

Adversarial Reweighting for Partial Domain Adaptation

Xiang Gu, Xi Yu, Yan Yang, Jian Sun and Zongben Xu

School of Mathematics and Statistics

Xi'an Jiaotong University

{xianggu, ericayu, yangyan92}@stu.xjtu.edu.cn,

{jiansun, zbxu}@xjtu.edu.cn

1. Partial Domain Adaptation

Problem Setting

 $(x_i^s, y_i^s) \sim P^s(x, y)$

 $(x_i^t, \cdot) \sim P^t(x, y)$

An Unified Loss Framework for PDA Methods

Total Loss = Source Cross-entropy + Reweighted Distribution Alignment + Conditional Entropy

Method	Reweighting in CE	Reweighting Strategy	Distance Metric	Conditional Entropy
SAN [1]	X	Classifier	JS	\checkmark
IWAN [10]	×	Discriminator	JS	\checkmark
PADA [2]	\checkmark	Classifier	JS	×
ETN [3]	\checkmark	Discriminator	JS	\checkmark
DRCN [7]	×	Classifier	MMD	×
BAA [8]	\checkmark	Classifier	JS	\checkmark

Table S-1: Comparisons of losses of feature-adaptation-based partial domain adaptation methods.

We propose to measure the hardness of a dataset for PDA using the probability of target data misclassified as source-only classes.

- Left figure. Hardness of Office-31 (OF), Office-Home (OH), ImageNet-Caltech (IC), VisDA-2017 (VD), DomainNet (DN).
- Right figure. Accuracy of different alignment losses on the above datasets.
- > Negative transfer occurs on challenging datasets of VisDA-2017 (VD), DomainNet (DN).

Challenges of PDA Methods

Results for *reweighted classification loss* (RC) and different *reweighted alignment losses* with generated source data weights with varying noise levels in the tasks $S \rightarrow R$ (left) and $C \rightarrow P$ (right).

The reweighted alignment losses are not robust to weight noise.
 Reweighting the classifier is more robust to weight noise.

$$\mathcal{L}(\theta_F, \theta_C, \mathbf{w}) = \frac{1}{n_s} \sum_{i=1}^{n_s} w_i \mathcal{J}(C(F(x_i^s; \theta_F); \theta_C), y_i^s) + \frac{1}{n_t} \sum_{j=1}^{n_t} H\left(C\left(F\left(x_j^t; \theta_F\right); \theta_C\right)\right)$$

Adversarial Reweighting Model

$$\min_{\mathbf{w}\in\mathcal{W}} \max_{\theta_D\in\Theta} \frac{1}{n_s} \sum_{i=1}^{n_s} w_i D(z_i^s; \theta_D) - \frac{1}{n_t} \sum_{j=1}^{n_t} D(z_j^t; \theta_D)$$
where $\mathbf{w} = (w_1, w_2, \cdots, w_{n_s})^T$.

- > Given w, θ_D is updated using mini-batch Adam algorithm.
- > Given θ_D , w is learned by solving the following cone programming.

$$\min_{\mathbf{w}} \mathbf{d}^T \mathbf{w}$$

s.t. $w_i \ge 0, \sum_{i=1}^{n_s} (w_i - 1)^2 \le \rho n_s, \sum_{i=1}^{n_s} w_i = n_s.$
where $d_i = D(z_i^s; \theta_D), \mathbf{d} = (d_1, d_2, \cdots, d_{n_s})^T.$

