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Introduction

Context

Many real-world problems are naturally modular/hierarchical [1]:

1 market making;

2 multi-venue optimal execution;

3 control of water reservoirs;

4 energy consumption optimisation;

5 elevator scheduling. . .

State-of-the-art methods for MDPs fail when:

1 the dimensionality of the action-space is too large; or

2 the multiplicity of the objective is too high.
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Introduction

Context

Where does our research sit?

Model-Free Model-Based

Figure: Spectrum from model-free to model-based reinforcement learning.
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Introduction

Key Research Question

How do we leverage structural knowledge?
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Influence Networks

Influence Networks

Consider a scalarised multi-objective MDP, with

J(θ)
.

= Eπθ

ψ(s, a)
.

=
M∑
j=1

λjψj(s, a)

 , (1)

and parameterised policy πθ(a|s).

The target, ψ, breaks down into m distinct components.

Each sub-target, ψi , depends on a subset of the full action.
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Influence Networks

Influence Networks

Example (Search Bandit)

The search bandit has an target of the form:

ψ(a)
.

=
2∑

i=1

ψi (ai )
.

= − |a1 − c1| − |a2 − c2| .

ψ1 ψ2

a1 a2

(a) Influence network.

K =

[
1 0
0 1

]

(b) Influence matrix.
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Influence Networks

Influence Networks

Example (Coupled)

Consider another target with the form:

ψ(s, a)
.

= λ1ψ1(s, (a1, a2)) + λ2ψ2(s, (a1, a2, a3)) + λ3ψ3(s, (a3)) .

ψ2ψ1 ψ3

a1 a2 a3

(a) Influence network.

K =


1 1 0
1 1 0
0 1 1


(b) Influence matrix.
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Influence Networks

Influence Networks

Example (Coupled)

Let’s analyse the following objective:

ψ(s, a)
.

= λ1ψ1(s, (a1, a2)) + λ2ψ2(s, (a1, a2, a3)) + λ3ψ3(s, (a3)) .

ψ2ψ1 ψ3

a1 a2 a3

(a) Influence network.
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Influence Networks

Key Research Question

How do we encode policy factorisation in an influence network?
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Influence Networks

Factored Influence Networks

We consider the class of parameterised, stochastic policies:

πθ(a|s)
.

= Pθ (a|s) .

The policy is typically broken down into a product distribution:

πθ(a|s)
.

=
N∏
i=1

πi ,θ(σπi (a)|s) ,

where {σπi (a) : i ∈ [N]} denotes a set of disjoint partitions over a.
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Influence Networks

Factored Influence Networks

For example, a common choice is the Normal distribution:

πθ(a|s)
.

= N (a | µθ(s) ,Σθ(s)) ,

where µθ : S → R|A| and Σθ : S → R|A|×|A|.

For tractability, we typically assume isotropicity:

1 The covariance Σθ is constrained to diagonal matrices.

2 The policy then reduces to a product:

πθ(a|s) =
N∏
i=1

N (ai | µi ,θ(s) ,Σi ,θ(s)) .

We can exploit this kind of factorisation!
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Influence Networks

Factored Influence Networks

Search Example

Consider the factorisation:

σπ1 (a)
.

= (a1),

σπ2 (a)
.

= (a2).

The new graph represents the
probabilistic influence of each
policy factor over the targets.

1 Note that σπ1 (a) |= σπ2 (a).

ψ1 ψ2

a1 a2

Figure: Original Influence Network, G.

ψ1 ψ2

σπ
1 σπ

2

Figure: Factored Influence Network, GΣ.
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Influence Networks

Factored Influence Networks

Coupled Example

Consider the factorisation:

σπ1 (a)
.

= (a1, a2),

σπ2 (a)
.

= (a3).

The new graph represents the
probabilistic influence of each
policy factor over the targets.

1 Note that σπ1 (a) |= σπ2 (a).

ψ1ψ0 ψ2

a1 a2 a3

Figure: Original Influence Network, G.

ψ1ψ0 ψ2

σπ
1 σπ

2

Figure: Factored Influence Network, GΣ.
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Factored Policy Gradients

Key Research Question

How do we use (factored) influence networks?
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Factored Policy Gradients

Policy Gradients

We consider the policy optimisation setting.

Task is the solve for the optimal policy, πθ? , where

θ?
.

= arg max
θ

J(θ) .

Policy gradient methods leverage Sutton’s key result [2]:

∇θJ(θ) = Eπθ [S(s, a)ψ(s, a)] .

ψ Target function.

S Score matrix of size |θ| × 1; i.e. ∇θ lnπθ(a|s).
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Factored Policy Gradients

Policy Gradients

Vanilla policy gradients ignore known independencies.

If we assume that:

1 The problem has dependence structure encoded by GΣ.

. . . then we know two things:

1 That ψ is linearly separable.

2 That πθ has a factored representation.

We can remove extraneous targets that contribute only noise.
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Factored Policy Gradients

Factored Baselines

For each policy factor, i ∈ [K ], we define a factor-level baseline:

bFi (s, a)
.

