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Contributions

Contrary to popular belief, model averaging does not necessarily lead
to better calibration. In fact in general it pushes the model towards
under-confidence. In cases when the individual models are calibrated
or under-confident, model averaging worsens the calibration
performance.

This observation is not limited to low-data setting, augmentations,
or Deep ensembles. We show similar phenomenon for higher amount
of data, calibrated models without the use of augmentation, and
also other model averaging techniques.

Simple post-processing calibration techniques can be tweaked to
combat the under-confidence of ensembles. The ordering of pooling
and calibration is extremely important, and can significantly impact
model calibration.
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Introduction: Uncertainty

Let us think of a model that predicts whether a patient have Diabetic
Retinopathy (DR) by looking at fundus retina photographs.

Model Prediction

p (DR) = 0.8

After seeing an image, let us say that the model outputs a probability
p = 0.8. What can a user (e.g. a Doctor) do with this number? Should
one be 80% sure that the patient has DR, equivalently is it true that in 8
out of 10 such cases the patient will indeed have DR?
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Introduction: Measures

For a partition 0 = c0 < . . . < cM = 1 of the unit interval and a
labelled set {xi , yi}Ni=1, set Bm = {i : cm−1 < p̂(xi ) ≤ cm} and
accm = 1

|Bm|
∑

i∈Bm
1(ŷ(xi ) = yi ) and confm = 1

|Bm|
∑

i∈Bm
p̂(xi ).

The quantity ECE is defined as

ECE =
M∑

m=1

|Bm|
N

∣∣ confm− accm
∣∣.

Another widely used metric for calculating calibration is Brier Score
[Bri50], which calculates the L2 distance between the predictions
p(x) and its corresponding one-hot encoded target ȳ ,

Brier :=
1

N

N∑
i=1

‖p(xi )− y i‖2
2
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Methods: Augmentation

Standard augmentation strategies include rotations, translations,
brightness and contrast manipulations. Even simple augmentations
help combat over-confidence.

Mixup augmentation strategy [ZCDL17] augments a pair
(x , y) ∈ X ×∆C to a different version (x?, y?) which is defined as

x? = γ x + (1− γ) xJ and y? = γ y + (1− γ) y J (1)

for a random coefficient γ ∈ (0, 1).
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Methods: Model Averaging

Ensembling methods leverage a set of models by combining them
into a aggregated model.

Many practical model averaging techniques exist for Deep Learning
such as Deep Ensembles [LPB17], SWAG [IPG+18, MGI+19],
MC-DropOut [GG16] e.t.c.

The general belief about Model Averaging is that, it naturally leads
to Calibration.

The common setups do not study already calibrated or
under-confident models. Also, the interaction between augmentation
and ensembling is missing.
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Methods: Post-processing Calibration

Temperature Scaling is the simplest post-processing methods, that
transforms the probabilistic outputs p(x) ∈ ∆C into a tempered
version Scale[p(x), τ ] ∈ ∆C defined through the scaling function

Scale(p, τ) ≡ σSM(log p/τ),

for a temperature parameter τ > 0.

The optimal parameter τ? > 0 is usually found by minimizing a
proper-scoring rules [GR07], often chosen as the negative
log-likelihood, on a validation dataset.
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Model Averaging and Calibration
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Studies show that Deep Ensembles, often leads to more accurate
and better-calibrated predictions [LPB17, BC17, LPC+15].

Our findings suggest that instead Deep Ensembles (even others such
as SWAG, MC-DropOut) always pushes the predictions towards
under-confidence.

We plot the calibration curve of 30 individual models (blue) and
their final ensemble (red).
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Underlying reasons

Looking at the entropy functional, H(p) = −
∑C

k=1 pk log pk , it
can be seen that it is concave on the probability simplex ∆C .
Tempering with a temperature τ > 1 will increase entropy, as can be
proved by examining the derivative of the function τ 7→ H[p1/τ ].

In a binary classification, with pX being the model prediction for
observation X , the measure

DC := E
[(

1{Y=1} − pX
)2 − pX (1− pX )

]
.

