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How to adapt normal
deep learning
algorithms to
federated learning
in a principled way?



Federated Learning: Setting [McMahan et al. 2016]
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Huge (possibly infinite) number of
clients => each client is seen at
most once.

High overhead per round

Each client has a small amount of
heterogeneous data



Cross silo vs.

Client data

Clie#ts

e Cross-silo is closer to “finite-sum”
optimization

e Can use variance reduction
(SCAFFOLD, etc.)

Client data

mlnEng fi(z) Zfz (z;60)

clients

° is closer to “stochastic”
optimization. Essentially, N is .
e Use algorithms like SGD, momentum,

Adam etc.




Cross device FL:

. 4*1 And we only sample 1 client per
111111 JZND f’l a: round.

X Also, we focus on momentum.

T See the paper for full details.

Model

Expectation over
parameters

(possibly infinite)
clients



Part 1: Algorithms
Mime Framework



Solving FL: Server only momentum

[Assume only 1 client per round]

v=x—n(1-p)Vfiz)+ pm)

+ Convergence guaranteed

f -  Communicates every
Update server update
parameters

m = (1—= )V fi(x) + m
N

Update server
momentum



[McMahan et al. 2016,

Solving FL: Hsu et al. 2019,

Reddi et al. 2020]

e Starting from x, run K local updates

+ Communicates only

y’i . y’& . nvfz (yz) every K updates

e Use (x-y,)as apseudo-gradient. - bad convergence due to

T =71 — ((1 _ /3) (SC _ yz) + 5m) client drift because each

client overfits to itself
\ [SCAFFOLD, Karimireddy et al. 2019]

Update server parameters

m = (1—-05)(x —wv)+Bm



But momentum helps!

(a) Local EpochE =1
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Figure from [Hsu et al.
2019]

FedAvg with momentum
(in red) outperforms
FedAvg SGD (in blue).

a quantifies non-iidness.
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Solving FL:

e Apply server momentum locally in the clients e Observation 1; Momentum helps
yi =y — 1 (1 — B)V fi(y:)+ Bm)
Fixed server
momentum
e Momentum is computed globally (at server) and applied e Observation 2: Momentum helps
locally (at clients) more for non-iid
L It must be “mixing” updates from
m = (1 T /6) vfz (CE) + 6777/ different clients, preventing

\ overfitting.

Update server momentum
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FedAvg momentum vs. Mime momentum

FEDAVG updates

MIME updates
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Principles

Use “optimizer state” (momentum) every client
update

Update “optimizer state” only at server,
fixed during client updates.
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Base optimizer

Decompose a base centralized optimizeras B = (U, V)

1. Parameter update step:

parameters]a/; — nu('g’ S)

gradient

s =V(g,s)

2. State update step:
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Base optimizer

Momentum algorithm.
For SGD with momentum, s =m

1. Parameter update step: r=x—n((1-7p)g+p0m)

U(g,m)=(1—B)g+Bm |m=0=0Fg+pm

2. State update step:
V(g,m) = (1—pB)g+ Bm
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Full algorithm

Apply base optimizer locally at the clients

yi = yi — UV fi(yi); 8))

Fixed state

State is updated only at server

s=V(Vfi(x),s)
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accuracy

Comparison

Momentum methods

0.86

0.76 -

,/-"“"’w
— Mime
—— MimelLite
—— FedAvg
—— Scaffold
FedProx

0.66

200 400 600 800 1000

Extended MNIST 62

MLP with 2 hidden layers

10 local epochs

20 of 3400 clients per round

Momentum = [0, 0.9, 0.99]

Tuned client Ir, server Ir =1.
Regularization for FedProx tuned over
[0.1, 0.5, 1] with 0.1 being the best. Using
smaller values may improve performance

but regularization 0 is same as FedAvg.
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0.86

accuracy
=
~
[e)]

0.66 A

local momentum

Fixed vs. local momemntum

e

— Mime
Loc-Mime

200

400 600 800 1000

rounds

What happens if we also
update momentum locally?
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server_Ir (10%)

1.0 0.5 0.0 -0.5 -1._0 -1.5 -2.0 -2.5 -3.0

Accuracy with FedAvg+Adam
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-7.0 -6.0 -5.0 -4.0 -3.0 -2.0 -1.0
epsilon (10%)

Which hyperparameters work best?

hyperparameters

server Ir (10%)

1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0

Accuracy with Mime+Adam
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5.5 VAR 83.0
-5.0 -4.0 —3I.0
epsilon (10%)

MimeAdam works with same hyperparameters as centralized Adam.
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Part 2. Theory
What is momentum
doing?



Client data

Cross device FL: b}
mm]E,LND fi(x) : Zfz (x;€,)

A

parameters clients

e G2-Bounded

||V fi(z) = Vf()|* < G

e []- Bounded

[V fi(z) = V2 f(2)]| < 2
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Server-only

Momentum based variance reduction (MVR) adds a small correction
[Tran-Dinh et al. 2019, Cutkosky et al. 2020].

m™t = (1=B)V fi, (2" ) +Bm'+5(V f;,(2") — V fi,(+"71))

ol o

Standard momentum Correction

,  (LG\?*/?
Theorem. m[in]EHV fllpp)ll* < <T> Optimal server-only rate!
telT
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Initial Attempt

Theorem. m[lj%Eva (x%\/ﬁmel\d\/R)HQ < (
te

Are we done?

Almost, but we can do better.

Prove advantage of local steps.

LG
T

)2/3
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Local steps:

For random client i and gradient at server parameters,

LD [V i(x)] =V f(2)

Unbiased gradient

But for gradient at client parameters,

3 oD [sz/(yz)] # V [ (y:)

Biased gradient since y.depends on i

Causes
client drift!
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Local steps:

Amount of bias controlled by

1- BHD:

V2 fila) = V2 f (@) < 2

|Ein |V filyi)] — V(i)

~~ 5 4‘ . - —
. . . / \
Diff. in Hessians Distance moved in a
round

e Num. steps should be proportional to [
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With MVR IV? fi(z) — V2 f(z)|| <20

1- BHD:

momentum based variance reduction (MVR):
LG) 2/3

Theorem. min EHVf(xtMVR)Hz < ( 7

te[T]

with momentum based variance reduction (MimeMVR):

. t s o (9G)
Theorem. fg[lﬁ]EHVf (N timentvr) |7 < (?>
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injects
reduce client drift.

momentum globally
during each update.

Usefulness of local steps depends on

and helps
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Thank You.

See you at the poster!