Office-Home

Method	Ar→Cl	$Ar \rightarrow Pr$	Ar→Rw	'Cl→Ar	Cl→Pr	Cl→Rw	′Pr→Ar	Pr→Cl	Pr→Rw	$Rw \rightarrow Ar$	Rw→Cl	$Rw \rightarrow Pr$	Avg
ResNet-50 [15]	46.33	67.51	75.87	59.14	59.94	62.73	58.22	41.79	74.88	67.40	48.18	74.17	61.35
ADDA [39]	45.23	68.79	79.21	64.56	60.01	68.29	57.56	38.89	77.45	70.28	45.23	78.32	62.82
CDAN+E [24]	47.52	65.91	75.65	57.07	54.12	63.42	59.60	44.30	72.39	66.02	49.91	72.80	60.73
IWAN [46]	53.94	54.45	78.12	61.31	47.95	63.32	54.17	52.02	81.28	76.46	56.75	82.90	63.56
SAN [3]	44.42	68.68	74.60	67.49	64.99	77.80	59.78	44.72	80.07	72.18	50.21	78.66	65.30
PADA [4]	51.95	67.00	78.74	52.16	53.78	59.03	52.61	43.22	78.79	73.73	56.60	77.09	62.06
ETN [5]	59.24	77.03	79.54	62.92	65.73	75.01	68.29	55.37	84.37	75.72	57.66	84.54	70.45
DRCN [21]	54.00	76.40	83.00	62.10	64.50	71.00	70.80	49.80	80.50	77.50	59.10	79.90	69.00
SAFN [42]	58.93	76.25	81.42	70.43	72.97	77.78	72.36	55.34	80.40	75.81	60.42	79.92	71.83
$RTNet_{adv}$ [6]	63.20	80.10	80.70	66.70	69.30	77.20	71.60	53.90	84.60	77.40	57.90	85.50	72.30
BA ³ US [22]	60.62	83.16	88.39	71.75	72.79	83.40	75.45	61.59	86.53	79.25	62.80	86.05	75.98
DPDAN [43]	59.40	_	79.04	_	_	_	_	_	81.79	76.77	58.67	82.18	-
Cls+Ent (w/ linear)	54.03	73.61	83.27	69.51	67.56	77.75	69.51	53.73	83.38	74.56	59.34	82.41	70.72
AR (w/ linear) (ours)	62.13	79.22	89.12	73.92	75.57	84.37	78.42	61.91	87.85	82.19	65.37	85.27	77.11
Cls+Ent	61.61	78.21	86.20	73.19	71.76	79.62	75.11	59.76	86.31	79.16	61.67	83.59	74.68
AR (ours)	67.40	85.32	90.00	77.32	70.59	85.15	78.97	64.78	89.51	80.44	66.21	86.44	78.29
Cls+Ent+AUS	63.34	81.12	86.14	74.01	76.53	79.79	77.69	62.57	86.42	78.33	62.69	84.38	76.08
AR+AUS (ours)	68.24	85.60	90.61	75.91	77.54	81.89	81.73	66.39	89.01	83.65	65.61	86.95	79.43
Cls+Ent+LS	62.99	83.59	87.30	74.20	73.05	81.67	79.25	63.46	87.85	78.97	64.54	84.76	76.80
AR+LS (ours)	65.67	87.36	89.62	79.25	75.01	86.97	80.81	65.79	90.61	80.81	65.25	86.12	79.44

DomainNet

Method	$C \rightarrow P$	$C \rightarrow R$	$C {\rightarrow} S$	$P \rightarrow C$	$P \rightarrow R$	$P \rightarrow S$	$R \rightarrow C$	$R{\rightarrow}P$	$R {\rightarrow} S$	$S \rightarrow C$	$S {\rightarrow} P$	$S \rightarrow R$	Avg
ResNet-50 [15]	41.21	60.01	42.13	54.52	70.80	48.32	63.1	58.63	50.26	45.43	39.3	49.75	51.96
DANN [9]	27.83	36.64	29.91	31.79	41.98	36.58	47.64	46.81	40.85	25.82	29.54	32.72	35.68
CDAN+E [24]	37.46	48.26	46.61	45.50	60.96	52.63	62.01	60.63	54.74	35.37	38.50	43.63	48.86
SAN [3]	34.35	51.62	46.23	57.13	70.21	58.25	69.61	67.49	67.88	41.69	41.15	48.44	54.50
PADA [4]	22.49	32.85	29.95	25.71	56.47	30.45	65.28	63.35	54.17	17.45	23.89	26.91	37.41
BA ³ US [22]	42.87	54.72	53.79	64.03	76.39	64.69	79.99	74.31	74.02	50.36	42.69	49.65	60.63
Cls+Ent (w/ linear)	50.14	64.05	59.81	65.26	76.12	69.50	75.54	69.74	68.55	50.63	54.95	54.44	63.23
AR (w/ linear) (ours)	56.70	70.36	58.56	65.63	74.80	74.85	75.22	71.17	69.08	53.90	55.70	63.09	65.76
Cls+Ent	49.40	65.69	58.89	65.92	74.82	70.77	75.87	70.72	68.26	50.45	55.70	62.23	64.06
AR (ours)	52.66	68.24	58.29	66.78	77.53	74.38	76.70	71.77	70.48	53.66	53.60	61.57	65.47

