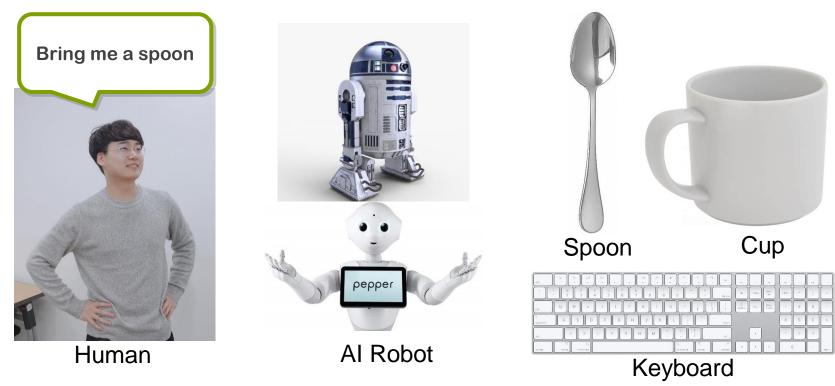


Goal-Aware Cross-Entropy for Multi-Target Reinforcement Learning

Kibeom Kim, Min Whoo Lee, Yoonsung Kim, Je-Hwan Ryu, Minsu Lee, Byoung-Tak Zhang Seoul National University kbkim@bi.snu.ac.kr

Need to handle multiple objects or destinations

- Bring me a {spoon, cup, "specific object"}
- Go to the {*kitchen*, *livingroom*, "*specific destination*"}



Instruction-based multi-target task

- It is still challenging task for RL
- In existing studies, direct semantic understanding of the goal is necessary, but it is lacking.

Instruction-based multi-target task

- It is still challenging task for RL
- Targets are possible goal candidates

Instruction-based multi-target task

- It is still challenging task for RL
- Targets are possible goal candidates
- The goal z may be selected among the targets, specified with a cue or an instruction
- The instruction I^z is given randomly every episode,
 "Bring me a spoon"

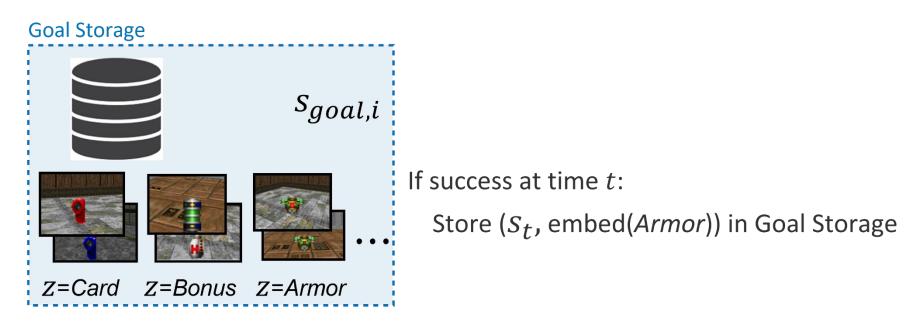
Instruction-based multi-target task

- It is still challenging task for RL
- Targets are possible goal candidates
- The goal z may be selected among the targets, specified with a cue or an instruction

We propose a Goal-Aware Cross-Entropy (GACE) loss and Goal-Discriminative Attention Networks (GDAN) for multi-target reinforcement learning.

Collecting goal states

- Auto-labeled goal states for self-supervised learning
 - The agent actively gathers the goal states relying only on the instruction I^z and reward given by the environment.



Proposed methods

Goal-Aware Cross-Entropy (GACE) loss

- It trains the goal-discriminator that facilitates semantic understanding of goals alongside the policy
- $s_{goal,i}$ is goal state, $\sigma(\cdot)$ is feature extractor and $d(\cdot)$ is goal-discriminator

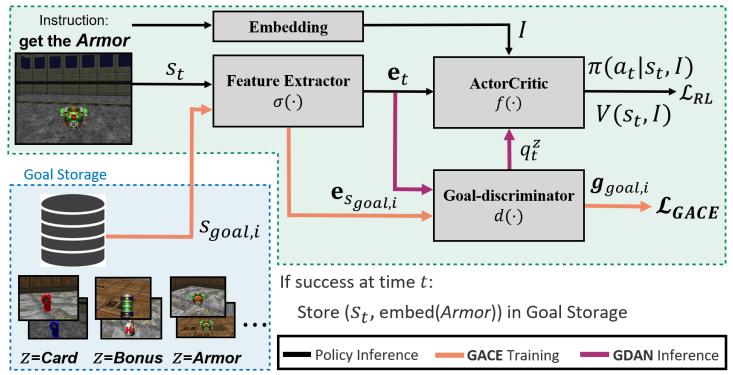
 $\mathbf{e}_{s_{goal,i}} = \sigma(s_{goal,i})$ $\mathbf{g}_{goal,i} = d(\mathbf{e}_{s_{goal,i}})$

