

The Emergence of Objectness: Learning Zero-shot Segmentation from Videos

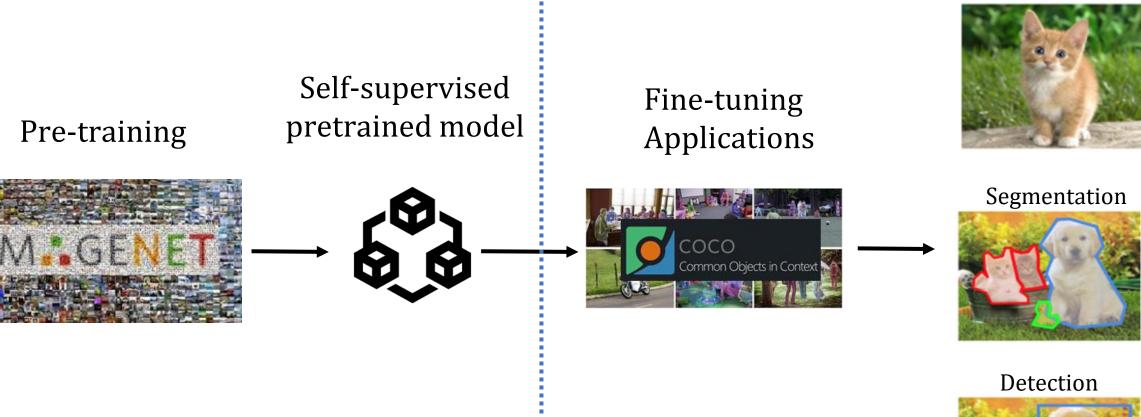
Runtao Liu

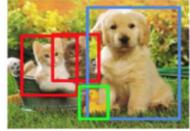
Zhirong Wu

Stella X. Yu

Stephen Lin

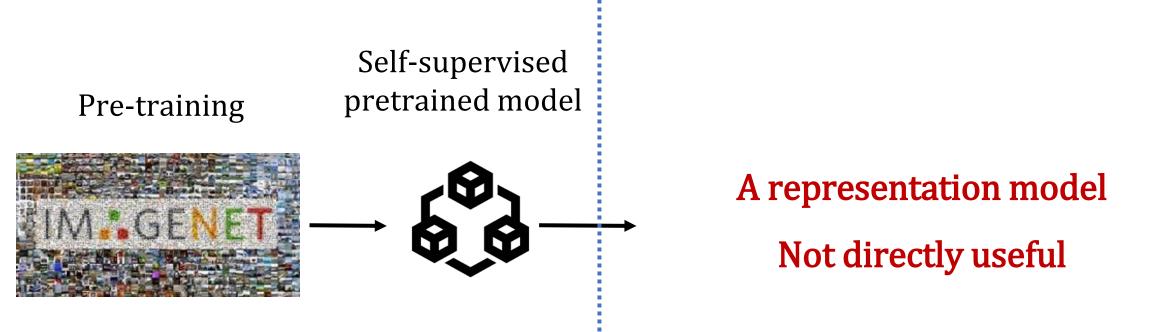
Current Usage of Self-supervised Learning



