Co-evolution Transformer for Protein Contact Prediction

He Zhang^{*1}, **Fusong Ju**^{*2}, Jianwei Zhu², Liang He², Bin Shao², Nanning Zheng¹, Tie-Yan Liu²

¹Xi'an Jiaotong University. ²Microsoft Research Asia. *Equal contribution

Contents

- Background and Motivation
- Co-evolution Transformer
- Experimental Results
- Conclusion and Future work

Goal: Inter-residue contact/distance prediction

- ✓ Input: Protein sequence or multiple sequence alignment (MSA)
- ✓ Output: Contact/distance matrix

> Application: The essential block of structure-related applications

- ✓ Protein structure prediction
- ✓ Protein design

✓ ...

Goal: Inter-residue contact/distance prediction

- ✓ Input: Protein sequence or multiple sequence alignment (MSA)
- ✓ Output: Contact/distance matrix

> Application: The essential block of structure-related applications

- ✓ Protein structure prediction
- ✓ Protein design

A popular framework for protein structure prediction

- **Key prior:** the co-evolution principle
 - ✓ Spatially proximate residues tend to co-evolve

> Previous works:

- ✓ Unsupervised methods
- ✓ Supervised methods
- ✓ Pre-training based methods

Target	Α	Α	Е	Е	Κ	Т	Е	F	D	V	Α	Т	Е	Ε	Q	Т
	Α	Α	S	Е	K	Т	Е	F	D	V	Т	Т	Е	Е	Q	Т
MSA	А	Α	S	Е	Κ	Т	Е	F	D	V	т	Т	Е	Е	Q	Т
	Α	A	W	Е	Κ	Т	Е	F	D	V	Y	Т	Е	Е	Q	Т
	Α	A	W	Е	K	Т	Е	F	D	V	Y	Т	Е	Е	Q	Т
co-evolve																

- **Key prior:** the co-evolution principle
 - ✓ Spatially proximate residues tend to co-evolve

Previous works:

- ✓ Unsupervised methods
- ✓ Supervised methods
- ✓ Pre-training based methods

Key prior: the co-evolution principle

✓ Spatially proximate residues tend to co-evolve

Previous works:

- ✓ Unsupervised methods
- ✓ Supervised methods
- ✓ Pre-training based methods

How to extract and leverage co-evolutionary patterns?

Inferring co-evolution information from MSA

- Direct coupling analysis (DCA)
 - RaptorX
 - trRosetta
 - > AlphaFold

Farget	Α	Α	Е	Е	Κ	Т	Ε	F	D	V	Α	Т	Е	Е	Q	Т
	Α	Α	S	Е	Κ	Т	Е	F	D	V	Т	Т	Е	Е	Q	Т
MSA	А	A	S	Е	Κ	Т	Е	F	D	V	т	Т	Е	Е	Q	Т
	А	A	W	Е	Κ	Т	Е	F	D	V	Y	Т	Е	Е	Q	т
	А	Α	W	Е	Κ	Т	Е	F	D	V	Y	Т	Е	Е	Q	т
			i								j					
co-evolve																

$$P(\boldsymbol{\sigma}) = \frac{1}{Z} \exp\left(\sum_{i=1}^{N} h_i(\sigma_i) + \sum_{1 \le i < j \le N} J_{ij}(\sigma_i, \sigma_j)\right)$$

Yang J, Anishchenko I, Park H, et al. Improved protein structure prediction using predicted interresidue orientations[J]. Proceedings of the National Academy of Sciences, 2020.

Wang S, Sun S, Li Z, et al. Accurate de novo prediction of protein contact map by ultra-deep learning model[J]. PLoS computational biology, 2017.

Senior A W, Evans R, Jumper J, et al. Improved protein structure prediction using potentials from deep learning[J]. Nature, 2020.

Inferring co-evolution information from MSA

- Direct coupling analysis (DCA)
 - RaptorX
 - ➤ trRosetta
 - > AlphaFold

Target	Α	Α	Е	Ε	Κ	Т	Ε	F	D	V	A	Т	Ε	Е	Q	Т
	А	Α	S	Е	K	Т	Е	F	D	V	Т	Т	Е	Ε	Q	Т
MSA	А	Α	S	Е	Κ	Т	Е	F	D	V	т	Т	Е	Е	Q	Т
	А	A	W	Е	Κ	Т	Е	F	D	V	Y	Т	Е	Е	Q	Т
	A	A	W	Е	K	Т	Е	F	D	V	Y	Т	Е	Е	Q	Т
			i								j					
	co-evolve															

$$P(\boldsymbol{\sigma}) = \frac{1}{Z} \exp\left(\sum_{i=1}^{N} h_i(\sigma_i) + \sum_{1 \le i < j \le N} J_{ij}(\sigma_i, \sigma_j)\right)$$

Single-residue and pairwise statistics are well considered

High-order interactions are ignored

Inferring co-evolution information from MSA

- Learning directly from MSA
 - CopulaNet (SOTA)
 - RawMSA

Ju F, Zhu J, Shao B, et al. CopulaNet: Learning residue co-evolution directly from multiple sequence alignment for protein structure prediction[J]. Nature communications, 2021 Mirabello C, Wallner B. RAWMSA: End-to-end deep learning using raw multiple sequence alignments[J]. PloS one, 2019

Inferring co-evolution information from MSA

- Learning directly from MSA
 - CopulaNet (SOTA)
 - RawMSA

Better "end-to-end" learning frameworks But some important priors are missed

Ju F, Zhu J, Shao B, et al. CopulaNet: Learning residue co-evolution directly from multiple sequence alignment for protein structure prediction[J]. Nature communications, 2021 Mirabello C, Wallner B. RAWMSA: End-to-end deep learning using raw multiple sequence alignments[J]. PloS one, 2019

