From Canonical Correlation Analysis to Self-supervised Graph Neural Networks

Hengrui Zhang¹, Qitian Wu², Junchi Yan², David Wipf³, Philip S. Yu¹

1 University of Illinois, Chicago 2 Shanghai Jiao Tong University 3 AWS Shanghai Al Lab

Contrastive Learning

Contrastive Learning is a popular method for self-supervised representation learning.

 x^A and x^B are two views of the same instance

 z^A and z^B are the corresponding representations (usually normalized): $z^A = f_A(x^A), z^B = f_B(x^B)$. One typical contrastive loss–the InfoNCE loss:

$$\mathcal{L}^{A} = -\sum_{i=1}^{N} \log \frac{e^{f(z_{i}^{A}, z_{i}^{B})/\tau}}{\sum_{j=1}^{N} e^{f(z_{i}^{A}, z_{j}^{B})/\tau}}$$
(1)

$$\mathcal{L}^{a} = -\sum_{i=1}^{N} \log \frac{e^{sim(h_{i}^{a}, h_{i}^{b})/\tau}}{\sum_{j=1}^{N} (e^{sim(h_{i}^{a}, h_{j}^{a})/\tau} + e^{sim(h_{i}^{a}, h_{j}^{b})/\tau})}$$
(2)

$$\mathcal{L} = \mathcal{L}^a + \mathcal{L}^b \tag{3}$$

 $f(\cdot, \cdot)$ is a similarity measure and could be the simple dot product.

Theoretical foundation: maximizing a lower bound of mutual information. E.g. the InfoNCE loss is a tight lower bound of the mutual information of two views' representations:

$$I(X,Y) \ge \mathbb{E}\left[\frac{1}{K}\sum_{i=1}^{K}\log\frac{e^{f(x_i,y_i)}}{\sum\limits_{j=1}^{K}e^{f(x_i,y_j)}}
ight] \triangleq I_{InfoNCE}(X,Y)$$
 (4)

Other contrastive learning loss such as InfoMax, MINE are also lower bounds of mutual information.

Self-supervised Learning for Nodes Representation Learning

- DGI and MVGRL use InfoMax as the objective function
- GRACE/GCA uses InfoNCE loss
- BGRL adopts the structure of BYOL to avoid contrasting

Despite their empirical success, they suffer from the following limitations:

- DGI/MVGRL requires parameterized MI estimator.
- GRACE/GCA has an $\mathcal{O}(N^2)$ complexity and is not scalable to large graphs.
- BGRL requires complex asymmetric structures and is not theoretically explainable.

To tackle these limitations, we propose a novel framework for self-supervised learning on graphs, which is based on canonical correlation analysis.

Table 1: Technical comparison of self-supervised node representation learning methods. We provide a conceptual comparison with more self-supervised methods in Appendix G. *Target* denotes the comparison pair, N/G/F denotes node/graph/feature respectively. *MI-Estimator*: parameterized mutual information estimator. *Proj/Pred*: additional (MLP) projector or predictor. *Asymmetric*: asymmetric architectures such as EMA and Stop-Gradient, or two separate encoders for two branches. *Neg examples*: requiring negative examples to prevent trivial solutions. *Space* denotes space requirement for storing all the pairs. Our method is simple without any listed component and memory-efficient.

	Methods	Target	MI-Estimator	Proj/Pred	Asymmetric	Neg examples	Space
Instance-level	DGI [48]	N-G	\checkmark	-	-	\checkmark	O(N)
	MVGRL [15]	N-G	\checkmark	-	\checkmark	\checkmark	O(N)
	GRACE [57]	N-N	-	\checkmark	-	\checkmark	$O(N^2)$
	GCA [58]	N-N	-	\checkmark	-	\checkmark	$O(N^2)$
	BGRL [39]	N-N	-	\checkmark	\checkmark	-	O(N)
	CCA-SSG (Ours)	F-F	-	-	-	-	$O(D^2)$

