

Self-Supervised Representation Learning on Neural Network Weights for Model Characteristic Prediction

Konstantin Schürholt, Dimche Kostadinov, Damian Borth

Al:ML Lab, School of Computer Science

University of St. Gallen

Problem

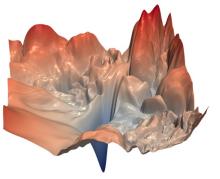
Neural Networks are successfully applied on multiple domains

Loss surface and optimization problem of Neural Networks are highly non-convex

Goodfellow, Vinyals, Saxe; ICLR 2015; *Qualitatively characterizing neural network optimization problems* Dauphin et al.; NeurIPS 2014; *Identifying and attacking the saddle point problem in high-dimensional non-convex optimization* LeCun, Bengion, Hinton; Nature 2015; *Deep Learning*

Neural Network training optimization is high dimensional

Brown et al.; 2020; *Language Models are Few-Shot Learners* Larsen et al.; ICML 2021; *How many degrees of freedom do we need to train deep networks: a loss landscape perspective*



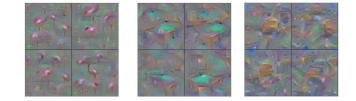
Li et al.; NeurIPS 2018; Visualizing the Loss Landscape of Neural Nets

Neural Network training is sensitive to hyperparameters and random initialization

Hanin, Rolnick; NeurIPS 2018; How to Start Training: The Effect of Initialization and Architecture

Relation between characteristics of NN models and their solution in weight space not fully understood

Related Work



2x Depth (95.0%) 8x Depth (91 9%

TOPOLOGICAL

STIMATED PERFORMANCE G.

Comparing Neural Network models

Visualization of CNN kernels

Raghu et al.; NeurIPS 2017; SVCCA: Singular Vector Canonical Correlation Analysis for Deep Learning Dynamics and Interpretability Kornblith et al.; ICML 2019; Similarity of Neural Network Representations Revisited

rely on expressivity of data

Mehrer et al.; Nature 2020; Individual Di

investigate/compare only single/pairs of models

supervised learning may overfit few features

Activation-based Pred

Yak et al.; ICML 2019; Towards Task and

Jiang, Krishnan, Mobahi and Bengio; ICLR 2019; Predicting the Generalization Gap in Deep Networks with Margin Distributions Corneanu et al.; CVPR 2020; *Computing the Testing Error Without a Testing Set*

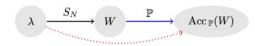
Mellor et al.; ICML 2021; Neural Architecture Search Without Training

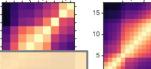
Prediction of Neural Network properties from weights

Yosinski et al.; ICML DL Workshop 2015; Understanding Neural Networks Through Deep Visualization

Zintgraf, Cohen, Adel, Welling, ICLR 2017; Visualizing Deep Neural Network Decisions: Prediction Difference Analysis

Martin and Mahoney; ICML 2019; Traditional and Heavy-Tailed Self Regularization in Neural Network Models Unterthiner et al.; 2020; Predicting Neural Network Accuracy from Weights Eilertsen et al; ECAI 2020; Classifying the Classifier

