheme is usually fast; the number of neural net inferences is
proportional to problem size.
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Background: Improvement DRL heuristic

Action: Improve complete solution (local-search)

State: Complete solution.

Initial state: Initial feasible solution.
Terminal state: Improved solution.

Reward: Improved cost between consecutive states.

2020 Hottung et al.: Neural Large Neigborhood Search (NLNS)

2020 Costa et al.: DRL-based 2opt (DRL-2opt)

Benefit 1

Improvement heuristic can reduce optimal gap (than constructive
heuristic), when enough iterations are provided.

Negative 1

Improvement heuristic is slower than constructive heuristics.

5 / 22



Background: Hybrid ML method with classic OR tools

Supervised Learning by Labeled data of classical solvers + Search
Method

2019 Joshi et al.: GNN with beam search
2021 Fu et al.: GNN with MCTS
2021 Kool et al, GNN with Dynamic Programming

Controls classical solvers with DNN

2020 Lu et al.: AM-controller + Classic Solver
2020 Song et al.: GNN-controller + Classic Solver
2021 Sonnerat et al.: GNN-controller + Classic Solver

Benefit 1

Promising performances on target tasks.

Negative 1

Not fully DRL method; No advantages on task scalability that DRL
researches usually pursue.
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Learning Collaborative Policies (LCP): Research Objective

We focus on building a reusable scheme based on policy
collaboration for accelerating RL-based constructive heuristics
without modifying neural network.

We target AM-style constructive heuristics: PointerNet and AM.
We solve TSP-variants: TSP, Prize Collecting TSP (PCTSP) and
Capacitated Vehicle Routing Problem (CVRP).

Keeping advantages of constructive heuristics and increase
performances with a simple hierarchical solving strategy.
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Learning Collaborative Policies (LCP): Method Outline

This research proposed a two-policies collaboration system with
Seeder and Reviser.

Seeder generates multiple candidate solutions, trained to explorer
various near-optimal solutions.

Reviser exploits the policy to solves multiple candidate solutions in a
parallel manner, iteratively with restricted solution spaces.

The seeder and reviser is parameterized by existing constructive
model (AM or PointerNet)
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Formulation of Routing Problem (EX. TSP)

Routing tasks: Routing problems are a type of NP-hard
combinatorial optimization where a sequential order of input
arguments strongly affects the quality of the solutions.

Problem: The TSP graph can be represented as a sequence of N
nodes in 2D Euclidean space, s = {xi}Ni=1, where xi ∈ R2.

Solution: represented as the permutation π of input sequences:

π =
t=N⋃
t=1

{πt}, πt ∈ {1, ...,N}, πt1 6= πt2 if t1 6= t2
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Markov Decision Process (MDP) of TSP

State. State of MDP is represented as a partial solution of TSP or a
sequence of previously selected actions: π1:t−1.
Action. Action is defined as selecting one of un-served tasks. Therefore,
action is represented as πt where the πt ∈ {{1, ...,N} \ {π1:t−1}}.
Cumulative Reward. We define cumulative reward for solution (a
sequence of assignments) from problem instance s as negative of
tourlength: −L(π|s).
Constructive Policy. Finally we define constructive policy p(π|s) that
generates a solution π from TSP graph s. The constructive policy p(π|s)
is decomposed as:

p(π|s) =
t=N∏
t=1

pθ(πt |π1:t−1, s)

Where pθ(πt |π1:t−1, s) is a single-step assignment policy parameterized by
parameter θ.
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Seeding Process

Solution space. Solution space of seeder is a set of full trajectory
solutions : {π(1), ...,π(M)}.
Policy structure. Seeder is a constructive policy:

pS(π|s) =
t=N∏
t=1

pθS (πt |π1:t−1, s)

The segment policy pθS (πt |π1:t−1, s), parameterized by θS , is derived
form AM.
Entropy Reward. To force the seeder policy pS to sample diverse
solutions, we trained pS such that the entropy H of pS to be maximized.

Scaled Entropy Maximization by Minsu Kim et al. (2021)

RS = H

(
π ∼

t=N∏
t=1

pθS (πt |π1:t−1, s)

)
≈

N∑
t=1

wtH (πt ∼ pθS (πt |π1:t−1, s))
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Weighted Entropy Maximization Scheme

We use a linear scheduler (time-varying weights) wt = N−t
Nw

to boost
exploration at the earlier stage of composing a solution.