Canonical Correlation Analysis

Given two random variables $X \in \mathbb{R}^m$ and $Y \in \mathbb{R}^n$, whose covariance matrix is $\Sigma_{XY} = Cov(X, Y)$. CCA aims at seeking two vectors $a \in \mathbb{R}^m$ and $b \in \mathbb{R}^n$ such that the correlation $\rho = corr(a^\top X, b^\top Y) = \frac{a^\top \Sigma_{XY} b}{\sqrt{a^\top \Sigma_{XX} a} \sqrt{b^\top \Sigma_{YY} b}}$ is maximized:

$$\max_{a,b} a^{\top} \Sigma_{XY} b, \text{ s.t. } a^{\top} \Sigma_{XX} a = b^{\top} \Sigma_{YY} b = 1.$$
(5)

Multi-dimensional and non-linear cases:

$$\max_{\theta_1,\theta_2} \operatorname{Tr} \left(P_{\theta_1}^{\top}(X_1) P_{\theta_2}(X_2) \right) \text{ s.t. } P_{\theta_1}^{\top}(X_1) P_{\theta_1}(X_1) = P_{\theta_2}^{\top}(X_2) P_{\theta_2}(X_2) = I.$$
 (6)

Soft decorrelation:

$$\min_{\theta_1,\theta_2} \mathcal{L}_{dist} \left(P_{\theta_1}(X_1), P_{\theta_2}(X_2) \right) + \lambda \left(\mathcal{L}_{SDL}(P_{\theta_1}(X_1)) + \mathcal{L}_{SDL}(P_{\theta_2}(X_2)) \right), \tag{7}$$

Our Method

- Input: Graph G = (X, A).
- Graph augmentations: edge dropping and node feature masking. Then $\tilde{G}_A = (\tilde{X}_A, \tilde{A}_A)$ and $\tilde{G}_B = (\tilde{X}_B, \tilde{A}_B)$
- Encoder: Graph Neural Network. $Z_A = f_{\theta}(\tilde{X}_A, \tilde{A}_A), Z_B = f_{\theta}(\tilde{X}_B, \tilde{A}_B).$
- Normalization along feature dimension: $\tilde{Z} = \frac{Z \mu(Z)}{\sigma(Z) * \sqrt{N}}$

Objective Function:

$$\mathcal{L} = \underbrace{\left\| \tilde{Z}_{A} - \tilde{Z}_{B} \right\|_{F}^{2}}_{\text{invariance term}} + \lambda \underbrace{\left(\left\| \tilde{Z}_{A}^{\top} \tilde{Z}_{A} - I \right\|_{F}^{2} + \left\| \tilde{Z}_{B}^{\top} \tilde{Z}_{B} - I \right\|_{F}^{2} \right)}_{\text{decorrelation term}}$$

(8)

- No reliance on negative samples.
- No MI estimator, projector network nor asymmetric architectures.
- Better efficiency and scalability to large graphs.

Some notations:

- 1. X: the input data.
- 2. S: the augmented data.
- 3. T: downstream task.
- 4. $Z_X = f_{\theta}(X)$.
- 5. $Z_S = f_{\theta}(S)$.
- 6. I(A, B): mutual information.
- 7. I(A, B|C): conditional mutual information.
- 8. H(A): entropy.
- 9. H(A|B): conditional entropy.

Assumption 1: Gaussian assumption of $P(Z_S|X)$ and $P(Z_S)$:

$$P(Z_S|X) = P(Z_S|X) = \mathcal{N}(\mu_X, \Sigma_X), P(Z_S) = \mathcal{N}(\mu, \Sigma).$$
(9)

We have the following propositions:

Proposition 1: In expectation, minimizing \mathcal{L}_{inv} is equivalent to minimizing the entropy of Z_S conditioned on input X, i.e.,

$$\min_{\theta} \mathcal{L}_{inv} \cong \min_{\theta} H(Z_S|X).$$

Proposition 2: Minimizing \mathcal{L}_{dec} is equivalent to maximizing the entropy of Z_S , i.e.,

$$\min_{\theta} \mathcal{L}_{dec} \cong \max_{\theta} H(Z_S).$$

Combining Proposition 1 and Proposition 2, we have the following theorem.

