Learning Collaborative Policies to Solve NP-hard Routing Problems

Minsu Kim, Jinkyoo Park and Joungho Kim

Korea Advanced Institute of Science and Technology (KAIST)

November 5, 2021

NP-hard Routing: Travelling Salesman Problem (TSP)

- Task: Visit every city and back to start city.
- Objective: Minimization of Tour Length.

Motivation of Deep Reinforcement Learning (DRL) for Combinatorial Optimization (CO)

- Can DRL method reach a state-of-the-art (SOTA) in TSP task? NO!
 - The Concorde is much faster and accurate than SOTA DRL solver.
- Can DRL method applied to REAL WORLD TASKS ? Yes!
 - 2020 Hardware Routing
 - 2020 Molecular Design
 - 2020 Uber-dispatching
 - 2020 System-on-chip (SoC) scheduling
 - 2021 Hardware Chip Placement

Figure by Sykora et al., "Multi-agent Routing Value Iteration Network", ICML 2020

Background: Constructive DRL heuristic

- Action: Constructing solution from partial solution.
- State: Partial solution.
 - Initial state: Empty solution.
 - Terminal state: Complete solution.
- Reward: Cost for the terminal state or transition between state,
- 2015 Vinyards et al., Bello et al.: Seq-to-seq scheme (PointerNet)
- 2017 Dai et al.: Graph Neural Network (S2V-DQN)
- 2019 Kool et al.: Transformer-style PointerNet (AM)
- 2020 Kwan et al., Xin et al.: AM-variants (POMO; MDAM)

Benefit 1

Construction scheme is expanding to other similar problems without problem-specific knowledge.

Benefit 2

Construction scheme is usually fast; the number of neural net inferences is proportional to problem size.

Background: Improvement DRL heuristic

- Action: Improve complete solution (local-search)
- State: Complete solution.
 - Initial state: Initial feasible solution.
 - Terminal state: Improved solution.
- Reward: Improved cost between consecutive states.
- 2020 Hottung et al.: Neural Large Neigborhood Search (NLNS)
- 2020 Costa et al.: DRL-based 2opt (DRL-2opt)

Benefit 1

Improvement heuristic can reduce optimal gap (than constructive heuristic), when enough iterations are provided.

Negative 1

Improvement heuristic is slower than constructive heuristics.

Background: Hybrid ML method with classic OR tools

- Supervised Learning by Labeled data of classical solvers + Search Method
 - 2019 Joshi et al.: GNN with beam search
 - 2021 Fu et al.: GNN with MCTS
 - 2021 Kool et al, GNN with Dynamic Programming
- Controls classical solvers with DNN
 - 2020 Lu et al.: AM-controller + Classic Solver
 - 2020 Song et al.: GNN-controller + Classic Solver
 - 2021 Sonnerat et al.: GNN-controller + Classic Solver

Benefit 1

Promising performances on target tasks.

Negative 1

Not fully DRL method; No advantages on task scalability that DRL researches usually pursue.

- We focus on building a reusable scheme based on policy collaboration for accelerating RL-based constructive heuristics without modifying neural network.
 - We target AM-style constructive heuristics: PointerNet and AM.
 - We solve TSP-variants: TSP, Prize Collecting TSP (PCTSP) and Capacitated Vehicle Routing Problem (CVRP).
- Keeping advantages of constructive heuristics and increase performances with a simple hierarchical solving strategy.

Learning Collaborative Policies (LCP): Method Outline

- This research proposed a two-policies collaboration system with **Seeder** and **Reviser**.
- Seeder generates multiple candidate solutions, trained to **explorer** various near-optimal solutions.
- Reviser **exploits** the policy to solves multiple candidate solutions in a parallel manner, iteratively with restricted solution spaces.
- The seeder and reviser is parameterized by existing constructive model (**AM** or **PointerNet**)

- **Routing tasks**: Routing problems are a type of NP-hard combinatorial optimization where a sequential order of input arguments strongly affects the quality of the solutions.
- Problem: The TSP graph can be represented as a sequence of N nodes in 2D Euclidean space, s = {x_i}^N_{i=1}, where x_i ∈ ℝ².
- **Solution**: represented as the permutation π of input sequences:

$$\boldsymbol{\pi} = \bigcup_{t=1}^{t=N} \{\pi_t\}, \quad \pi_t \in \{1, ..., N\}, \quad \pi_{t_1} \neq \pi_{t_2} \quad \text{if} \quad t_1 \neq t_2$$

Markov Decision Process (MDP) of TSP

State. State of MDP is represented as a partial solution of TSP or a sequence of previously selected actions: $\pi_{1:t-1}$.