Higher randomness imposed by the higher weight wt at the early
stage tends to generate more diversified full trajectories later.
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Training scheme for Seeder.

To train the seeder, we use the REINFORCE algorithm with rollout
baseline b introduced by Kool et al.

Then the gradient of each objective function is expressed as follows:

∇J(θS |s) = Eπ∼pS [(L(π|s)− αRS(pS1:N ,π)− b(s))∇log(pS)]

∇J(θR |s) = Eπ∼pR [(L(π|s)− b(s))∇log(pR)]

∇LIL(θ|x) = Ea∗∼pex [−∇log(p(a∗))]

∇LRL(θ|x) = Ea∼p[(−R(a|x)− b(x))∇log(p(a))]

13 / 22



Revision Process

Solution space. Solution space of reviser is a partial segment of full
trajectory solution represented as πk+1:k+l . .
Policy structure. Reviser is a constructive policy as follows:

pR(πk+1:k+l |s) =
t=l∏
t=1

pθR (πk+t |πk:k+t−1, πk+l+1, s)

Revision Reward: negative of partial tour length:

LR(πk+1:k+l |s) =
l+1∑
t=1

||xπk+t
− xπk+t−1

||2.
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Experimental Setup and Baseline

Experimental Results of LCP is presented with three main
perspectives.

1 Improvement from baseline of LCP (constructive model): i.e. AM or
PointerNet.

2 Comparison with the SOTA DRL-based improvement heuristics: e.g.
NLNS, DRL-2opt.

3 Comparison with problem-specific heuristic or MILP optimizer for
proving near-optimality: e.g. Concorde, LKH, ILS, Gurobi,
OR-tools.
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Results (TSP)

Method Type
N = 20 N = 50 N = 100

Cost Gap Cost Gap Cost Gap

Gurobi Solver 3.84 0.00% 5.70 0.00% 7.76 0.00%
Concorde H 3.84 0.00% 5.70 0.00% 7.76 0.00%

S2V-DQN RL 3.89 1.42% 5.99 5.16% 8.31 7.03%
Drl-2opt RL, I 3.84 0.00% 5.70 0.12% 7.83 0.87%
AM RL, S 3.84 0.05% 5.72 0.39% 7.93 2.13%

AM + LCP RL, S - 5.70 0.10% 7.85 1.13%
AM + LCP* RL, S - 5.70 0.02% 7.81 0.54%
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Results (PCTSP)

Method Type
N = 20 N = 50 N = 100

Cost Gap Cost Gap Cost Gap

Gurobi Solver 3.13 0.00% OB OB
OR Tools H 3.14 0.05% 4.51 0.70% 6.35 6.21%
ILS (C++) H 3.16 0.77% 4.50 0.67% 5.98 0.00%

AM RL, S 3.15 0.41% 4.51 0.72% 6.07 1.57%

AM + LCP RL, S 3.14 0.17% 4.50 0.51% 6.06 1.42%
AM + LCP* RL, S 3.14 0.08% 4.49 0.32% 6.04 1.00%
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Results (CVRP)

Method Type
N = 20 N = 50 N = 100

Cost Gap Cost Gap Cost Gap

Gurobi Solver 6.10 0.00% OB OB
OR Tools H 6.43 5.41% 11.31 9.01% 17.16 9.67%
LKH3 H 6.14 0.58% 10.38 0.00% 15.65 0.00%

RL {10} RL, S 6.40 4.92% 11.15 7.46% 16.96 8.39%
NLNS RL, I 6.19 1.47% 10.54 1.54% 16.00 2.17%
AM RL, S 6.24 2.24% 10.59 2.06% 16.14 3.11%

AM+LCP RL, S 6.15 0.84% 10.52 1.38% 16.00 2.24%
AM+LCP* RL, S - - 15.98 2.11%
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Scalability and Time-performance

(a) TSP100 (b) PCTSP100 (c) CVRP100

(d) TSP500 (e) PCTSP500 (f) CVRP500
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Results in TSPLIB

Instance Opt.
AM DRL-2opt LCP (ours)

