

Recurrent Bayesian Classifier Chains for Exact Multi-Label Classification

NeurIPS 2021

Walter Gerych*, Tom Hartvigsen, Luke Buquicchio, Emmanuel Agu, Elke Rundensteiner

Worcester Polytechnic Institute

Worcester, MA

{wgerych, twhartvigsen, ljbuiquicchio, emmanuel, rundenst}@wpi.edu

Multi-Label Data Is Common

Multi-Label Classification

x, $c_1, c_2, ..., c_L \sim (X, C_1, C_2, ..., C_L)$

such that $c_i = 1$ if class i applies to x, and $c_i = 0$ otherwise

Multi-Label Classification

 $x, c_1, c_2, ..., c_L \sim (X, C_1, C_2, ..., C_L)$

such that $c_i = 1$ if class i applies to x, and $c_i = 0$ otherwise

Goal:

Construct $f(x) = c_1, c_2, ..., c_L$

Background

Exploiting Label Relationships

Exploiting Label Relationships

Exploiting Label Relationships

Leading Approach: Recurrent Classifier Chains

 $P(C_1, C_2, ..., C_L | X) = P(C_1 | X) \prod_{i=2}^{L} P(C_i | C_{<i}, X)$

Nam, Jinseok, et al. "Maximizing subset accuracy with recurrent neural networks in multi-label classification." NeurIPS 2017.

Leading Approach: RCC

Nam, Jinseok, et al. "Maximizing subset accuracy with recurrent neural networks in multi-label classification." NeurIPS 2017.

Leading Approach: RCC

Nam, Jinseok, et al. "Maximizing subset accuracy with recurrent neural networks in multi-label classification." NeurIPS 2017.

Leading Approach: RCC

Nam, Jinseok, et al. "Maximizing subset accuracy with recurrent neural networks in multi-label classification." NeurIPS 2017.

Limitations of RCCs

Limitation 1: Noisy Conditioning

Limitation 1: Noisy Conditioning

Limitation 1: Noisy Conditioning

Limitation 2: Error Propagation

Limitation 2: Error Propagation

Limitation 2: Error Propagation

Limitation 3: Large Label Sets

Our Approach: Recurrent Bayesian Classifier Chains

RBCC key components:

- **1.** Infer Bayesian network of label dependencies
- 2. Modify RCC architecture to only use parent classes (defined by Bayesian network) for inference

RBCC key components:

- **1.** Infer Bayesian network of label dependencies
- 2. Modify RCC architecture to only use parent classes (defined by Bayesian network) for inference

Tackles challenges by:

• Eliminating noisy conditioning

RBCC key components:

- **1.** Infer Bayesian network of label dependencies
- 2. Modify RCC architecture to only use parent classes (defined by Bayesian network) for inference

Tackles challenges by:

- Eliminating noisy conditioning
- Minimizing error propagation

RBCC key components:

- **1.** Infer Bayesian network of label dependencies
- 2. Modify RCC architecture to only use parent classes (defined by Bayesian network) for inference

Tackles challenges by:

- Eliminating noisy conditioning
- Minimizing error propagation
- Removing need for long-term memory

Zhang, Min-Ling, et al. "Multi-label learning by exploiting label dependency." KDD 2010.

Zhang, Min-Ling, et al. "Multi-label learning by exploiting label dependency." KDD 2010.

Zhang, Min-Ling, et al. "Multi-label learning by exploiting label dependency." KDD 2010.

Zhang, Min-Ling, et al. "Multi-label learning by exploiting label dependency." KDD 2010.

Where k_i is found by maximizing data likelihood

Zhang, Min-Ling, et al. "Multi-label learning by exploiting label dependency." KDD 2010.

[1] Daly , Rónán, et al. "Methods to accelerate the learning of bayesian network structures." UKCI 2007.

[2] Verma, Thomasand, et al. "Equivalence and synthesis of causal models." 1991.[3] Chow, C., et al. "Approximating discrete probability distributions with dependence trees.". IEEE Transactions on Information Theory 1968.

