Large-Scale Wasserstein Gradient Flows

NeurIPS 2021

Petr Mokrov^{1, 2} Alexander Korotin¹ Lingxiao Li³ Aude Genevay³ Justin Solomon³ Evgeny Burnaev^{1,4}

> ¹Skolkovo Institute of Science and Technology ²Moscow Institute of Physics and Technology ³Massachusetts Institute of Technology ⁴Artificial Intelligence Research Institute

A Langevin process¹

with the drift term given by the gradient of a potential function $\Phi:\mathbb{R}^D\to\mathbb{R}$

$$dX_t = -
abla \Phi(X_t) dt + \sqrt{2eta^{-1}} dW_t,$$

s.t. $X_0 \sim
ho^0$

Corresponding Fokker-Planck¹ PDE:

$$\frac{\partial \rho_t}{\partial t} = \operatorname{div}(\nabla \Phi(x)\rho_t) + \beta^{-1} \Delta \rho_t,$$

s.t. $\rho_0 = \rho^0.$

obability mass

¹Cédric Villani (2008). Optimal transport: old and new.

Wasserstein Gradient flows

Let $\mathcal{F} : \mathcal{P}_2(\mathbb{R}^D) \to \mathbb{R}$. The Wasserstein gradient flow $\{\rho_t\}_{t \in \mathbb{R}_+}$ is a continuous sequence of probability measures $\rho_t \in \mathcal{P}_2(\mathbb{R}^D)$ which satisfies the continuity equation

$$\begin{cases} \partial_t \rho_t - \nabla \cdot \left(\rho_t \nabla_{\mathsf{x}} \frac{\delta \mathcal{F}}{\delta \rho}(\rho) \right) = 0\\ \rho_{t=0} = \rho^0 \end{cases}$$

•
$$\frac{\delta \mathcal{F}}{\delta \rho}$$
 is called the first variation.^a

^aFilippo Santambrogio (2016). *Euclidean, Metric, and Wasserstein Gradient Flows: an overview*. arXiv: 1609.03890 [math.AP].

Wasserstein Gradient flows

Let $\mathcal{F} : \mathcal{P}_2(\mathbb{R}^D) \to \mathbb{R}$. The Wasserstein gradient flow $\{\rho_t\}_{t \in \mathbb{R}_+}$ is a continuous sequence of probability measures $\rho_t \in \mathcal{P}_2(\mathbb{R}^D)$ which satisfies the continuity equation

$$\begin{cases} \partial_t \rho_t - \boldsymbol{\nabla} \cdot \left(\rho_t \boldsymbol{\nabla}_{\times} \frac{\delta \mathcal{F}}{\delta \rho}(\rho) \right) = \mathbf{0} \\ \rho_{t=0} = \rho^{\mathbf{0}} \end{cases}$$

- $\frac{\delta \mathcal{F}}{\delta \rho}$ is called the first variation.^a
- $-\nabla \cdot (\rho_t \nabla_{\times} \frac{\delta \mathcal{F}}{\delta \rho}(\rho)) = \nabla_{\mathcal{W}_2} \mathcal{F}(\rho)$

^aFilippo Santambrogio (2016). *Euclidean, Metric, and Wasserstein Gradient Flows: an overview*. arXiv: 1609.03890 [math.AP].

Wasserstein Gradient flows

 $\partial_t \rho_t = -\nabla_{\mathcal{W}_2} \mathcal{F}(\rho_t)$

min/

$$\begin{cases} \partial_t \rho_t - \boldsymbol{\nabla} \cdot \left(\rho_t \boldsymbol{\nabla}_{\mathsf{X}} \frac{\delta \mathcal{F}}{\delta \rho}(\rho) \right) = 0\\ \rho_{t=0} = \rho^0 \end{cases}$$

•
$$\frac{\delta \mathcal{F}}{\delta \rho}$$
 is called the first variation.^a

•
$$-\nabla \cdot (\rho_t \nabla_{\times} \frac{\delta \mathcal{F}}{\delta \rho}(\rho)) = \nabla_{W_2} \mathcal{F}(\rho)$$

• The Fokker-Planck equation is the **WGF** with the functional

$$\mathcal{F}_{\mathsf{FP}}(\rho) = \int_{\mathbb{R}^{D}} \Phi(x) d\rho(x) + \beta^{-1} \int_{\mathbb{R}^{D}} \rho(x) \log \rho(x) dx$$
potential energy
neg. entropy

^aFilippo Santambrogio (2016). *Euclidean, Metric, and Wasserstein Gradient Flows: an overview*. arXiv: 1609.03890 [math.AP].

