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Problem

Neural Networks are successfully applied on multiple domains

Loss surface and optimization problem of Neural Networks are highly non-convex 
Goodfellow, Vinyals, Saxe; ICLR 2015; Qualitatively characterizing neural network optimization problems
Dauphin et al.; NeurIPS 2014; Identifying and attacking the saddle point problem in high-dimensional non-convex optimization
LeCun, Bengion, Hinton; Nature 2015; Deep Learning

Neural Network training optimization is high dimensional
Brown et al.; 2020; Language Models are Few-Shot Learners 
Larsen et al.; ICML 2021; How many degrees of freedom do we need to train deep networks: a loss landscape perspective

Neural Network training is sensitive to hyperparameters and random initialization
Hanin, Rolnick; NeurIPS 2018; How to Start Training: The Effect of Initialization and Architecture

Li et al.; NeurIPS 2018; Visualizing the Loss
Landscape of Neural Nets

Relation between characteristics of NN models and 
their solution in weight space not fully understood
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Related Work

Visualization of CNN kernels
Yosinski et al.; ICML DL Workshop 2015; Understanding Neural Networks Through Deep Visualization
Zintgraf, Cohen, Adel, Welling, ICLR 2017; Visualizing Deep Neural Network Decisions: Prediction Difference Analysis

Comparing Neural Network models
Raghu et al.; NeurIPS 2017; SVCCA: Singular Vector Canonical Correlation Analysis for Deep Learning Dynamics and Interpretability
Kornblith et al.; ICML 2019; Similarity of Neural Network Representations Revisited
Mehrer et al.; Nature 2020; Individual Differences among Deep Neural Network Models

Activation-based Prediction of Neural Network properties
Yak et al.; ICML 2019; Towards Task and Architecture-Independent Generalization Gap Predictors
Jiang, Krishnan, Mobahi and Bengio; ICLR 2019; Predicting the Generalization Gap in Deep Networks with Margin Distributions
Corneanu et al.; CVPR 2020; Computing the Testing Error Without a Testing Set
Mellor et al.; ICML 2021; Neural Architecture Search Without Training

Prediction of Neural Network properties from weights
Martin and Mahoney; ICML 2019; Traditional and Heavy-Tailed Self Regularization in Neural Network Models
Unterthiner et al.; 2020; Predicting Neural Network Accuracy from Weights
Eilertsen et al; ECAI 2020; Classifying the Classifier

• investigate/compare only single/pairs of models
• rely on expressivity of data
• supervised learning may overfit few features
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Investigating Populations of NN Models

Model

Dataset

Architecture

Hyperparamerters

• Optimizer
• Activation
• Initialization Method
• Learning Rate
• L2-Regularization

Model Analysis

versioning, diagnostics, …

Learning Dynamics

early-stopping, model selection, …

Model Generation

initialization, 
transfer-learning, meta-learning, …

Representation Space

Goal: Learn meaningful representations of populations of 
Neural Network models

Hypothesis:
1. Neural Networks populate a structure in weight space
2. That structure contains information on properties and 

generating factors of the models
Model PopulationModel Population
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Approach

I – Model Zoo Generation

data set: 𝐷

hyper
parameters: λ

architecture: 𝐴

II – Neural Representation Learning III – Downstream Tasks

contrastreconstruction + contrastreconstruction

erasing noisepermutation
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fully-connected
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attention-based
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neural representation

accuracy

epoch hyper-
parameter

generalization 
gap
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Approach: Model Zoos

Datasets:
• MNIST, Fashion-MNIST, SVHN, CIFAR, Tetris

Architectures
• MLP: 100 parameters (ours)
• CNN: 2464 paramters (ours)
• CNN: 4970 paramters (Unterthiner et al., 2020)

Hyperparamters
• Seed, activation, initialization method, 

learning rate, regularization, …

I – Model Zoo Generation

Our Zoos Data Architecture Samples

Tetris-Seed Tetris MLP (100 params.) 75k

Tetris-Hyp Tetris MLP (100 params.) 217.5k

MNIST-Seed MNIST CNN (2464 params.) 50k

F-MNIST-Seed F-MNIST CNN (2464 params.) 50k

MNIST-Hyp-1-Fix-Seed MNIST CNN (2464 params.) ~57.6k

MNIST-Hyp-1-Rand-Seed MNIST CNN (2464 params.) ~57.6k

MNIST-Hyp-5-Fix-Seed MNIST CNN (2464 params.) ~64k

MNIST-Hyp-5-Rand-Seed MNIST CNN (2464 params.) ~64k

Zoos from Unterthiner et al., 2020 Data Architecture Samples

MNIST-Hyp MNIST CNN (4970 params.) 270k

F-MNIST-Hyp F-MNIST CNN (4970 params.) 270k

CIFAR-Hyp CIFAR10 CNN (4970 params.) 270k

SVHN-Hyp SVHN CNN (4970 params.) 270k

• More than 635k model samples
• Zoos are open source
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NN Weights Augmentations

Augmentations:
• Multiply # of samples
• Encode inductive bias

Erasing  & Noise:
• Adaptations from computer vision

Permutation Augmentation:
• Leverages symmetries in weight space
• Proof: equivalence holds forward & backward
• Scales with faculty of # neurons/kernels
• Fully-connected and convolutional layers
• Full Details: Appendix A

erasing noisepermutation

Augmentations

Assumptions

Forward pass

Backward pass
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Representation Learning Architecture

Challenge:
• little intuition on inductive biases
• scalability for larger samples

Fully-Connected AE
• + low inductive bias
• - doesn’t scale well for large inputs

Transformer AE
• + low inductive bias
• + scales to larger models
• Two encodings: sequences of

– Weights
– Neurons (all weights of one neuron/kernel)

• Compression token

Att

Value
Embedder

Position
Embedder

𝑧

sequence of layers / neurons / weights

z zAtt Att

Fully-Connected Autoencoder

z w’w 𝒈𝜽 ℎ"

Transformer Autoencoder

z

w

w’
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Representation Learning Task

Goal: 
• rich, generalizing representation

Reconstruction:
• Full representation of samples
Contrast:
• Include inductive bias

Four Taks:
1. Reconstruction only
2. Contrast only
3. Reconstruction + Contrast
4. Reconstruction + ‘positive’ Contrast
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Downstream Tasks

Split Zoos in train | val | test

Train Representation
• Evaluation: Reconstruction R^2

Downstream Task:
• Linear probe for model characteristics
• Evaluation: Accuracy / R^2

linear Acc: 95%

linear Activation: ReLU

linear Epoch: 8

Train and freeze

z w’w 𝒈𝜽 ℎ"

z𝒈𝜽
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Experiment Results: Ablation Studies

Augmentation:
• Aggregated performance
• Permutation augmentation most useful
• Combination of augmentations beneficial

Architectures:
• Fully-connected lowest performance
• Weight-encoding works, but doesn’t scale
• Neuron-encoding has best performance
• Compression token generally improves performance

11
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Experiment Results
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Out-of-Distribution

Experiment Setup
• Train Representation & Linear Probe on ID Zoo
• Use learned representation & linear probe on OOD Zoos
• Evaluation: Kendall’s tau

Results
• Approach generalizes to OOD settings
• Outperforms baselines in the majority of cases
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