 G_E $\overbrace{E_1}{E_2}$ $\overbrace{E_4}{E_4}$

- Hill climbing [1]
- Constraint based [2]
- Chow Liu algorithm [3] Worcester Polytechnic Institute

Worcester Polytechnic Institute

RBCC Step 3: Inference

RBCC Step 3: Inference

Evaluation

- Recurrent Classier Chains (RCC) [1]
- Topological-Sort RCC (TS-RCC) [1]
- Order-Free RCC (OF-RCC) [2]
- Bayesian Classifier Chains (BCC) [3]
- Binary Decomposition (BD) [4]

[1] Nam, Jinseok, et al. "Maximizing subset accuracy with recurrent neural networks in multi-label classification." NeurIPS 2017.

[2] Shang-Fu Chen, et al. "Order-free RNN with visual attention for multi-label classification." AAAI 2018.

[3] Zhang, Min-Ling, et al. "Multi-label learning by exploiting label dependency." KDD 2010.

[4] Tsoumakas , Grigorios Tsoumakas aet al. "Multi label classification: An overview." IJDWM 2007.

- Recurrent Classier Chains (RCC) [1]
- Topological-Sort RCC (TS-RCC) [1]
- Order-Free RCC (OF-RCC) [2]
- Bayesian Classifier Chains (BCC) [3]
- Binary Decomposition (BD) [4]

[1] Nam, Jinseok, et al. "Maximizing subset accuracy with recurrent neural networks in multi-label classification." NeurIPS 2017.

[2] Shang-Fu Chen, et al. "Order-free RNN with visual attention for multi-label classification." AAAI 2018.

[3] Zhang, Min-Ling, et al. "Multi-label learning by exploiting label dependency." KDD 2010.

[4] Tsoumakas , Grigorios Tsoumakas aet al. "Multi label classification: An overview." IJDWM 2007.

- Recurrent Classier Chains (RCC) [1]
- Topological-Sort RCC (TS-RCC) [1]
- Order-Free RCC (OF-RCC) [2]
- Bayesian Classifier Chains (BCC) [3]
- Binary Decomposition (BD) [4]

[1] Nam, Jinseok, et al. "Maximizing subset accuracy with recurrent neural networks in multi-label classification." NeurIPS 2017.

[2] Shang-Fu Chen, et al. "Order-free RNN with visual attention for multi-label classification." AAAI 2018.

[3] Zhang, Min-Ling, et al. "Multi-label learning by exploiting label dependency." KDD 2010.

[4] Tsoumakas, Grigorios Tsoumakas aet al. "Multi label classification: An overview." IJDWM 2007.

- Recurrent Classier Chains (RCC) [1]
- Topological-Sort RCC (TS-RCC) [1]
- Order-Free RCC (OF-RCC) [2]
- Bayesian Classifier Chains (BCC) [3]
- Binary Decomposition (BD) [4]

[1] Nam, Jinseok, et al. "Maximizing subset accuracy with recurrent neural networks in multi-label classification." NeurIPS 2017.

[2] Shang-Fu Chen, et al. "Order-free RNN with visual attention for multi-label classification." AAAI 2018.

[3] Zhang, Min-Ling, et al. "Multi-label learning by exploiting label dependency." KDD 2010.

[4] Tsoumakas, Grigorios Tsoumakas aet al. "Multi label classification: An overview." IJDWM 2007.

Datasets

We compare on 6 benchmark multi-label datasets:

- PASCAL VOC 2007
- Scene
- Yeast
- Enron
- EukaryoteGO
- Yeast

M. Everingham, et al. "The "PASCAL Visual Object Classes Challenge" 2007

Boutell, Matthew, et al. "Learning multi-label scene classification." Pattern Recognition 2004.

Sajnani, Hitesh et al. "Classifying yelp reviews into relevant categories". 2012.

Klimt, B., et. al. "The Enron Corpus: A New Dataset for Email Classification Research." ECML 2004.