- z_i is the automatic label corresponding to state $g_{goal,i}$
- Then, GACE loss is

$$\mathcal{L}_{GACE} = -\sum_{i=0}^{M-1} one_hot(z_i) \cdot \log(\mathbf{g}_{goal,i})$$

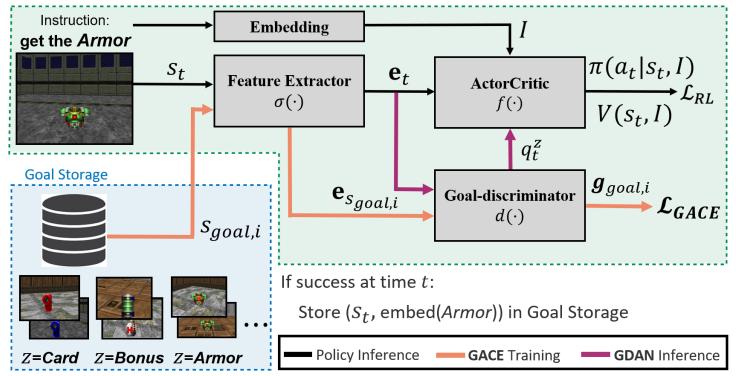
Overview of architecture

Goal-Aware Cross-Entropy (GACE) loss



Overview of architecture

Goal-Aware Cross-Entropy (GACE) loss



- The GACE loss makes the goal-discriminator become goal-aware without external supervision.
- Such goal-awareness is advantageous for sample-efficiency and generalization in multi-target environments.

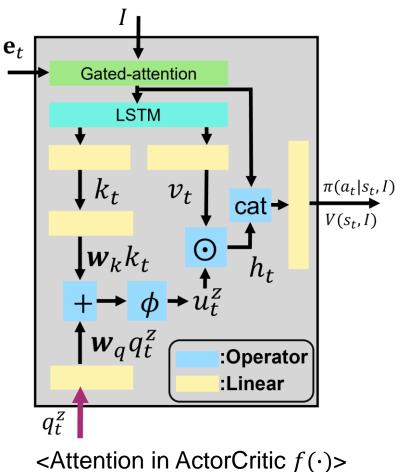
Proposed methods

Goal-Discriminative Attention Networks (GDAN)

- Goal-relevant query q^z_t from goaldiscriminator
- The key k_t and value v_t from encoded state in the ActorCritic f(·)

$$u_t^z = \phi(\mathbf{W}_{\mathbf{q}}q_t^z + \mathbf{W}_{\mathbf{k}}k_t)$$

$$h_t = v_t \odot u_t^z$$



Proposed methods

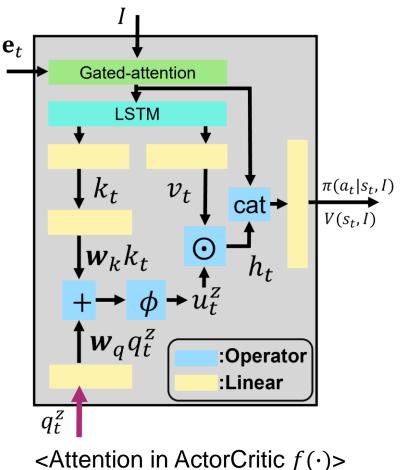
Goal-Discriminative Attention Networks (GDAN)

- Goal-relevant query q^z_t from goaldiscriminator
- The key k_t and value v_t from encoded state in the ActorCritic f(·)

$$u_t^z = \phi(\mathbf{W}_{\mathbf{q}}q_t^z + \mathbf{W}_{\mathbf{k}}k_t)$$

$$h_t = v_t \odot u_t^z$$

- It makes the agent to selectively allocate attention for goal-directed actions
- effectively utilize the discriminator to enhance the performance and efficiency



Environments

Multi-target environments

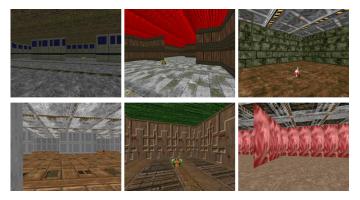
- The object positions are randomly shuffled to learn discriminability.
- Background is also randomly selected to evaluate generalization.