ATTAC

Office, ImageNet-Caltech, and VisDA-2017

Method	Office-31								eNet-C	altech	ch VisDA-2017			
Method	$A \rightarrow D$	$A {\rightarrow} W$	$D \rightarrow A$	$D {\rightarrow} W$	$W {\rightarrow} A$	$W {\rightarrow} D$	Avg	C→I	$I {\rightarrow} C$	Avg	$R \rightarrow S$	$S \rightarrow R$	Avg	
ResNet-50 [15]	83.44	75.59	83.92	96.27	84.97	98.09	87.05	71.29	69.69	70.49	64.28	45.26	54.77	
DAN [23]	61.78	59.32	74.95	73.90	67.64	90.45	71.34	60.13	71.30	65.72	68.35	47.60	57.98	
DANN [9]	81.53	73.56	82.78	96.27	86.12	98.73	86.50	67.71	70.80	69.23	73.84	51.01	62.43	
IWAN [46]	90.45	89.15	95.62	99.32	94.26	99.36	94.69	73.33	78.06	75.70	71.30	48.60	59.95	
SAN [3]	94.27	93.90	94.15	99.32	88.73	99.36	94.96	75.26	77.75	76.51	69.70	49.90	59.80	
PADA [4]	82.17	86.54	92.69	99.32	95.41	100.0	92.69	70.48	75.03	72.76	76.50	53.50	65.00	
ETN [5]	95.03	94.52	96.21	100.0	94.64	100.0	96.73	74.93	83.23	79.08	_	_	_	
DRCN [21]	86.00	88.50	95.60	100.0	95.80	100.0	94.30	78.90	75.30	77.10	73.20	58.20	65.70	
$RTNet_{adv}$ [6]	96.20	97.60	92.30	100.0	95.40	100.0	97.20	_	_	_	_	_	_	
BA ³ US [22]	99.36	98.98	94.82	100.0	94.99	98.73	97.81	83.35	84.00	83.68	67.56	69.86	68.71	
DPDAN [43]	96.27	96.82	96.35	100.0	95.62	100.0	97.51	_	—	_	_	65.26	_	
Cls+Ent (w/ linear)	90.45	87.80	94.68	100.0	94.36	98.09	94.23	77.74	77.82	77.78	69.00	82.32	75.66	
AR (w/ linear) (ours)	91.72	97.63	95.62	100.0	95.30	100.0	96.71	81.78	85.83	83.81	74.82	85.30	80.09	
Cls+Ent	80.89	87.12	94.05	94.58	93.95	99.36	91.66	79.60	82.59	81.10	66.63	84.72	75.68	
AR (ours)	96.82	93.54	95.51	100.0	96.04	99.67	96.93	82.24	87.12	84.69	78.52	88.75	83.62	

Weight Visualization

Feature Visualization

ResNet-50

Cls+Ent

AR (ours)

• Blue: source, red: target.

Thanks for your attention

Code: <u>https://github.com/XJTU-XGU/Adversarial-Reweighting-for-Partial-Domain-Adaptation</u>