JKO scheme is the sequence $\{\rho_{\tau}^k\}_{k=1}^{\infty} \subset \mathcal{P}_2(\mathbb{R}^D)$ such that:

$$\rho_{\tau}^{k} \leftarrow \underset{\rho \in \mathcal{P}_{2}(\mathbb{R}^{D})}{\arg\min} \frac{1}{2} \mathcal{W}_{2}^{2}(\rho_{\tau}^{k-1}, \rho) + \tau \mathcal{F}(\rho),$$
$$\rho_{\tau}^{0} = \rho^{0} \in \mathcal{P}_{2}(\mathbb{R}^{D})$$

The parameter $\tau \in \mathbb{R}_+$ is the discretization step.

JKO scheme is the sequence $\{\rho_{\tau}^k\}_{k=1}^{\infty} \subset \mathcal{P}_2(\mathbb{R}^D)$ such that:

$$\rho_{\tau}^{k} \leftarrow \operatorname*{arg\,min}_{\rho \in \mathcal{P}_{2}(\mathbb{R}^{D})} \frac{1}{2} \mathcal{W}_{2}^{2}(\rho_{\tau}^{k-1}, \rho) + \tau \mathcal{F}(\rho), \quad \rho_{\tau}^{0} = \rho^{0} \in \mathcal{P}_{2}(\mathbb{R}^{D})$$

Similarity to Euclidean case

The Backward Euler Scheme $\{x_{\tau}^k\}_{k=1}^{\infty}$ which models the Gradient flow in Euclidean space:

$$x_{\tau}^{k+1} = x_{\tau}^{k} - \tau \nabla F(x_{\tau}^{k+1}) \Leftrightarrow$$
$$\Leftrightarrow \underbrace{x_{\tau}^{k+1} = \arg\min_{x} \frac{1}{2} \|x - x_{\tau}^{k}\|^{2} + \tau F(x)}_{\text{compare with IKO!}}$$

JKO scheme is the sequence $\{\rho_{\tau}^{k}\}_{k=1}^{\infty} \subset \mathcal{P}_{2}(\mathbb{R}^{D})$ such that: $\rho_{\tau}^{k} \leftarrow \operatorname*{arg\,min}_{\rho \in \mathcal{P}_{2}(\mathbb{R}^{D})} \frac{1}{2} \mathcal{W}_{2}^{2}(\rho_{\tau}^{k-1}, \rho) + \tau \mathcal{F}(\rho),$ $\rho_{\tau}^{0} = \rho^{0} \in \mathcal{P}_{2}(\mathbb{R}^{D})$

(Squared) Wasserstein-2 distance between $\mu, \nu \in \mathcal{P}_2(\mathbb{R}^D)$ $\mathcal{W}_2^2(\mu, \nu) = \inf_{\nu = T \sharp \mu} \int_{\mathbb{R}^D} \|x - T(x)\|_2^2 d\mu(x)$

JKO scheme is the sequence $\{\rho_{\tau}^k\}_{k=1}^{\infty} \subset \mathcal{P}_2(\mathbb{R}^D)$ such that:

$$\rho_{\tau}^{k} \leftarrow \operatorname*{arg\,min}_{\rho \in \mathcal{P}_{2}(\mathbb{R}^{D})} \frac{1}{2} \mathcal{W}_{2}^{2}(\rho_{\tau}^{k-1}, \rho) + \tau \mathcal{F}(\rho),$$
$$\rho_{\tau}^{0} = \rho^{0} \in \mathcal{P}_{2}(\mathbb{R}^{D})$$

Theorem² Given $\mathcal{F} = \mathcal{F}_{FP}(\rho) = \int_{\mathbb{R}^{D}} \Phi(x) d\rho(x) + \beta^{-1} \int_{\mathbb{R}^{D}} \rho(x) \log \rho(x) dx$ and $\mathcal{F}(\rho^{0}) < +\infty$ there exists unique solution of **JKO** $\{\rho_{\tau}^{k}\}_{k=1}^{\infty}$. Define $\rho_{\tau} : (0, +\infty) \times \mathbb{R}^{n} \to [0, \infty)$ as follows:

$$\rho_{\tau}(t) = \rho_{\tau}^{k}, \text{ for } t \in [k\tau, (k+1)\tau), k \in \mathbb{N}$$

Then, as $\tau \downarrow 0$: $\rho_{\tau}(t)$ weakly converges to the solution of the Wasserstein gradient flow associated with \mathcal{F}

²Richard Jordan, David Kinderlehrer, and Felix Otto (1998). "The Variational Formulation of the Fokker-Planck Equation". In: *SIAM J. Math. Anal.*