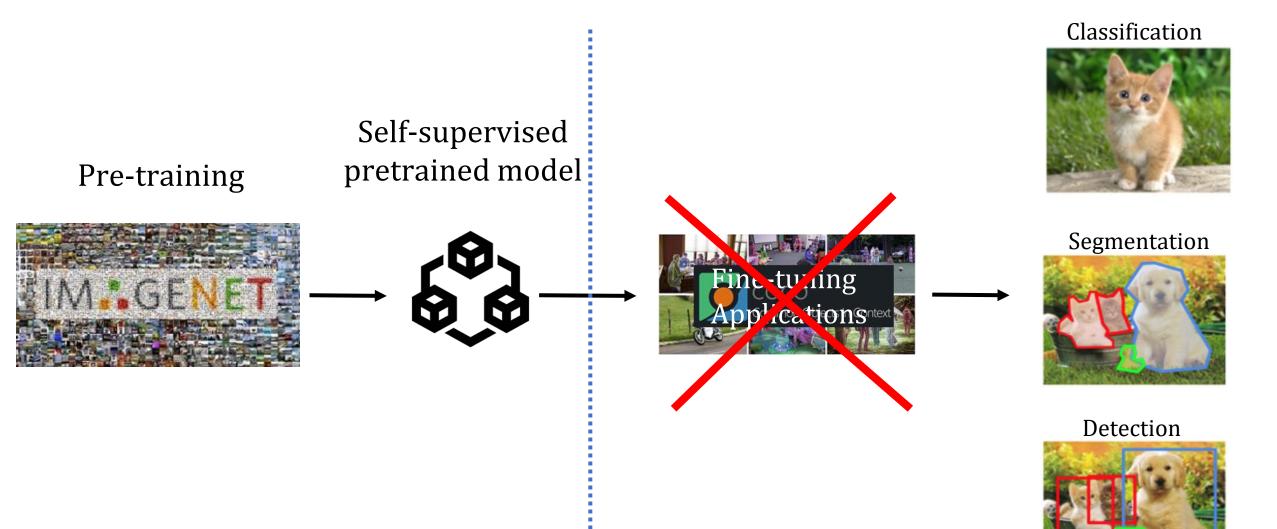


Classification

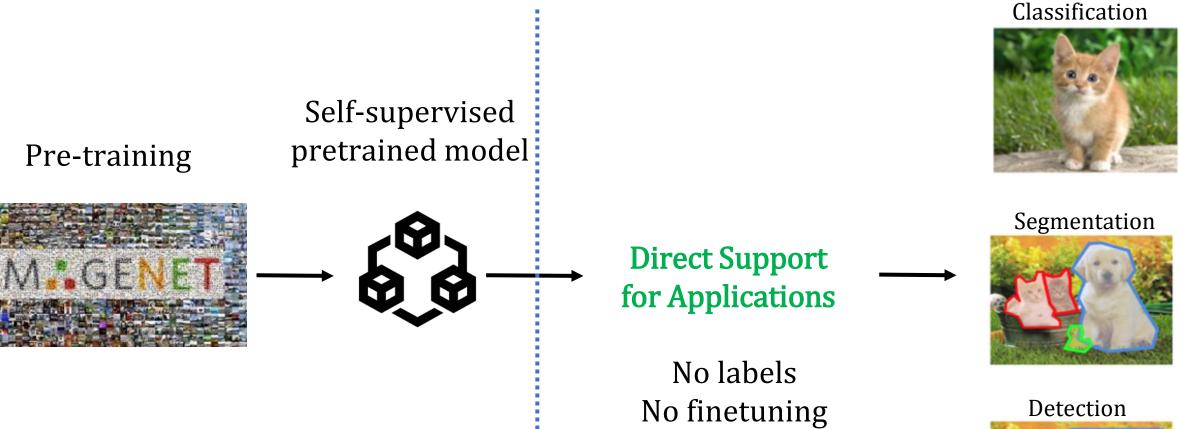
Current Usage of Self-supervised Learning

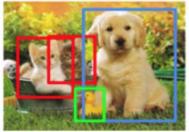


Our Goal of Self-supervised Learning



Our Goal of Zero-shot Learning





The Problem:

Segment the Primary Object From an Image

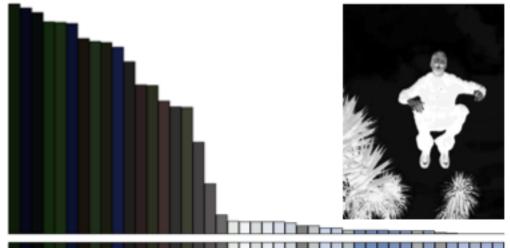
input

output

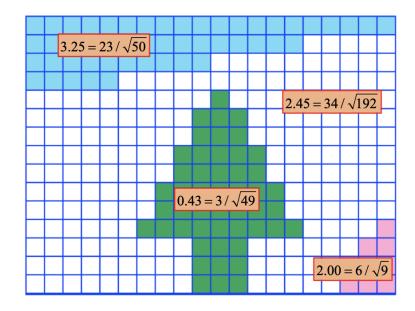
Existing Bottom-up Cues for Objectness Detection

Scharfenberger et al. 2014

the texture prior Distinctive region of textures different from the rest of the scene