Action. Action is defined as selecting one of un-served tasks. Therefore, action is represented as π_t where the $\pi_t \in \{\{1, ..., N\} \setminus \{\pi_{1:t-1}\}\}$. Cumulative Reward. We define cumulative reward for solution (a sequence of assignments) from problem instance s as negative of tourlength: $-L(\pi|s)$.

Constructive Policy. Finally we define constructive policy $p(\pi|s)$ that generates a solution π from TSP graph s. The constructive policy $p(\pi|s)$ is decomposed as:

$$p(\boldsymbol{\pi}|\boldsymbol{s}) = \prod_{t=1}^{t=N} p_{\theta}(\pi_t|\boldsymbol{\pi}_{1:t-1}, \boldsymbol{s})$$

Where $p_{\theta}(\pi_t | \boldsymbol{\pi}_{1:t-1}, \boldsymbol{s})$ is a single-step assignment policy parameterized by parameter θ .

Seeding Process

Solution space. Solution space of seeder is a set of full trajectory solutions : $\{\pi^{(1)}, ..., \pi^{(M)}\}$.

Policy structure. Seeder is a constructive policy:

$$p^{S}(\boldsymbol{\pi}|\boldsymbol{s}) = \prod_{t=1}^{t=N} p_{ heta^{S}}(\pi_{t}|\boldsymbol{\pi}_{1:t-1}, \boldsymbol{s})$$

The segment policy $p_{\theta S}(\pi_t | \boldsymbol{\pi}_{1:t-1}, \boldsymbol{s})$, parameterized by θ^S , is derived form **AM**.

Entropy Reward. To force the seeder policy p^{S} to sample **diverse** solutions, we trained p^{S} such that the entropy \mathcal{H} of p^{S} to be maximized.

Scaled Entropy Maximization by Minsu Kim et al. (2021)

$$R^{S} = \mathcal{H}\left(\boldsymbol{\pi} \sim \prod_{t=1}^{t=N} p_{\theta^{S}}(\pi_{t} | \boldsymbol{\pi}_{1:t-1}, \boldsymbol{s})\right) \approx \sum_{t=1}^{N} w_{t} \mathcal{H}\left(\pi_{t} \sim p_{\theta^{S}}(\pi_{t} | \boldsymbol{\pi}_{1:t-1}, \boldsymbol{s})\right)$$

Weighted Entropy Maximization Scheme

- We use a linear scheduler (time-varying weights) $w_t = \frac{N-t}{N_w}$ to boost exploration at the earlier stage of composing a solution.
- Higher randomness imposed by the higher weight w_t at the early stage tends to generate more diversified full trajectories later.

- To train the seeder, we use the REINFORCE algorithm with rollout baseline *b* introduced by Kool et al.
- Then the gradient of each objective function is expressed as follows:

$$\nabla J(\theta^{S}|\mathbf{s}) = E_{\pi \sim p^{S}}[(L(\pi|\mathbf{s}) - \alpha R^{S}(p_{1:N}^{S}, \pi) - b(\mathbf{s}))\nabla log(p^{S})]$$
$$\nabla J(\theta^{R}|\mathbf{s}) = E_{\pi \sim p^{R}}[(L(\pi|\mathbf{s}) - b(\mathbf{s}))\nabla log(p^{R})]$$
$$\nabla L^{lL}(\theta|\mathbf{x}) = E_{\mathbf{a}^{*} \sim p_{ex}}[-\nabla log(p(\mathbf{a}^{*}))]$$
$$\nabla L^{RL}(\theta|\mathbf{x}) = E_{\mathbf{a} \sim p}[(-R(\mathbf{a}|\mathbf{x}) - b(\mathbf{x}))\nabla log(p(\mathbf{a}))]$$

Revision Process

Solution space. Solution space of reviser is a partial segment of full trajectory solution represented as $\pi_{k+1:k+1}$.