This metric captures deviation from calibration and can be shown to
always decrease for an ensemble.
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Distance To Training Data

We first consider a mapping Φ : R32,32 → S128, where S128 ⊂ R128

denotes the unit sphere in R128, that maps an image to a low
dimensional representation.

We use the distance d(x , y) = ‖Φ(x)− Φ(y)‖2 between the
128-dimensional representations of the CIFAR10 images x and y .
The distance of a test image x to the training dataset is defined as
min{d(x , yi ) : yi ∈ Dtrain}.
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Distance To Training Data
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Deep Ensembles trained on N = 1000 CIFAR10 samples with
different mixup strength. The ‘x-axis’ denotes distance percentile.
All the metrics degrade with distance from training set.
samples far away from training set are more over-confident than
samples that are near.
increasing the strength of mixup augmentation in general leads to
better metrics.
post-processing temperature scaling for the individual models almost
washes-out all the differences due to mixup.
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Pool then Calibrate

Possible Options

(A) Do nothing and hope that the averaging process intrinsically leads to
better calibration

(B) Calibrate each individual network before aggregating all the results

(C) Simultaneously aggregate and calibrate the probabilistic forecasts of
each individual model.

(D) Aggregate first the estimates of each individual model before
eventually calibrating the pooled estimate.
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Method [C], [D]

[C] Joint-pool-calibrate: Learn the optimal temperature τ? jointly
with pooling. τ? is found by minimizing a proper scoring rule
Score(·) on a validation set Dvalid

τ? = arg min
{
τ 7→ 1

Dvalid

∑
i∈Dvalid

Score(pτi , yi )
}
,

where pτi = Agg
[

Scale(p1:K (xi ), τ)
]
.

[D] Pool-then-calibrate: Pool the predictions first and then fit a
temperature τ? by a minimizing Score(·) on a Dvalid. Given a set
p1:K of K ≥ 2 predictions, the final prediction is defined as

p? ≡ Scale
[
Agg(p1:K ), τ?

]
.
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Importance of the Pooling and Calibration order
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(light blue) each model calibrated with one temperature per model
(i.e. individually temperature scaled),

(dark blue) ensemble of individually temperature scaled models
(method [B]),

(orange) each model scaled with a global temperature τ? obtained
with method [C],

(red) final prediction of method [C] Joint-pool-calibrate.
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Performance comparison
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Figure: Performance of different pooling strategies ( A-D) with K = 30 models trained
with mixup-augmentation (α = 1) across multiple datasets. Experiments were
executed 50 times on the same training data but different validation sets. The dashed
red line represents a baseline performance when a single model was training with
mixup augmentation (α = 1) and post-processed with temperature scaling.
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Impact on low data setting

Metric
(Ours) 30 models 30 models single model single model single model

temp scaled mixup mixup no mixup no mixup
Augment + mixup Augment Augment Augment no Augment

test acc 69.92 ± .04 70.67 66.45 ± .61 63.73 ± .51 49.85 ± .66
test ECE 3.3 ± 1.9 13.9 7.03 ± .7 20.7 ± .4 23.4 ± 1.0
test NLL 0.910 ± .012 0.961 1.03 ± .13 1.509 ± .017 1.770 ± .045

test BRIER 0.414 ± .002 0.431 0.463 ± .005 0.556 ± .006 0.718 ± .009

Results on CIFAR10 1000 samples. The table breaks down individual
component and justifies why it is necessary to employ both ensemble and
mixup to achieve significant boost in performance especially in low-data
regime. It also shows the model’s journey from extreme over-confidence
to calibration, then to extreme under-confidence and finally to calibrated
and powerful ensemble.
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Conclusions

Contrary to popular belief, model averaging does not necessarily lead
to better calibration. In fact in general it pushes the model towards
under-confidence. In cases when the individual models are calibrated
or under-confident, model averaging worsens the calibration
performance.

This observation is not limited to low-data setting, augmentations,
or Deep ensembles. We show similar phenomenon for higher amount
of data, calibrated models without the use of augmentation, and
also other model averaging techniques.

Simple post-processing calibration techniques can be tweaked to
combat the under-confidence of ensembles. The ordering of pooling
and calibration is extremely important, and can significantly impact
model calibration.
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