Brenier's theorem⁴

Theorem⁴ Let μ be absolutely continuous. Then there exists unique μ - a.s. convex lower semicontinuous f, that the optimal T^* has the form: $T^*(x) = \nabla f(x)$. Therefore, in this case:

$$W_2^2(\mu,\nu) = \int\limits_{\mathbb{R}^D} \|x - \nabla f(x)\|_2^2 d\mu(x)$$

Alternative formulation of JKO³

$$\begin{split} \psi_{k} &= \operatorname*{arg\,min}_{\psi \in \mathsf{Conv}(\mathbb{R}^{D})} \tau \mathcal{F}_{\mathsf{FP}}(\boldsymbol{\nabla} \psi \sharp \rho_{\tau}^{k}) + \frac{1}{2} \int_{\mathbb{R}^{D}} \| x - \boldsymbol{\nabla} \psi(x) \|_{2}^{2} \mathrm{d}\rho_{\tau}^{k}(x) \\ \rho_{\tau}^{k+1} &= \boldsymbol{\nabla} \psi_{k} \sharp \rho_{\tau}^{k} \end{split}$$

³Jean-David Benamou et al. (2014). Discretization of functionals involving the Monge-Ampère operator. arXiv: 1408.4536 [math.NA]. ⁴Villani Cédric (2003). Topics in optimal transportation / Cédric Villani. eng. Graduate studies in mathematics. American mathematical society.

ICNN powered JKO

Consider the parametrization $\psi_{\theta} \in \text{Conv}(\mathbb{R}^D), \theta \in \Theta$ given by ICNNs⁵

Typical ICNN architecture Image source: Korotin et. al. (2019)

Each JKO optimization step reads as follows:

$$\theta^* \leftarrow \argmin_{\theta} \left[\mathcal{F}_{\mathsf{FP}}(\nabla \psi_{\theta} \sharp \rho_{\tau}^k) + \frac{1}{2\tau} \int\limits_{\mathbb{R}^D} \|x - \nabla \psi_{\theta}(x)\|_2^2 d\rho_{\tau}^k(x) \right]$$

⁵Brandon Amos, Lei Xu, and J Zico Kolter (2017). "Input convex neural networks". In: *Proceedings of the 34th International Conference on Machine Learning.*

ICNN powered JKO

$$\begin{split} \theta^* \leftarrow \operatorname*{arg\,min}_{\theta} \left[\mathcal{F}_{\mathsf{FP}}(\nabla \psi_{\theta} \sharp \rho_{\tau}^k) + \frac{1}{2\tau} \int_{\mathbb{R}^D} \|x - \nabla \psi_{\theta}(x)\|_2^2 d\rho_{\tau}^k(x) \right] \\ \psi_k := \psi_{\theta^*} \ ; \ \rho_{\tau}^{k+1} = \nabla \psi_k \sharp \rho_{\tau}^k \end{split}$$

We need to optimize with respect to

$$\mathcal{F}_{\mathsf{FP}}(\nabla \psi_{\theta} \sharp \rho_{\tau}^{k}) = \int_{\mathbb{R}^{D}} \Phi(x) d\rho(x) + \beta^{-1} \int_{\mathbb{R}^{D}} \rho(x) \log \rho(x) dx:$$

Theorem Let $\rho \in \mathcal{P}_2(\mathbb{R}^D)$ - absolute continuous, $T : \mathbb{R}^D \to \mathbb{R}^D$ is a diffeomorphism. Let $x_1, x_2, \ldots x_N \sim \rho$. Then

$$\widehat{\mathcal{F}_{\mathsf{FP}}}(x_{1:N}) = \frac{1}{N} \sum_{k=1}^{N} \Phi(T(x_k)) - \beta^{-1} \frac{1}{N} \sum_{n=1}^{N} \log |\det \nabla T(x_n)|$$

is an estimator of $\mathcal{F}_{\mathsf{FP}}(T\sharp\rho)$ up to constant.

Stochastic Optimization for JKO via ICNNs

Algorithm 1: Fokker-Planck JKO via ICNNs

Input : Initial measure ρ^0 , batch size N, discr. step $\tau > 0$; # of steps K > 0, temperature β^{-1} , target potential V(x); **Output:** trained ICNN models $\{\psi_k\}_{k=1}^K$ representing JKO steps for k = 0, 1, ..., K - 1 do $\psi_{\theta} \leftarrow \text{basic ICNN model};$ for i = 1, 2, ... do Sample batch $Z \sim \rho^0$ of size N; $X \leftarrow \nabla \psi_{k-1} \circ \cdots \circ \nabla \psi_0(Z)$; $\widehat{\mathcal{W}_2^2} \leftarrow \frac{1}{N} \sum_{x \in X} \| \nabla \psi_{\theta}(x) - x \|_2^2;$ $\widehat{\mathcal{F}_{\mathsf{FP}}} \leftarrow \frac{1}{N} \sum_{x \in X}^{\infty} V(\nabla \psi_{\theta}(x)) - \beta^{-1} \frac{1}{N} \sum_{x \in X} \log \det \nabla^{2} \psi_{\theta}(x)$ $\widehat{\mathcal{L}} \leftarrow \frac{1}{2\tau} \widehat{\mathcal{W}_{2}^{2}} + \widehat{\mathcal{F}_{\mathsf{FP}}};$ Perform a gradient step over θ by using $\frac{\partial \mathcal{L}}{\partial \theta}$; end $\psi_{\mathbf{k}} \leftarrow \psi_{\mathbf{A}}$ end