Policy structure. Reviser is a constructive policy as follows:

$$p^{R}(\pi_{k+1:k+l}|s) = \prod_{t=1}^{t=l} p_{\theta^{R}}(\pi_{k+t}|\pi_{k:k+t-1},\pi_{k+l+1},s)$$

Revision Reward: negative of partial tour length:

$$L^{R}(\pi_{k+1:k+l}|s) = \sum_{1}^{l+1} ||x_{\pi_{k+t}} - x_{\pi_{k+t-1}}||_{2}.$$

- Experimental Results of LCP is presented with three main perspectives.
 - Improvement from baseline of LCP (constructive model): i.e. AM or PointerNet.
 - Comparison with the SOTA DRL-based improvement heuristics: e.g. NLNS, DRL-2opt.
 - Comparison with problem-specific heuristic or MILP optimizer for proving near-optimality: e.g. Concorde, LKH, ILS, Gurobi, OR-tools.

Method	Туре	N	= 20	N	= 50	N = 100		
		Cost	Gap	Cost	Gap	Cost	Gap	
Gurobi	Solver	3.84	0.00%	5.70	0.00%	7.76	0.00%	
Concorde	Н	3.84	0.00%	5.70	0.00%	7.76	0.00%	
S2V-DQN	RL	3.89	1.42%	5.99	5.16%	8.31	7.03%	
Drl-2opt	RL, I	3.84	0.00%	5.70	0.12%	7.83	0.87%	
AM	RL, S	3.84	0.05%	5.72	0.39%	7.93	2.13%	
AM + LCP	RL, S	-		5.70	0.10%	7.85	1.13%	
$\mathbf{AM} + \mathbf{LCP*}$	RL, S	-		5.70	0.02%	7.81	0.54%	

Method	Type	N :	= 20	N	= 50	<i>N</i> = 100		
	.) 0	Cost	Gap	Cost	Gap	Cost	Gap	
Gurobi	Solver	3.13 0.00%		OB		OB		
OR Tools	Н	3.14	0.05%	4.51	0.70%	6.35	6.21%	
ILS (C++)	Н	3.16	0.77%	4.50	0.67%	5.98	0.00%	
AM	RL, S	3.15	0.41%	4.51	0.72%	6.07	1.57%	
AM + LCP	RL, S	3.14	0.17%	4.50	0.51%	6.06	1.42%	
$\mathbf{AM} + \mathbf{LCP*}$	RL, S	3.14	0.08%	4.49	0.32%	6.04	1.00%	

Results (CVRP)

Method	Туре	N	= 20	N =	= 50	N = 100		
		Cost	Gap	Cost	Gap	Cost	Gap	
Gurobi	Solver	6.10 0.00%		С)B	OB		
OR Tools	Н	6.43	5.41%	11.31	9.01%	17.16	9.67%	
LKH3	Н	6.14	0.58%	10.38	0.00%	15.65	0.00%	
RL {10}	RL, S	6.40	4.92%	11.15	7.46%	16.96	8.39%	
NLNS	RL, I	6.19	1.47%	10.54	1.54%	16.00	2.17%	
AM	RL, S	6.24	2.24%	10.59	2.06%	16.14	3.11%	
AM+LCP	RL, S	6.15	0.84%	10.52	1.38%	16.00	2.24%	
AM+LCP*	RL, S	-			-	15.98	2.11%	

