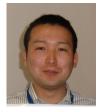


Pruning Randomly Initialized Neural Networks with Iterative Randomization

Daiki Chijiwa*

Shin'ya Yamaguchi

Yasutoshi Ida



Kenji Umakoshi

Tomohiro Inoue

Training Methods for Neural Networks

 $f(x; \theta)$: a neural network parametrized by $\theta \in \mathbb{R}^N$.

 \mathcal{L} : loss function, \mathcal{D}_{data} : data distribution, \mathcal{D}_{param} : parameter distribution.

Training Methods for Neural Networks

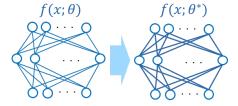
 $f(x; \theta)$: a neural network parametrized by $\theta \in \mathbb{R}^N$.

 \mathcal{L} : loss function, \mathcal{D}_{data} : data distribution, \mathcal{D}_{param} : parameter distribution.

<u>Weight-Optimization</u> (Standard Approach in Deep Learning)

Optimize the following problem with SGD:

$$\min_{\theta \in \mathbb{R}^N} \mathbb{E}_{(x,y) \sim \mathcal{D}_{data}} [\mathcal{L}(f(x;\theta), y)]$$



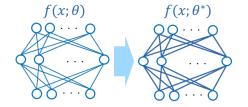
Training Methods for Neural Networks

 $f(x; \theta)$: a neural network parametrized by $\theta \in \mathbb{R}^{N}$. \mathcal{L} : loss function, \mathcal{D}_{data} : data distribution, \mathcal{D}_{param} : parameter distribution.

Weight-Optimization (Standard Approach in Deep Learning)

Optimize the following problem with SGD:

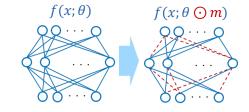
 $\min_{\theta \in \mathbb{R}^N} \mathbb{E}_{(x,y) \sim \mathcal{D}_{data}} [\mathcal{L}(f(x;\theta), y)]$



Weight-Pruning Optimization (Ramanujan et al., CVPR'20)

Sample and fix $\theta \sim D_{param}$. Then optimize:

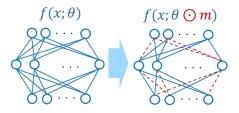
 $\min_{m \in \{0,1\}^N} \mathbb{E}_{(x,y) \sim \mathcal{D}_{data}} [\mathcal{L}(f(x; \theta \odot m), y)]$



Weight-Pruning Optimization (Ramanujan et al., CVPR'20)

Sample and fix $\theta \sim D_{param}$. Then optimize:

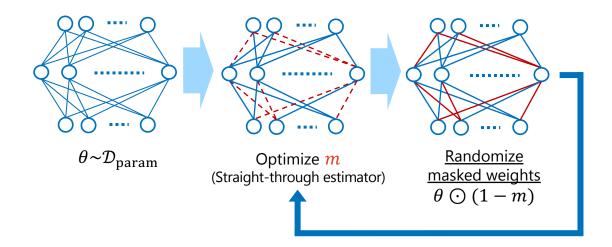
 $\min_{m \in \{0,1\}^N} \mathbb{E}_{(x,y) \sim \mathcal{D}_{data}} [\mathcal{L}(f(x; \theta \odot m), y)]$



- Features: Discrete search space, sparse network.
 We can control the range of values in θ.
 <u>E.g.</u> If we take a uniform distribution over {1, −1} for D_{param}, θ is a vector of binary parameters during/after training.
- **Drawback:** (Pensia et al., NeurIPS'20) The weight-pruning requires logarimithmic over-parametrization for $f(x; \theta)$ to achieve the same approximation capacity as the weight-optimization.

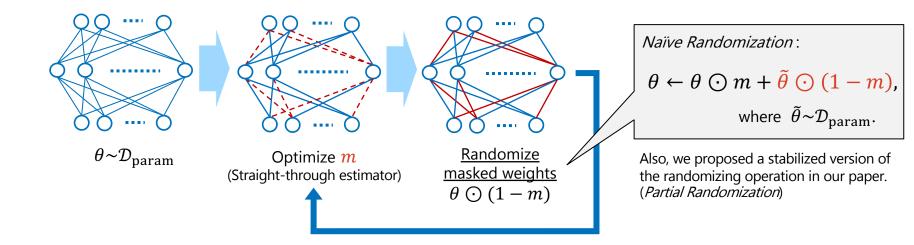
Our Approach: Iterative Randomization

Randomizing pruned weights during the weight-pruning optimization leads to increase the number of network parameters virtually.



Our Approach: Iterative Randomization

Randomizing pruned weights during the weight-pruning optimization leads to increase the number of network parameters virtually.



Results (Theoretical Justification)

f(x): a target neural network, d_i : width size for *i*-th layer of f(x).g(x): a neural network to be pruned, $\widetilde{d_j}$: width size for *j*-th layer of g(x).

<u>Assume</u>: the weights of g(x) are sampled from the uniform distribution over [-1,1].

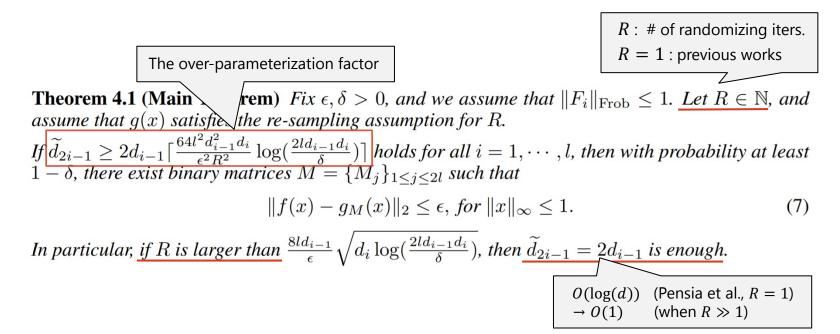
Theorem 4.1 (Main Theorem) Fix $\epsilon, \delta > 0$, and we assume that $||F_i||_{\text{Frob}} \leq 1$. Let $R \in \mathbb{N}$, and assume that g(x) satisfies the re-sampling assumption for R. If $\widetilde{d}_{2i-1} \geq 2d_{i-1} \lceil \frac{64l^2 d_{i-1}^2 d_i}{\epsilon^2 R^2} \log(\frac{2ld_{i-1}d_i}{\delta}) \rceil$ holds for all $i = 1, \dots, l$, then with probability at least $1 - \delta$, there exist binary matrices $M = \{M_j\}_{1 \leq j \leq 2l}$ such that $||f(x) - q_M(x)||_2 \leq \epsilon$, for $||x||_{\infty} \leq 1$. (7)

In particular, if R is larger than $\frac{8ld_{i-1}}{\epsilon}\sqrt{d_i\log(\frac{2ld_{i-1}d_i}{\delta})}$, then $\widetilde{d}_{2i-1} = 2d_{i-1}$ is enough.

Results (Theoretical Justification)

f(x): a target neural network, d_i : width size for *i*-th layer of f(x). g(x): a neural network to be pruned, $\tilde{d_i}$: width size for *j*-th layer of g(x).

<u>Assume</u>: the weights of g(x) are sampled from the uniform distribution over [-1,1].



Results (CIFAR-10 & ImageNet experiments)