Density estimation via ICNN powered JKO

Let $\psi_0, \psi_1, \dots, \psi_K$ be the convex potentials which minimize the corresponding JKO steps, i.e.

$$ho_{ au}^1 = {oldsymbol
abla} \psi_0 \sharp
ho^0$$
 ;

$$\rho_{\tau}^{K} = \boldsymbol{\nabla}\psi_{K-1} \sharp [\boldsymbol{\nabla}\psi_{K-2} \sharp \{\dots \boldsymbol{\nabla}\psi_{0} \sharp \rho^{0}\}];$$

By change of variable formula, given $x_{\mathcal{K}} \in \mathbb{R}^{D}$ the following holds true: $\rho_{\tau}^{k}(x_{\mathcal{K}}) = \rho^{0}(x_{0}) \cdot \left[\prod_{i=1}^{K-1} \det \nabla^{2} \psi_{i}(x_{i})\right]^{-1}$

where $x_0, x_1, \ldots x_{K-1}$ are s.t. $x_K = \nabla \psi_{K-1}(x_{K-1}), \ldots x_1 = \nabla \psi_0(x_0)$

- If we sample x_K from ρ_{τ}^K we compute the density $\rho_{\tau}^K(x_K)$ on the fly!
- For arbitrary x_K ∈ ℝ^D one need to solve the sequence of convex optimization problems:

$$x_i = \nabla \psi_{i-1}(x_{i-1}) \iff x_{i-1} = \operatorname*{arg\,max}_{x \in \mathbb{R}^D} \left[\langle x, x_i \rangle - \psi_{i-1}(x) \right]$$

Study: Convergence to stationary distribution

The Fokker-Planck equation with potential $\mathcal{F}_{\text{FP}}(\rho) = \int_{\mathbb{R}^D} \Phi(x) d\rho(x) + \beta^{-1} \int_{\mathbb{R}^D} \rho(x) \log \rho(x) dx \text{ converges to stationary distribution}$

$$\rho^*(x) = Z^{-1} \exp(-\beta \Phi(x))$$

Projection to first two PC, D = 13 Projection to first two PC, D = 32

Examples of convergence to stationary mixture of gaussians distributions

Study: Ornstein-Uhlenbeck processes

- The potential $\Phi(x) = \frac{1}{2}(x-b)^T A(x-b)$, A is SPD matrix
- Given ρ⁰(X) ~ N(μ, Σ), distribution ρ_t(x) has close-form solution (it is also normal distribution)

SymKL true vs fitted, t = 0.5 SymKL true vs fitted, t = 0.9

Discrepancy between true and predicted marginal distributions at different timesteps

Comparison with SVGD^6 method on Bayesian Logistic Regression task for 9 benchmark datasets^6

Dataset	Accuracy		Log-Likelihood	
	Ours	[SVGD]	Ours	[SVGD]
covtype	0.75	0.75	-0.515	-0.515
german	0.67	0.65	-0.6	-0.6
diabetis	0.775	0.78	-0.45	-0.46
twonorm	0.98	0.98	-0.059	-0.062
ringnorm	0.74	0.74	-0.5	-0.5
banana	0.55	0.54	-0.69	-0.69
splice	0.845	0.85	-0.36	-0.355
waveform	0.78	0.765	-0.485	-0.465
image	0.82	0.815	-0.43	-0.44

⁶Qiang Liu and Dilin Wang (2019). *Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm*. arXiv: 1608.04471 [stat.ML].

Applications: Nonlinear filtering

- In the problem of nonlinear filtering one need to compute the posterior distribution of nonlinear Fokker-Planck diffusion based on noisy observations from the process
- $\Phi(x) = \frac{1}{\pi}\sin(2\pi x) + \frac{1}{4}x^2$ (it is highly nonlinear process)
- Filtering takes $t_{el} = 9$ sec. (noisy observations each 0.5 sec.)

Thank you!⁷

Large-Scale Wasserstein Gradient Flows

Modelling the Fokker-Planck equation via ICNN-powered JKO scheme.

https://arxiv.org/abs/2106.00736

https://github.com/PetrMokrov/Large-Scale-Wasserstein-Gradient-Flows

⁷The problem statement was developed in the framework of Skoltech-MIT NGP program. The work was supported by Ministry of Science and Higher Education grant No. 075-10-2021-068.