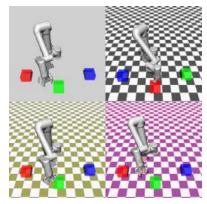
Visual navigation tasks

- First-person view
- 4 classes 8 objects
- "Get the Armor / Bonus / Card / …"

Robot arm manipulation tasks

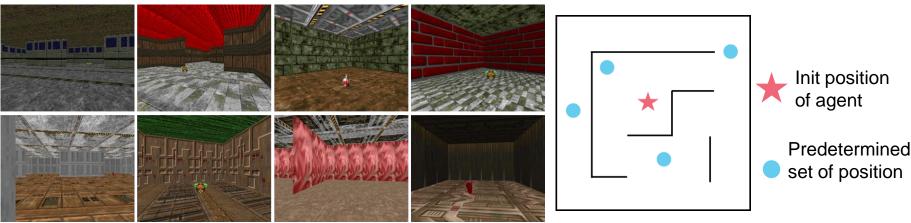
- Fixed third-person view
- 3 or 5 objects for each task
- "Reach the red/blue/green box"





Environment

- Visual navigation
 - V1
 - V2 seen, unseen
 - **V**3
 - V4 seen, unseen



<Samples of used textures>

<Top-down view of V3,V4> 14

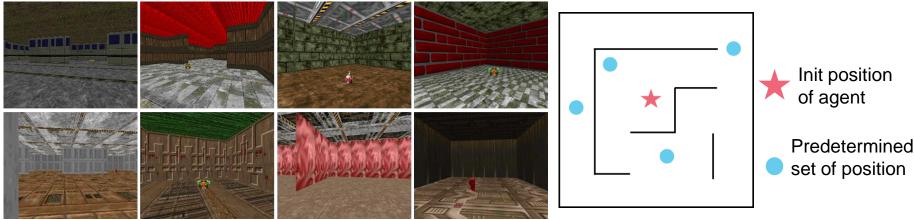
Environment

Visual navigation

• V1: default navigation task

closed rectangular room with no walls

- V2 seen, unseen: to evaluate generalization added textures in V1 setting
- **V3**: more complex than V1, additional walls
- V4 seen, unseen: added textures in V3 setting

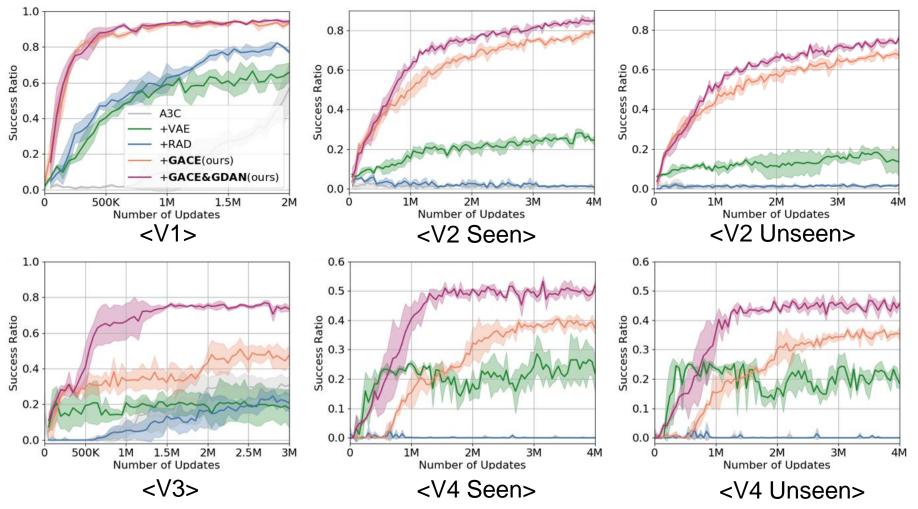


<Samples of used textures>

<Top-down view of V3,V4> 15

Experiments

Visual navigation task



Experiments

Sample-efficiency metric for V1 task

Table 1: Success ratio (SR) and sample efficiency metrics in visual navigation task V1. SRR (lower the better) and SEI (higher the better) are measured with A3C as a reference. "Number of Updates" indicates the number of updates required to reach the reference performance.