Theorem

By optimizing Eq (8), we maximize the mutual information between the augmented view's embedding Z_S and the input data X, and minimize the mutual information between Z_S and the view itself S, conditioned on the input data X. Formally we have

$$\min_{\theta} \mathcal{L} \Rightarrow \max_{\theta} I(Z_S, X) \text{ and } \min_{\theta} I(Z_S, S|X).$$
(10)

The proof is simple and based on the following two equations: 1) $I(Z_S, S|X) = H(Z_S|X)$ and 2) $I(Z_S, X) = H(Z_S) - H(Z_S|X)$. First, let's recall the Supervised Information Bottleneck Principle.

 $\ensuremath{\text{Definition 1}}$. The supervised IB aims at maximizing an Information Bottleneck Lagrangian:

$$\mathcal{IB}_{sup} = I(Y, Z_X) - \beta I(X, Z_X), \text{ where } \beta > 0.$$
(11)

 \mathcal{IB}_{sup} attempts to maximize the information between the data representation Z_X and its corresponding label Y, and concurrently minimize the information between Z_X and the input data X (i.e., exploiting compression of Z_X from X). The intuition of IB principle is that Z_X is expected to contain only the information that is useful for predicting Y.

Apply Information Bottleneck Principle to Self-supervised Learning: **Definition 2**. (Self-supervised Information Bottleneck¹²³). The Self-supervised IB aims at maximizing the following Lagrangian:

$$\mathcal{IB}_{ssl} = I(X, Z_S) - \beta I(S, Z_S), \text{ where } \beta > 0.$$
(12)

Intuitively, \mathcal{IB}_{ssl} posits that a desirable representation is expected to be informative to augmentation invariant features, and to be a maximal compressed representation of the input.

¹Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stephane Deny. "Barlow twins: Self-supervised learning via redundancy reduction". ICML 2021.

²Tsai, Yao-Hung Hubert, et al. "Self-supervised learning from a multi-view perspective". ICLR 2021. ³Federici, Marco, et al. "Learning robust representations via multi-view information bottleneck". ICLR 2020.

Connection with the Information Bottleneck Principle

Theorem (2)

Assume $0 < \beta \leq 1$, then by minimizing the loss function \mathcal{L} , the self-supervised Information Bottleneck objective is maximized, formally:

$$\min_{\theta} \mathcal{L} \Rightarrow \max_{\theta} \mathcal{IB}_{\textit{ssl}}$$

Connection with the Information Bottleneck Principle

Theorem

Assume $0 < \beta \leq 1$, then by minimizing Eq. (8), the self-supervised Information Bottleneck objective is maximized, formally:

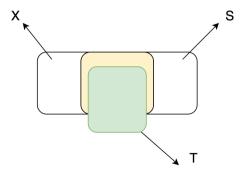
$$\min_{\theta} \mathcal{L} \Rightarrow \max_{\theta} \mathcal{IB}_{ssl}$$

(13)

Influence on Downstream Tasks

Assumption 2 (Task-relevant information and data augmentation):

All the task-relevant information is shared across the input data X and its augmentations S, i.e., I(X, T) = I(S, T) = I(X, S, T), or equivalently, I(X, T|S) = I(S, T|X) = 0.



Theorem (Task-relevant/irrelevant information)

By optimizing Eq. (8), the task-relevant information $I(Z_S, T)$ is maximized, and the task-irrelevant information $H(Z_S|T)$ is minimized. Formally,

$$\min_{\theta} \mathcal{L} \Rightarrow \max_{\theta} I(Z_S, T) \text{ and } \min_{\theta} H(Z_S|T).$$
(14)

Table 2: Test accuracy on citation networks. The *input* column highlights the data used for training. (\mathbf{X} for node features, \mathbf{A} for adjacency matrix, \mathbf{S} for diffusion matrix, and \mathbf{Y} for node labels).