Scalability and Time-performance

Results in TSPLIB

Instance	Opt.		AM			DRL-2opt	t LCP (ours)			
		Cost	Gap	Time	Cost	Gap	Time	Cost	Gap	Time
eil51	426	435	2.11%	13s	427	0.23%	460s	429	0.73%	13s
berlin52	7,542	8663	14.86%	14s	7974	5.73%	460s	7550	0.10%	13s
st70	675	690	2.18%	23s	680	0.74%	540s	680	0.74%	13s
eil76	538	555	3.18%	27s	552	2.60%	540s	547	1.64%	18s
pr76	108,159	110,956	2.59%	27s	111,085	2.60%	540s	108,633	0.44%	18s
rat99	1,211	1,309	8.09%	44s	1,388	14.62%	680s	1,292	6.67%	24s
rd100	7,910	8,137	2.87%	46s	7,944	0.43%	680s	7,920	0.13%	26s
KroA100	21,282	23,227	9.14%	46s	23,751	11.60%	680s	21,910	2.95%	26s
KroB100	22,141	23,227	8.23%	46s	23,790	7.45%	680s	22,476	1.51%	26s
KroC100	20,749	21,868	5.40%	46s	22,672	9.27%	680s	21,337	2.84%	26s
KroD100	21,294	22,984	7.94%	46s	23,334	9.58%	680s	21,714	1.97%	26s
KroE100	22,068	22,686	2.80%	46s	23,253	5.37%	680s	22,488	1.90%	26s
eil101	629	654	4.03%	46s	635	0.95%	680s	645	2.59%	26s
lin105	14,379	16,516	14.87%	49s	16,156	12.36%	680s	14,934	3.86%	26s
pr124	59,030	63,931	8.30%	68s	59,516	0.82%	700s	61,294	3.84%	37s
bier127	118,282	125,256	5.90%	72s	121,122	2.40%	720s	128,832	8.92%	37s
ch130	6,110	6,279	2.76%	77s	6,175	1.06%	790s	6,145	0.57%	38s
pr136	96,772	101,927	5.33%	84s	98,453	1.74%	820s	98,285	1.56%	38s
pr144	58,537	63,778	8.95%	93s	61,207	4.56%	720s	60,571	3.47%	43s
kroA150	26,524	28,658	8.05%	102s	30,078	13.40%	900s	27,501	3.68%	44s
kroB150	26,130	27,565	5.49%	102s	28,169	7.80%	900s	26,962	3.18%	44s
pr152	73,682	79,442	7.82%	101s	75,301	2.20%	720s	75,539	2.52%	44s
u159	42,080	50.656	20.38%	111s	42,716	1.51%	840s	46,640	10.84%	45s
rat195	2,323	2,518	8.14%	168s	2,955	27.21%	1080s	2,574	10.81%	57s
kroA200	29,368	33,313	13.43%	173s	32,522	10.74%	1,120s	31,172	6.14%	86s
ts225	126,643	138,000	8.97%	223s	127,731	0.86%	1,110s	134,827	6.46%	113s
tsp225	3,919	4,837	23.42%	224s	4,354	11.10%	1,160s	4,487	14.50%	113s
pr226	80,369	90,390	12.47%	228s	91,560	13.92%	940s	85,262	6.09%	113s
gil262	2,378	2,588	8.81%	306s	2,490	4.71%	1380s	2,508	5.49%	134s
lin318	42,029	47,288	12.51%	397s	46,065	9.60%	1,470s	46,540	10.72%	158s
rd400	15,281	17,053	11.59%	458s	16,159	8.10%	1,870	16,519	8.10%	209s
pr439	107,217	160,594	49.78%	744s	143,590	33.92%	1760s	130,996	22.18%	228s
pcb442	50,778	58,891	15.98%	897s	57,114	12.48%	1,760s	57,051	12.35%	228s
avg. gap	0.00%		9.90%			7.63%			5.14%	

Ablation Study in AM and PointerNet

Component of the LCP			TSP		PC	PCTSP		CVRP	
Entropy	Weight Scheduling	Reviser	cost	gap	cost	gap	cost	gap	
			7.96	2.65%	6.08	1.64%	16.29	3.43%	
√	,		7.96	2.68%	6.08	1.76%	16.25	3.16%	
\checkmark	\checkmark		7.94	2.45%	6.07	1.62%	16.20	2.86%	
		\checkmark	7.86	1.32%	6.04	1.13%	16.20	2.86%	
\checkmark		\checkmark	7.84	1.17%	6.05	1.16%	16.16	2.59%	
\checkmark	\checkmark	\checkmark	7.82	0.88%	6.04	1.02%	16.12	2.37%	
Component of the LCP			Po	inter Netv	vork (gree	edy) Po	inter Net	work {1280	}
Entro	opy Weight Schedulin	g Revise	er cos	st	gap	со	st	gap	
			3.9	5	2.63%	7.3	33	90.75%	
~			3.9	5	2.71%	7.3	30	89.77%	
\checkmark	\checkmark		3.9	5	2.62%	7.3	32	90.29%	
		\checkmark	3.8	9	1.27%	3.8	35	0.21%	
~		~	3.8	9	1.18%	3.8	35	0.24%	
\checkmark	\checkmark	\checkmark	3.8	9	1.24%	3.8	35	0.20%	

Thank You for Listening! min-su@kaist.ac.kr