Cheng et al. 2016



Zhu et al. 2014

the center prior

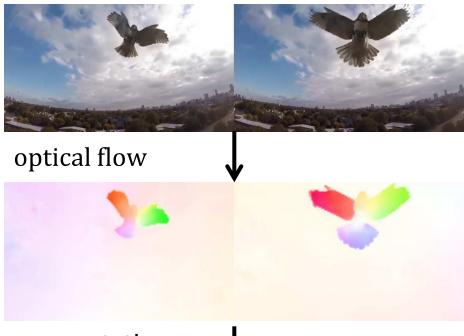
regions that has least connectivity to the image bounder tend to be foreground

the color contrast prior high color contrast pixels tend to be the foreground

Bottom-up Motion Cues – Motion Segmentation

Group pixels having similar motions into a single region, following the common fate principle.

video input



segmentation

A series of work differs in:

[Sun 2012, Kumar 2008, Shi 1998, Yang 2019]

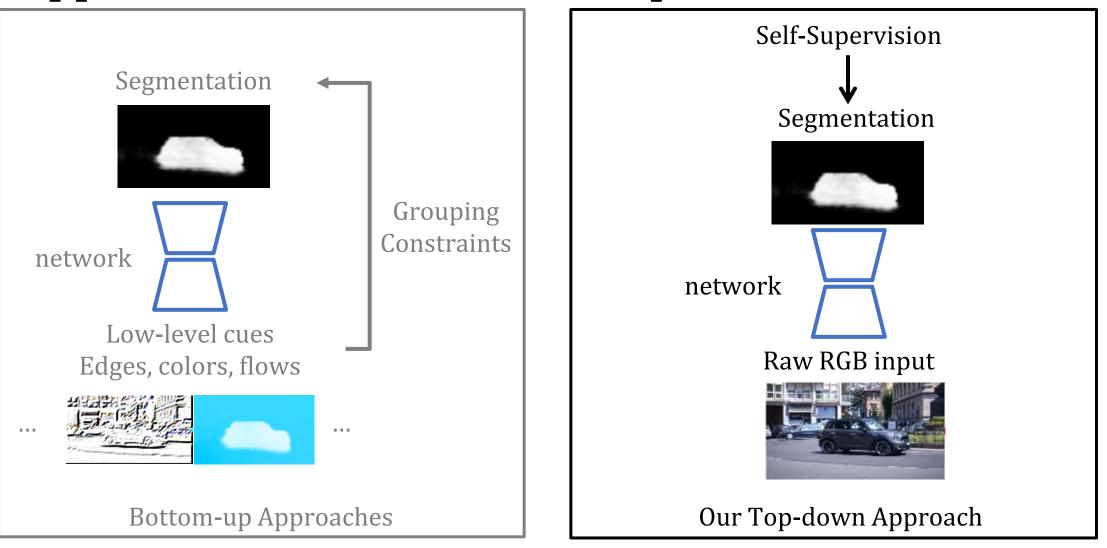
- Short-term or long-term analysis
- Whether to model occlusion
- Energy function to cluster the pixels

All requires a low-level input:

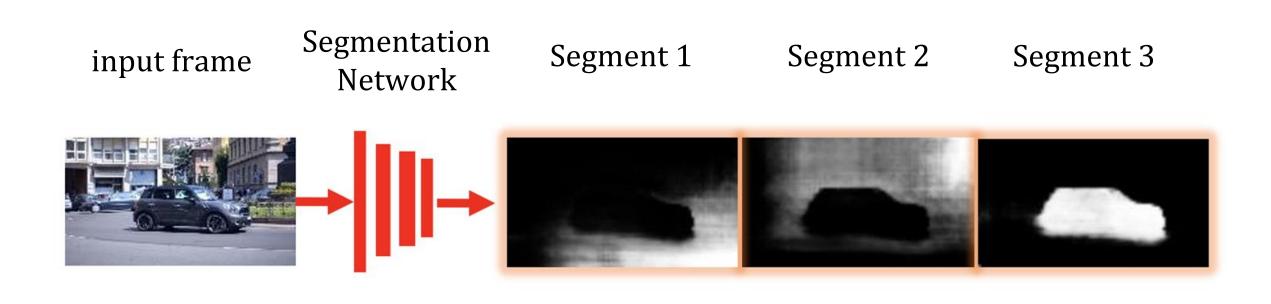
• Dense optical flow

Our Top-down Approach:

Appearance and Motion Decomposition for Videos

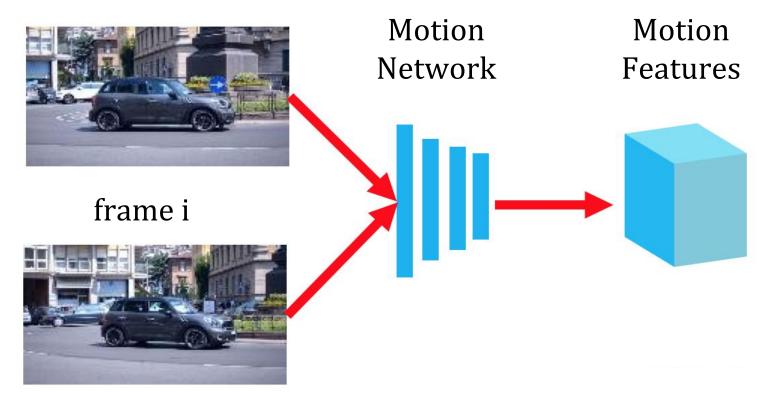


Appearance Pathway to Segment Object



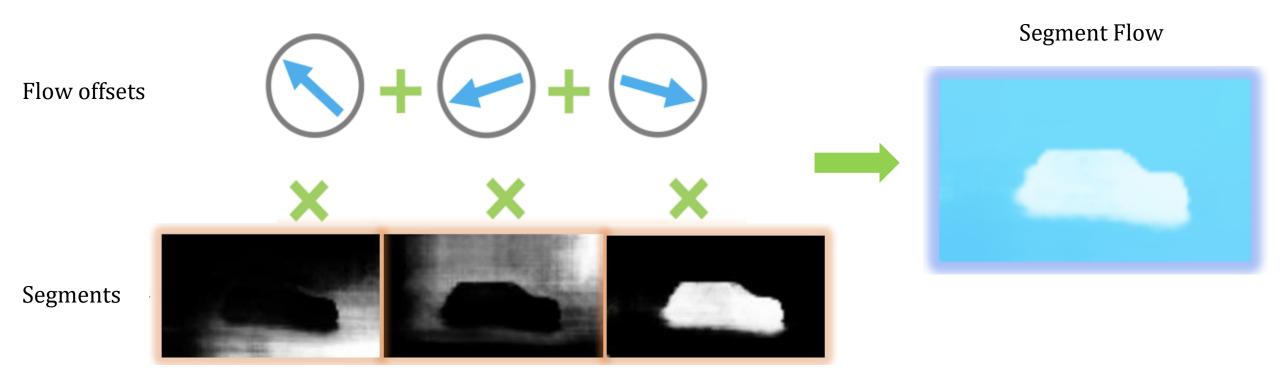
Motion Pathway to Extract Correspondence Features

frame j



Segment Flow Representation

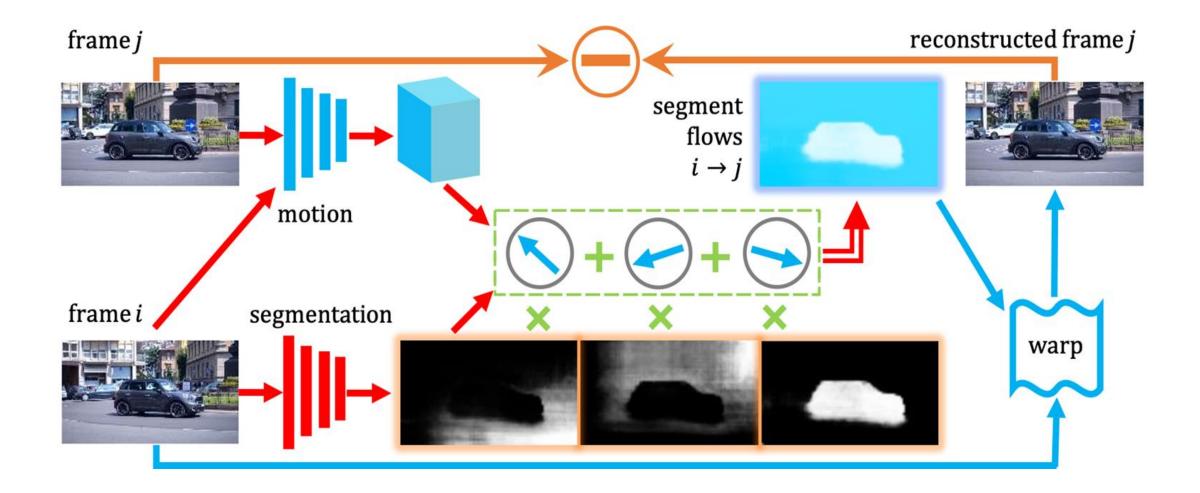
- Predict a flow vector for each segment produced by the appearance pathway.
- Broardcast each flow vector to pixels within each segment.