Xu, Jianhua et al. "A multi-label feature extraction algorithm via maximizing feature variance and feature-label dependence simultaneously". Knowledge-Based Systems 2016. Elisseeff, A., et al. "A Kernel Method for Multi-Labelled Classification." NeurIPS 2001. Worcester Polytechnic Institute

Evaluation	Methods						
Metrics	RBCC (Ours)	RCC	TS-RCC	OF-RCC	BCC	BD	
Subset Accuracy ↑	0.240 ± 0.008	0.212 ± 0.002	0.192 ± 0.010	0.169 ± 0.009	0.210 ± 0.000	0.202 ± 0.002	
Hamming Loss ↓	0.186 ± 0.003	0.204 ± 0.001	0.209 ± 0.004	0.218 ± 0.004	0.199 ± 0.001	0.189 ± 0.000	
Macro-F1 ↑	0.556 ± 0.008	0.526 ± 0.004	0.506 ± 0.004	$\textbf{0.569} \pm 0.004$	0.551 ± 0.005	0.517 ± 0.008	
Micro-F1↑	$\textbf{0.670} \pm 0.006$	0.639 ± 0.002	0.628 ± 0.004	0.662 ± 0.004	0.653 ± 0.003	0.638 ± 0.003	

Table 2: Classification results for the Yelp dataset. Bolded is best performer, underlined is second best.

Evaluation	Methods						
Metrics	RBCC (Ours)	RCC	TS-RCC	OF-RCC	BCC	BD	
Subset Accuracy ↑	0.240 ± 0.008	0.212 ± 0.002	0.192 ± 0.010	0.169 ± 0.009	0.210 ± 0.000	0.202 ± 0.002	
Hamming Loss ↓	0.186 ± 0.003	0.204 ± 0.001	0.209 ± 0.004	0.218 ± 0.004	0.199 ± 0.001	0.189 ± 0.000	
Macro-F1↑	0.556 ± 0.008	0.526 ± 0.004	0.506 ± 0.004	$\textbf{0.569} \pm 0.004$	0.551 ± 0.005	0.517 ± 0.008	
Micro-F1 ↑	$\textbf{0.670} \pm 0.006$	0.639 ± 0.002	0.628 ± 0.004	0.662 ± 0.004	0.653 ± 0.003	0.638 ± 0.003	

Table 2: Classification results for the Yelp dataset. Bolded is best performer, underlined is second best.

Evaluation	Methods						
Metrics	RBCC (Ours)	RCC	TS-RCC	OF-RCC	BCC	BD	
Subset Accuracy ↑	0.240 ± 0.008	0.212 ± 0.002	0.192 ± 0.010	0.169 ± 0.009	0.210 ± 0.000	0.202 ± 0.002	
Hamming Loss ↓	0.186 ± 0.003	0.204 ± 0.001	0.209 ± 0.004	0.218 ± 0.004	0.199 ± 0.001	0.189 ± 0.000	
Macro-F1 ↑	0.556 ± 0.008	0.526 ± 0.004	0.506 ± 0.004	$\textbf{0.569} \pm 0.004$	0.551 ± 0.005	0.517 ± 0.008	
Micro-F1 ↑	$\textbf{0.670} \pm 0.006$	0.639 ± 0.002	0.628 ± 0.004	0.662 ± 0.004	0.653 ± 0.003	0.638 ± 0.003	

Table 2: Classification results for the Yelp dataset. Bolded is best performer, underlined is second best.

Evaluation	Methods						
Metrics	RBCC (Ours)	RCC	TS-RCC	OF-RCC	BCC	BD	
Subset Accuracy ↑	0.240 ± 0.008	0.212 ± 0.002	0.192 ± 0.010	0.169 ± 0.009	0.210 ± 0.000	0.202 ± 0.002	
Hamming Loss ↓	0.186 ± 0.003	0.204 ± 0.001	0.209 ± 0.004	0.218 ± 0.004	0.199 ± 0.001	0.189 ± 0.000	
Macro-F1 ↑	0.556 ± 0.008	0.526 ± 0.004	0.506 ± 0.004	0.569 ± 0.004	0.551 ± 0.005	0.517 ± 0.008	
Micro-F1 ↑	$\textbf{0.670} \pm 0.006$	0.639 ± 0.002	0.628 ± 0.004	0.662 ± 0.004	0.653 ± 0.003	0.638 ± 0.003	

Table 2: Classification results for the Yelp dataset. Bolded is best performer, underlined is second best.