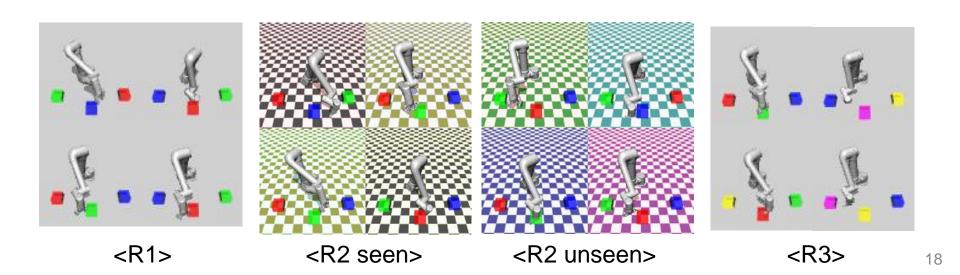
Algorithm	SR of V1 (%)	Number of Updates	SRR (%)	SEI (%)
A3C	56.55 ± 13.8	2M	100	-
+VAE	67.89 ± 3.5	810,086	40.50	146.89
+RAD	82.14 ± 2.3	703,574	35.18	184.26
+GACE (ours)	94.97 ± 0.7	163,602	8.18	1122.48
+GACE & GDAN (ours)	95.6 ± 0.64	110,930	5.55	1702.94

Environment

Robot arm manipulation task

- R1
- R2 seen, unseen

R3

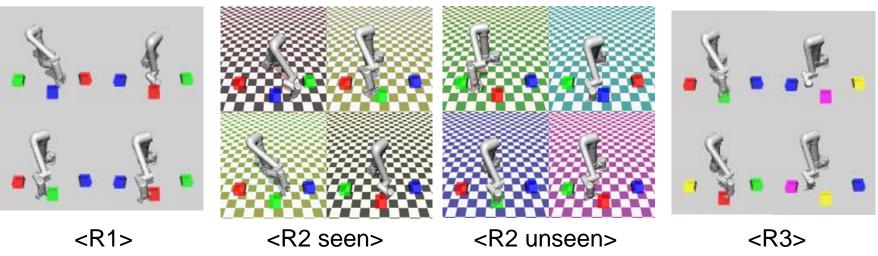


Environment

Robot arm manipulation task

- R1: default manipulation task red/green/blue box are randomly shuffled
- R2 seen, unseen: to evaluate generalization added checkered background
- **R3:** to evaluate scalability with more targets

+ yellow/pink box in R1 setting



19

Experiments

Robot arm manipulation task

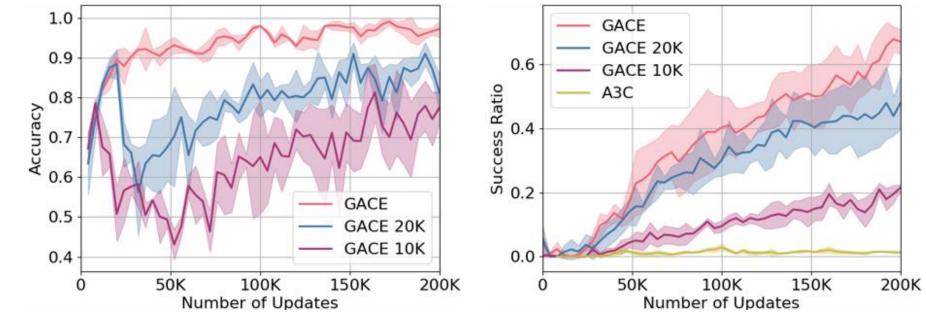
Table 2: Success ratio (SR) in robot arm manipulation tasks.

Algorithm	SR of R1 (%)	SR of R2 Seen (%)	SR of R2 Unseen (%)	SR of R3 (%)
SAC	63.1 ± 6.9	60.5 ± 5.7	53.4 ± 6.9	61.7 ± 5.4
+AE	67.2 ± 5.0	72.8 ± 5.9	59.4 ± 5.5	62.3 ± 5.1
+CURL	67.9 ± 7.3	74.5 ± 9.2	36.6 ± 3.4	64.7 ± 4.0
+GACE	84.7 ± 10.0	75.0 ± 8.9	63.0 ± 9.0	79.3 ± 8.9
+GACE&GDAN	89.3 ± 4.2	78.2 ± 8.7	73.3 ± 5.8	79.6 ± 8.4

Table 3: Sample efficiency metrics for R1 task. SR is reference performance of R1 task.