Segment Flow Representation

- Segment flow gives inaccurate estimation of per-pixel movement.
- Segment flow preserves the structural organization of the scene.

View Synthesis as the Self-supervision Signal



Applications of Our Model

Self-supervised pretraining on the Youtube-VOS dataset with 4000 videos. Then transfer to:

- 1. Zero-shot object segmentation from images.
- 2. Zero-shot moving object segmentation from videos.
- 3. Fine-tuning on labeled data for semantic segmentation.

Zero-shot Object Segmentations from Images

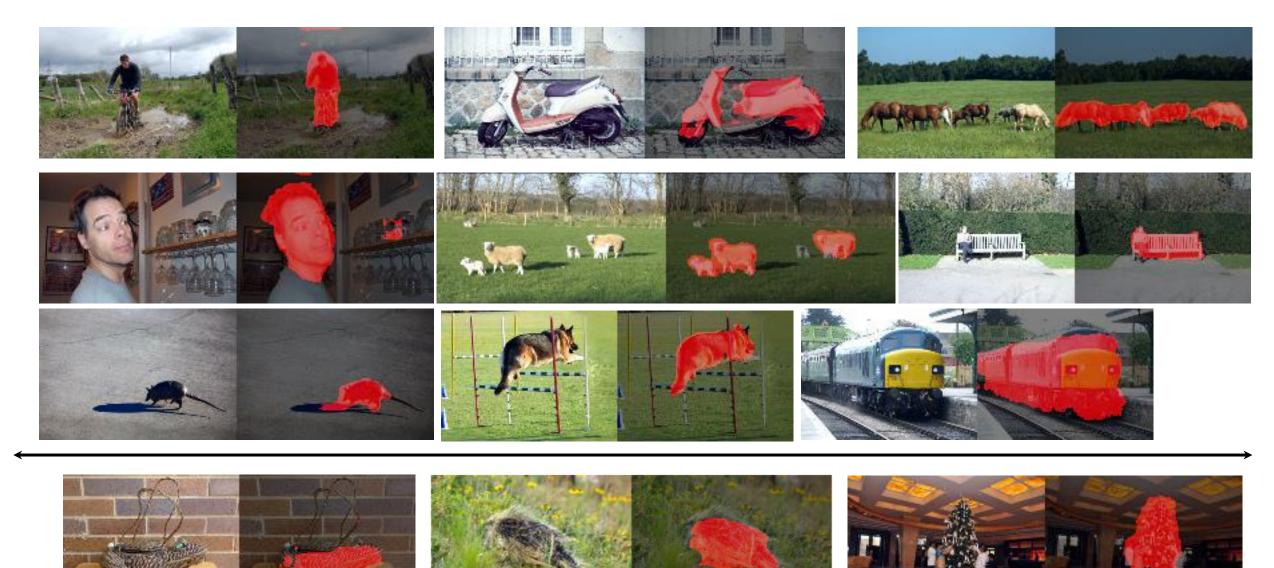
Take the appearance pathway for single image inference.

Evaluation dataset:

the testing split of the DUTS saliency detection benchmark.

	Model	F_{eta}	MAE
	RBD[55]	51.0	0.20
Non-learning approaches		52.1	0.23
using priors such as		52.9	0.19
color, edge contrast, an	DSR[66]	55.8	0.14
image borders.	DRFI [57]	55.2	0.15
Ours	AMD	60.2	0.13

Zero-shot Object Segmentations from Images

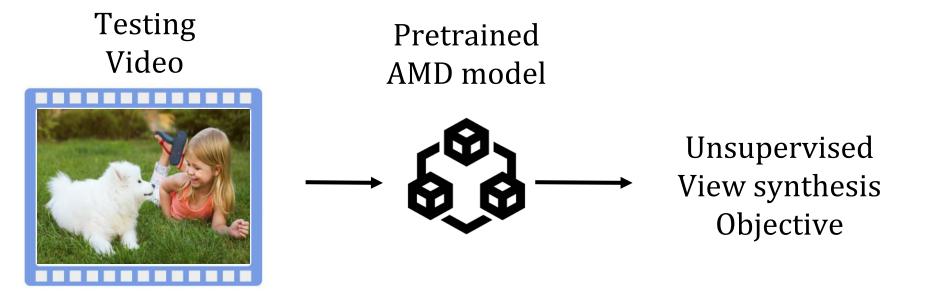


Zero-shot Object Segmentations from Videos

Per-img: take the appearance pathway for individual images in a video.