Motivation

- Modeling individual sequences independently vs. jointly
- Assigning equal vs. unequal weights to different homologs

Motivation

- Modeling individual sequences independently vs. jointly
- Assigning equal vs. unequal weights to different homologs

Leveraging these two insights, we propose the Co-evolution Transformer (CoT)

Compatibility Function of Co-evolution Attention

For the k-th sequence in the MSA, the CoA module is defined as:

 $\begin{aligned} X^{k} &= \text{LAYERNORM}(X^{k} + \text{COATTN}(X)), \\ X^{k} &= \text{LAYERNORM}(X^{k} + \text{FFN}(X^{k})) \\ \text{COATTN}(X) &= \text{CONCAT}(\text{head}_{1}, \dots, \text{head}_{H}), \\ \text{head}_{h} &= \text{ATTN}_{h}(X, A) X_{h}^{k} W_{h}, \end{aligned}$

Leverage these two insights, we propose the Co-evolution Attention module ...

Compatibility Function of Co-evolution Attention

Overall learning framework

Submodule 1: Co-evolution aggregation

Submodule 1: Co-evolution aggregation

$$A_{ij} = \operatorname{Proj}\left(\sum_{k=1}^{K} S_{ij}^k \odot (P_i^k \otimes P_j^k)\right)$$

Submodule 2: Co-evolution enhancement

 $\operatorname{Attn}_{h}(X, A) = \operatorname{SoftMax}(A M_{h})$

18

• Quantitative results

	1	CASP14							
Methods	FM (22)	FM/TBM (14)	TBM (50)	Hard (176)					
RaptorX [14]	33.9	58.1	63.1	53.2					
trRosetta [15]	31.3	57.6	61.1	50.1					
CopulaNet [2]	38.5	62.2	65.5	56.5					
CoT-SA (ours)	41.8	59.2	67.9	59.8					
CoT (ours)	47.5	63.0	76.1	66.4					

Table 1: Comparison on CASP14 and CAMEO (Precision@L)

CoT outperforms CopulaNet, the best of the SOTAs, by 9.0%, 0.8%, 10.6% and 9.9% for Precision@L scores on four kinds of targets, respectively

• Quantitative results

		CASP14								
Methods	FM (22)	FM/TBM (14)	TBM (50)	Hard (176)						
RaptorX [14]	33.9	58.1	63.1	53.2						
trRosetta [15]	31.3	57.6	61.1	50.1						
CopulaNet [2]	38.5	62.2	65.5	56.5						
CoT-SA (ours)	41.8	59.2	67.9	59.8						
CoT (ours)	47.5	63.0	76.1	66.4						

Table 1: Comparison on CASP14 and CAMEO (Precision@L)

A statistical test is conducted, CoT is better than CopulaNet significantly with the p-value 0.003.

• Quantitative results

		CAMEO								
Methods	FM (22)	FM/TBM (14)	TBM (50)	Hard (176)						
RaptorX [14]	33.9	58.1	63.1	53.2						
trRosetta [15]	31.3	57.6	61.1	50.1						
CopulaNet [2]	38.5	62.2	65.5	56.5						
CoT-SA (ours)	41.8	59.2	67.9	59.8						
CoT (ours)	47.5	63.0	76.1	66.4						

Table 1: Comparison on CASP14 and CAMEO (Precision@L)

Table 2: Comparison on CASP14. Gr. 368, Gr. 488, and Gr. 010 are the results of the top-3 groups in the CASP14 challenge. CoT^{\dagger} refers to the results of CoT with MSA selection.

	FM (22)			FM	TBM	(14)	TBM (50)			
Method	L	L/2	L/5	L	L/2	L/5	L	L/2	L/5	
Gr. 368	41.8	55.7	66.6	64.5	78.6	87.4	73.1	87.1	94.5	
Gr. 488	40.4	52.9	65.0	63.6	78.8	88.5	72.0	86.9	93.7	
Gr. 010	39.6	53.4	63.8	61.5	77.0	86.8	66.1	80.9	89.5	
CoT^{\dagger} (ours)	50.4	65.5	76.0	66.7	81.5	90.6	78.9	92.0	98.2	

Official SOTA

• Ablative results

Table 3: Ablations for CoA on CASP14 (*Precision*@L). AGGRE., ENHAN. and SA refer to the co-evolution aggregation submodule, the co-evolution enhancement submodule, and the self-attention module, respectively.

				CAMEO		
AGGRE.	ENHAN.	SA	FM (22)	FM/TBM (14)	TBM (50)	Hard (176)
Selective Pooling Average Pooling Selective Pooling	√ √	\checkmark	47.5 42.7 41.6	63.0 62.2 61.2	76.1 73.6 70.3	66.4 64.2 61.8
Selective Pooling	\checkmark		46.4	66.9	74.8	66.3

Why is co-evolution attention better than self-attention?

• Qualitative results

(c)

(b)

23

Conclusion and Future work

Concluding remarks

- Jointly modeling multiple homologs
- Selectively aggregating features from different homologs
- High-order interactions are important

Future work

- Proteins with low-depth MSAs are still hard
- Pretraining-based models may be a potential solution

Conclusion and Future work

Concluding remarks

- Jointly modeling multiple homologs
- Selectively aggregating features from different homologs
- High-order interactions are important

Future work

- Proteins with low-depth MSAs are still challenging
- Pretraining-based models may be a potential solution

Thanks

Contact: mao736488798@stu.xjtu.edu.cn