Evaluation	Methods						
Metrics	RBCC (Ours)	RCC	TS-RCC	OF-RCC	BCC	BD	
Subset Accuracy ↑	0.240 ± 0.008	0.212 ± 0.002	0.192 ± 0.010	0.169 ± 0.009	0.210 ± 0.000	0.202 ± 0.002	
Hamming Loss ↓	0.186 ± 0.003	0.204 ± 0.001	0.209 ± 0.004	0.218 ± 0.004	0.199 ± 0.001	0.189 ± 0.000	
Macro-F1 ↑	0.556 ± 0.008	0.526 ± 0.004	0.506 ± 0.004	$\textbf{0.569} \pm 0.004$	0.551 ± 0.005	0.517 ± 0.008	
Micro-F1 ↑	0.670 ± 0.006	0.639 ± 0.002	0.628 ± 0.004	0.662 ± 0.004	0.653 ± 0.003	0.638 ± 0.003	

Table 2: Classification results for the Yelp dataset. Bolded is best performer, underlined is second best.

Evaluation	Methods						
Metrics	RBCC (Ours)	RCC	TS-RCC	OF-RCC	BCC	BD	
Subset Accuracy ↑	0.240 ± 0.008	0.212 ± 0.002	0.192 ± 0.010	0.169 ± 0.009	0.210 ± 0.000	0.202 ± 0.002	
Hamming Loss ↓	0.186 ± 0.003	0.204 ± 0.001	0.209 ± 0.004	0.218 ± 0.004	0.199 ± 0.001	0.189 ± 0.000	
Macro-F1 ↑	0.556 ± 0.008	0.526 ± 0.004	0.506 ± 0.004	$\textbf{0.569} \pm 0.004$	0.551 ± 0.005	0.517 ± 0.008	
Micro-F1 ↑	0.670 ± 0.006	0.639 ± 0.002	0.628 ± 0.004	0.662 ± 0.004	0.653 ± 0.003	0.638 ± 0.003	

Table 2: Classification results for the Yelp dataset. Bolded is best performer, underlined is second best.

Evaluation	Methods						
Metrics	RBCC (Ours)	RCC	TS-RCC	OF-RCC	BCC	BD	
Subset Accuracy ↑	0.240 ± 0.008	0.212 ± 0.002	0.192 ± 0.010	0.169 ± 0.009	0.210 ± 0.000	0.202 ± 0.002	
Hamming Loss ↓	0.186 ± 0.003	0.204 ± 0.001	0.209 ± 0.004	0.218 ± 0.004	0.199 ± 0.001	0.189 ± 0.000	
Macro-F1 ↑	0.556 ± 0.008	0.526 ± 0.004	0.506 ± 0.004	$\textbf{0.569} \pm 0.004$	0.551 ± 0.005	0.517 ± 0.008	
Micro-F1↑	$\textbf{0.670} \pm 0.006$	0.639 ± 0.002	0.628 ± 0.004	0.662 ± 0.004	0.653 ± 0.003	0.638 ± 0.003	

Table 2: Classification results for the Yelp dataset. Bolded is best performer, underlined is second best.

Performing Better on Large Label Sets

Performing Better on Large Label Sets

Conclusions

In this work we:

- Identified flaws with state-of-the-art multi-label approach (RCC)
- Proposed new multi-label approach that leverages label dependence and independence to improve RCC training and inference
- Performed experimental study illustrating the practical improvement of our approach

Acknowledgements

- WPI WASH Research group
- WPI DAISY Lab
- DARPA WASH Grant #FA8750-18-2-0077