	Methods	Input	Cora	Citeseer	Pubmed
Supervised	MLP [47] LP [56] GCN [22] GAT [47]	$\begin{array}{c} \mathbf{X}, \mathbf{Y} \\ \mathbf{A}, \mathbf{Y} \\ \mathbf{X}, \mathbf{A}, \mathbf{Y} \\ \mathbf{X}, \mathbf{A}, \mathbf{Y} \end{array}$	$55.1 \\ 68.0 \\ 81.5 \\ 83.0 \pm 0.7$	$46.5 \\ 45.3 \\ 70.3 \\ 72.5 \pm 0.7$	$71.4 \\ 63.0 \\ 79.0 \\ 79.0 \pm 0.3$
Unsupvised	Raw Features [48] DeepWalk [32] GAE [21] DGI [48] MVGRL ¹ [15] GRACE ² [57] CCA-SSG (Ours)	X A X, A X, A X, S, A X, A X, A	$\begin{array}{c} 47.9 \pm 0.4 \\ 70.7 \pm 0.6 \\ 71.5 \pm 0.4 \\ 82.3 \pm 0.6 \\ 83.5 \pm 0.4 \\ 81.9 \pm 0.4 \\ \textbf{84.2} \pm \textbf{0.4} \end{array}$	$\begin{array}{c} 49.3 \pm 0.2 \\ 51.4 \pm 0.5 \\ 65.8 \pm 0.4 \\ 71.8 \pm 0.7 \\ \textbf{73.3} \pm \textbf{0.5} \\ 71.2 \pm 0.5 \\ 73.1 \pm 0.3 \end{array}$	$\begin{array}{c} 69.1 \pm 0.3 \\ 74.3 \pm 0.9 \\ 72.1 \pm 0.5 \\ 76.8 \pm 0.6 \\ 80.1 \pm 0.7 \\ 80.6 \pm 0.4 \\ \textbf{81.6} \pm \textbf{0.4} \end{array}$

Table 3: Test accuracy on co-author and co-purchase networks. We report both mean accuracy and standard deviation. Results of baseline models are from [58].

	Methods	Input	Computer	Photo	CS	Physics
	Supervised GCN [22] Supervised GAT [47]	$\begin{array}{c} \mathbf{X}, \mathbf{A}, \mathbf{Y} \\ \mathbf{X}, \mathbf{A}, \mathbf{Y} \end{array}$	$\begin{array}{c} 86.51 \pm 0.54 \\ 86.93 \pm 0.29 \end{array}$	$\begin{array}{c} 92.42 \pm 0.22 \\ 92.56 \pm 0.35 \end{array}$	$\begin{array}{c} 93.03 \pm 0.31 \\ 92.31 \pm 0.24 \end{array}$	$\begin{array}{c} 95.65 \pm 0.16 \\ 95.47 \pm 0.15 \end{array}$
Unsupervised	Raw Features [48] DeepWalk [32] DeepWalk + features GAE [21] DGI [48] MVGRL [15] GRACE ¹ [57] GCA ¹ [58] CCA-SSG (Ours)	X A X, A X, A X, A X, S, A X, A X, A X, A	$\begin{array}{c} 73.81 \pm 0.00 \\ 85.68 \pm 0.06 \\ 86.28 \pm 0.07 \\ 85.27 \pm 0.19 \\ 83.95 \pm 0.47 \\ 87.52 \pm 0.11 \\ 86.25 \pm 0.25 \\ 87.85 \pm 0.31 \\ \textbf{88.74 \pm 0.28} \end{array}$	$\begin{array}{c} 78.53 \pm 0.00 \\ 89.44 \pm 0.11 \\ 90.05 \pm 0.08 \\ 91.62 \pm 0.13 \\ 91.61 \pm 0.22 \\ 91.74 \pm 0.07 \\ 92.15 \pm 0.24 \\ 92.49 \pm 0.09 \\ \textbf{93.14 \pm 0.14} \end{array}$	$\begin{array}{c} 90.37 \pm 0.00 \\ 84.61 \pm 0.22 \\ 87.70 \pm 0.04 \\ 90.01 \pm 0.71 \\ 92.15 \pm 0.63 \\ 92.11 \pm 0.12 \\ 92.93 \pm 0.01 \\ 93.10 \pm 0.01 \\ \textbf{93.31} \pm \textbf{0.22} \end{array}$	$\begin{array}{c} 93.58 \pm 0.00 \\ 91.77 \pm 0.15 \\ 94.90 \pm 0.09 \\ 94.92 \pm 0.07 \\ 94.51 \pm 0.52 \\ 95.33 \pm 0.03 \\ 95.26 \pm 0.02 \\ \textbf{95.38} \pm \textbf{0.05} \\ 95.38 \pm 0.06 \end{array}$

The End