= [(J −K ) ψ(s, a)]i ,

where K is the biadjacency matrix of the factored influence network.

Example (Search Bandit)

In the search bandit the influence matrix is unit-diagonal K = I2, s.t.

bF1 (s, a) = ψ2(s, a) , and bF2 (s, a) = ψ1(s, a) .
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Factored Policy Gradients

Factored Policy Gradients

Factored policy gradient (FPG) methods use an expanded variant:

∇θJ(θ)
.

= Eπθ
[
S(s, a) J

(
ψ(s, a)− bF

)]
,

= Eπθ [S(s, a) K ψ(s, a)] .

ψ Vector of target functions.

J All-ones matrix.

K Biadjacency matrix of the factored influence network.

S Score matrix of size |θ| × k ; i.e.

S(s, a)
.

=
[
∇θ lnπ1,θ(a|s)> , . . . ,∇θ lnπk,θ(a|s)>

]>
.
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Factored Policy Gradients

Factored Policy Gradients

If the factored influence network is unbiased (i.e. correct), then

Eπθ [S(s, a) ψ(s, a)] ≡ Eπθ [S(s, a) K ψ(s, a)] .

Hinges on key property of score functions: Eπθ [S(s, a)] = 0.

Factored policy gradients remove redundant terms.

The matrix K captures independencies between πθ and ψ.
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Factored Policy Gradients

Key Research Question

When are FPGs � VPGs?
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Factored Policy Gradients

Variance Decomposition

We show that for each policy factor, i ∈ [N], there is a linear
decomposition:

V[VPGsi ]− V[FPGsi ] = αi Eσ̄πi (a)

[(
bFi
)2
]

︸ ︷︷ ︸
Symmetric

+ 2βiEσ̄πi (a)

[
bFi
]︸ ︷︷ ︸

Asymmetric

,

where

αi = Eσπi (a)[〈S·,i ,S·,i 〉] ,

βi = Eσπi (a)

[
〈S·,i ,S·,i 〉

(
ψ + bFi

)]
.
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Factored Policy Gradients

Variance Decomposition

The first term is a free-lunch that scales with
(
bFi
)2

.

Non-negative reduction deriving from the removal of terms in the
gradient that are not related to the policy factors.

The second is a coupling term that scales with bFi .

Coupling/covariance term between the new and old estimators.
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Factored Policy Gradients

Variance Reduction

Figure: Variance reduction due to FPGs as a function of the action-space
dimensionality on the search bandit.
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Experiments

Key Research Question

Do these theoretical results translate into practice?
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Experiments

Search Bandit

Take a 1000-dimensional search bandit with R(a)
.

= −
∑1000

i=1 |ai − ci |.

Figure: Benchmarks comparison for |A| = 1000.
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Experiments

Traffic Networks

The 3×3 traffic network [3] problem can be formulated as a graph:

Vertices The intersections are the vertices V.

Edges The roads of the network are the edges E .

Cars A set of C cars populate the network.

Objective is to minimise delay:

R(s, a)
.

=
∑
e∈E

Re(s, a) ,

Re(s, a)
.

=
1

|Ce |
∑
c∈Ce

[vTarget − vc ]+ ∆t

vc
.
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Experiments

Traffic Networks

Figure: Learning performance across joint/factored policy distributions, and
baselines for the global objective in the 3×3 traffic grid.

TS, NV and SG (JPM AIR) Factored Policy Gradients December 2021 34 / 36



Conclusions

Conclusions

Influence networks provide a unified approach for encoding structural
information into policy optimisation algorithms.

Factored policy gradients provide tangible benefits over SOTA.

1 Scalability to concurrent and high-dimensional control problems.

2 No practical increase in complexity – time, sample or cognitive.

FPGs allow us to scale RL to large real-world problems:

1 Traffic light control in large networks.

2 Optimal execution in multi-venue/multi-asset problems.

3 Learnable policies in highly parallelised client interaction settings.
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Conclusions

Thank You

[1] Diederik M Roijers, Peter Vamplew, Shimon Whiteson, and Richard Dazeley.
A Survey of Multi-Objective Sequential Decision-Making.
JAIR, 48:67–113, 2013.

[2] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour.
Policy Gradient Methods for Reinforcement Learning with Function Approximation.
In Proc. NeurIPS, pages 1057–1063, 2000.

[3] Eugene Vinitsky, Aboudy Kreidieh, Luc Le Flem, Nishant Kheterpal, Kathy Jang, Cathy Wu, Fangyu Wu, Richard Liaw,
Eric Liang, and Alexandre M Bayen.
Benchmarks for reinforcement learning in mixed-autonomy traffic.
In Proc. of CoRL, pages 399–409. PMLR, 2018.

TS, NV and SG (JPM AIR) Factored Policy Gradients December 2021 36 / 36


	Introduction
	Influence Networks
	Factored Policy Gradients
	Experiments
	Conclusions