Per-vid: unsupervised test-time adaptation for a video with both pathways.

Test-time adaptation for 100 iterations



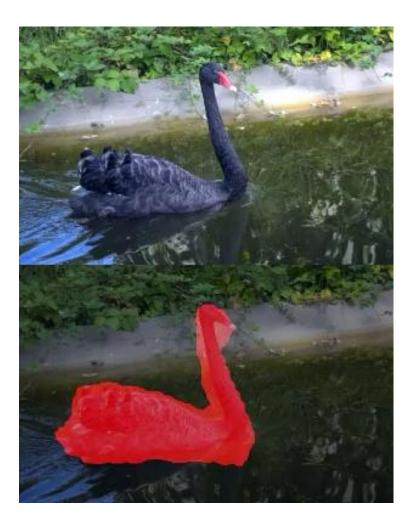
Zero-shot Object Segmentations from Videos

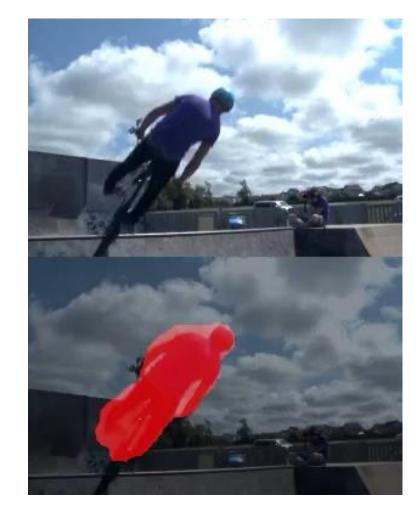
Per-img: take the appearance pathway for individual images in a video.

Per-vid: unsupervised test-time adaptation for a video with both pathways.

	Model	e2e	Sup.	Flow	DAVIS 2016	SegTrackv2	FBMS59
_	SAGE[65]	X	×	LDOF[66]	42.6	57.6	61.2
na	NLC[14]	X	edge	SIFTFlow[67]	55.1	67.2	51.5
itic	CUT[28]	X	×	LDOF[66]	55.2	54.3	57.2
traditional	FTS[16]	×	×	LDOF[68]	55.8	47.8	47.7
tr	ARP[15]	X	saliency	CPMFlow[69]	76.2	57.2	59.8
ad	CIS[18]	X	×	PWC[20]	59.2	45.6	36.8
in	MG[19]	X	×	ARFlow[6]	53.2	37.8*	50.4*
learning	AMD (per-img)	\checkmark	×	×	45.7	28.7	42.9
le	AMD (per-vid)	\checkmark	×	×	57.8	57.0	47.5

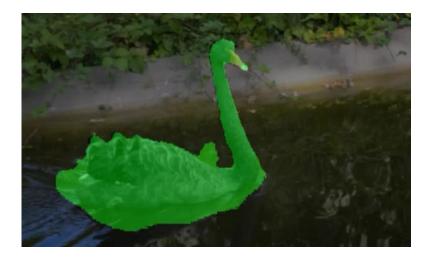
Zero-shot Object Segmentations from Videos





Comparison with Prior Approach CIS

Input



Ours

Fine-tuning for Semantic Segmentation:

Evaluation dataset: Pascal VOC 2012

Our model does not rely on heavy augmentations.

Pretraining with light image augmentation Resize(384), Crop(384) Pretraining with heavy augmentation ResizedCrop(384), ColorJitter, GrayScaling

Model	Data	mIoU
Scratch	—	48.0
TimeCyle[62]	VLOG	52.8
MoCo-v2[2]	YTB	61.5
AMD	YTB	62.0

Model	Data	mIoU
MoCo-v2[2]	YTB	62.8
AMD	YTB	62.1

Summary

The first end-to-end self-supervised approach for zero-shot segmentations.

- Learning from raw videos without precomputed flows.
- Works with minimal image augmentations.
- Applicable to image object segmentation under zero-shot.
- Applicable to video moving object segmentation under zero-shot.
- Fine-tuning for semantic segmentation.