Algorithm	SR (%)	Number of Updates	SRR (%)	SEI (%)
SAC		314,797	100	-
+AE +CURL	63.1	230,339 142,480	73.17 45.26	36.67 120.94
+GACE (ours)		53,774	17.08	485.41
+GACE&GDAN (ours)		63,140	20.06	398.57

Effectiveness of GACE

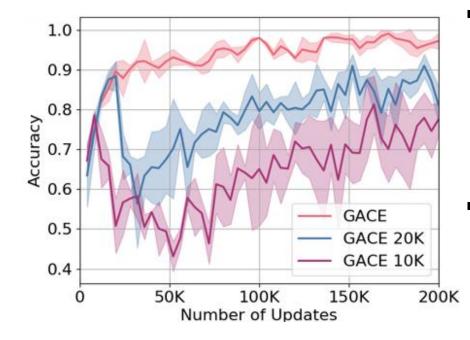


<Goal discriminator accuracy>

<Learning curve in V1 task>

The goal-discriminator weights are unfrozen (red), frozen at 10K (purple) and 20K (blue) updates.

Effectiveness of GACE



<Goal discriminator accuracy>

- Although the GACE loss (frozen weights) does not further contribute to learning, the discriminator accuracy improves only by updating the policy.
- This indicates that throughout the training, the agent gradually develops a feature extractor σ(·) that can discriminate targets.

The goal-discriminator weights are unfrozen (red), frozen at 10K (purple) and 20K (blue) updates.

Effectiveness of GACE

- Even when the agent is trained with the GACE only temporarily, the learning curve is steeper than that with vanilla A3C.
- Consequently, learning GACE loss has positive influence on policy performance than learning solely with policy updates.

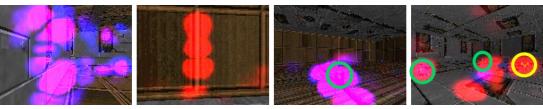


<Learning curve in V1 task>

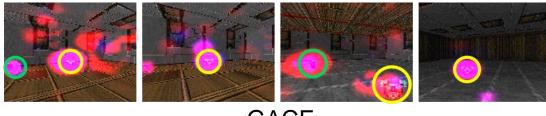
The goal-discriminator weights are unfrozen (red), frozen at 10K (purple) and 20K (blue) updates.

Visual interpretation using saliency map

: non-goal : goal



<A3C>

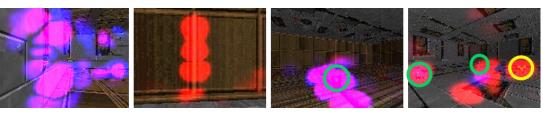


<GACE>

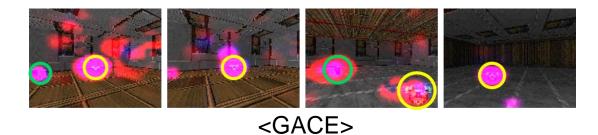
<GACE & GDAN>

Visual interpretation using saliency map

 The agent is overly sensitive to edges in the background in A3C.



<A3C>



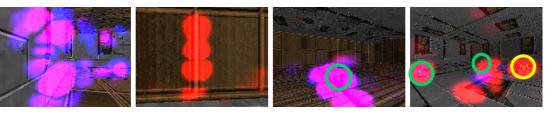
<GACE & GDAN>

: non-goal

: goal

Visual interpretation using saliency map

 The agent is overly sensitive to edges in the background in A3C.



<A3C>

 All goals and nongoals are detected successfully in GACE.

<GACE>

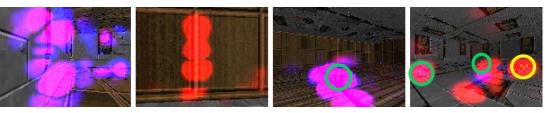
<GACE & GDAN>

: non-goal

: goal

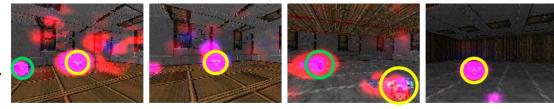
Visual interpretation using saliency map

 The agent is overly sensitive to edges in the background in A3C.



<A3C>

 All goals and nongoals are detected successfully in GACE.



<GACE>

 The agent shows sensitive reaction only to goal in GACE&GDAN.

<GACE & GDAN>

: non-goal

: goal

Conclusion

- We propose GACE loss and GDAN for multi-target RL.
 - It learns goal states in a self-supervised manner using a reward and instruction.
 - It promotes a goal-focused behavior.
 - Our methods achieve state-of-the-art sample-efficiency and generalization in multi-target environments.