Cost Gap Time Cost Gap Time Cost Gap Time

eil51 426 435 2.11% 13s 427 0.23% 460s 429 0.73% 13s
berlin52 7,542 8663 14.86% 14s 7974 5.73% 460s 7550 0.10% 13s
st70 675 690 2.18% 23s 680 0.74% 540s 680 0.74% 13s
eil76 538 555 3.18% 27s 552 2.60% 540s 547 1.64% 18s
pr76 108,159 110,956 2.59% 27s 111,085 2.60% 540s 108,633 0.44% 18s
rat99 1,211 1,309 8.09% 44s 1,388 14.62% 680s 1,292 6.67% 24s
rd100 7,910 8,137 2.87% 46s 7,944 0.43% 680s 7,920 0.13% 26s
KroA100 21,282 23,227 9.14% 46s 23,751 11.60% 680s 21,910 2.95% 26s
KroB100 22,141 23,227 8.23% 46s 23,790 7.45% 680s 22,476 1.51% 26s
KroC100 20,749 21,868 5.40% 46s 22,672 9.27% 680s 21,337 2.84% 26s
KroD100 21,294 22,984 7.94% 46s 23,334 9.58% 680s 21,714 1.97% 26s
KroE100 22,068 22,686 2.80% 46s 23,253 5.37% 680s 22,488 1.90% 26s
eil101 629 654 4.03% 46s 635 0.95% 680s 645 2.59% 26s
lin105 14,379 16,516 14.87% 49s 16,156 12.36% 680s 14,934 3.86% 26s
pr124 59,030 63,931 8.30% 68s 59,516 0.82% 700s 61,294 3.84% 37s
bier127 118,282 125,256 5.90% 72s 121,122 2.40% 720s 128,832 8.92% 37s
ch130 6,110 6,279 2.76% 77s 6,175 1.06% 790s 6,145 0.57% 38s
pr136 96,772 101,927 5.33% 84s 98,453 1.74% 820s 98,285 1.56% 38s
pr144 58,537 63,778 8.95% 93s 61,207 4.56% 720s 60,571 3.47% 43s
kroA150 26,524 28,658 8.05% 102s 30,078 13.40% 900s 27,501 3.68% 44s
kroB150 26,130 27,565 5.49% 102s 28,169 7.80% 900s 26,962 3.18% 44s
pr152 73,682 79,442 7.82% 101s 75,301 2.20% 720s 75,539 2.52% 44s
u159 42,080 50.656 20.38% 111s 42,716 1.51% 840s 46,640 10.84% 45s
rat195 2,323 2,518 8.14% 168s 2,955 27.21% 1080s 2,574 10.81% 57s
kroA200 29,368 33,313 13.43% 173s 32,522 10.74% 1,120s 31,172 6.14% 86s
ts225 126,643 138,000 8.97% 223s 127,731 0.86% 1,110s 134,827 6.46% 113s
tsp225 3,919 4,837 23.42% 224s 4,354 11.10% 1,160s 4,487 14.50% 113s
pr226 80,369 90,390 12.47% 228s 91,560 13.92% 940s 85,262 6.09% 113s
gil262 2,378 2,588 8.81% 306s 2,490 4.71% 1380s 2,508 5.49% 134s
lin318 42,029 47,288 12.51% 397s 46,065 9.60% 1,470s 46,540 10.72% 158s
rd400 15,281 17,053 11.59% 458s 16,159 8.10% 1,870 16,519 8.10% 209s
pr439 107,217 160,594 49.78% 744s 143,590 33.92% 1760s 130,996 22.18% 228s
pcb442 50,778 58,891 15.98% 897s 57,114 12.48% 1,760s 57,051 12.35% 228s

avg. gap 0.00% 9.90% 7.63% 5.14%
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Ablation Study in AM and PointerNet

Component of the LCP TSP PCTSP CVRP

Entropy Weight Scheduling Reviser cost gap cost gap cost gap

7.96 2.65% 6.08 1.64% 16.29 3.43%

! 7.96 2.68% 6.08 1.76% 16.25 3.16%

! ! 7.94 2.45% 6.07 1.62% 16.20 2.86%

! 7.86 1.32% 6.04 1.13% 16.20 2.86%

! ! 7.84 1.17% 6.05 1.16% 16.16 2.59%

! ! ! 7.82 0.88% 6.04 1.02% 16.12 2.37%

Component of the LCP Pointer Network (greedy) Pointer Network {1280}

Entropy Weight Scheduling Reviser cost gap cost gap

3.95 2.63% 7.33 90.75%

! 3.95 2.71% 7.30 89.77%

! ! 3.95 2.62% 7.32 90.29%

! 3.89 1.27% 3.85 0.21%

! ! 3.89 1.18% 3.85 0.24%

! ! ! 3.89 1.24% 3.85 0.20%
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Contact

Thank You for Listening!
min-su@kaist.ac.kr
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