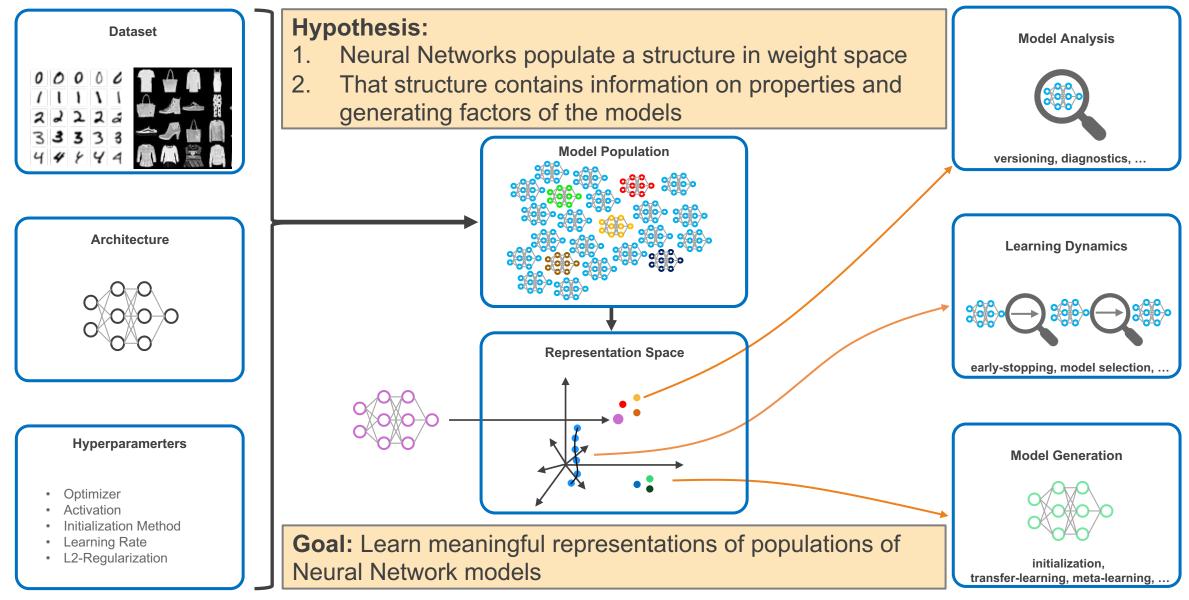




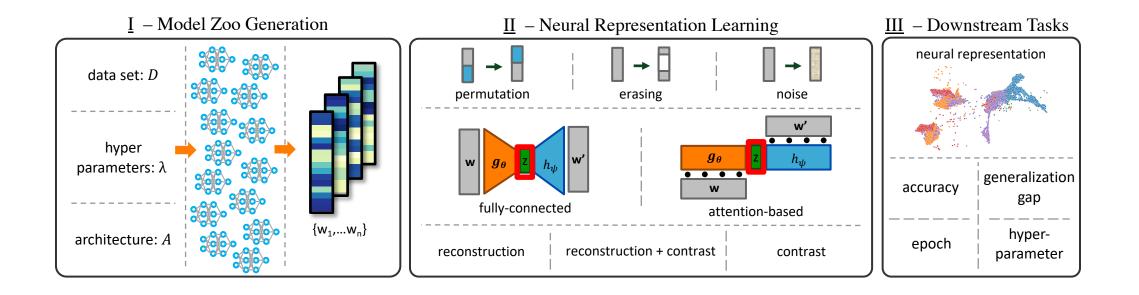
TOPOLOGICAL SPACE

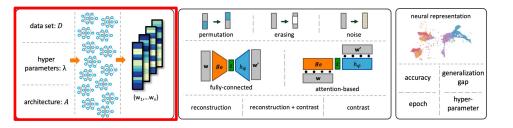
3

Investigating Populations of NN Models



Approach





Approach: Model Zoos

Datasets:

• MNIST, Fashion-MNIST, SVHN, CIFAR, Tetris

Architectures

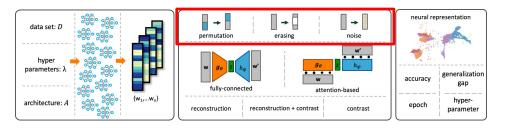
- MLP: 100 parameters (ours)
- CNN: 2464 paramters (ours)
- CNN: 4970 paramters (Unterthiner et al., 2020)

Hyperparamters

- Seed, activation, initialization method, learning rate, regularization, ...
- More than 635k model samples
- Zoos are open source

Our Zoos	Data	Architecture	Samples
Tetris-Seed	Tetris	MLP (100 params.)	75k
Tetris-Hyp	Tetris	MLP (100 params.)	217.5k
MNIST-Seed	MNIST	CNN (2464 params.)	50k
F-MNIST-Seed	F-MNIST	CNN (2464 params.)	50k
MNIST-Hyp-1-Fix-Seed	MNIST	CNN (2464 params.)	~57.6k
MNIST-Hyp-1-Rand-Seed	MNIST	CNN (2464 params.)	~57.6k
MNIST-Hyp-5-Fix-Seed	MNIST	CNN (2464 params.)	~64k
MNIST-Hyp-5-Rand-Seed	MNIST	CNN (2464 params.)	~64k

Zoos from Unterthiner et al., 2020	Data	Architecture	Samples
MNIST-Hyp	MNIST	CNN (4970 params.)	270k
F-MNIST-Hyp	F-MNIST	CNN (4970 params.)	270k
CIFAR-Hyp	CIFAR10	CNN (4970 params.)	270k
SVHN-Hyp	SVHN	CNN (4970 params.)	270k



NN Weights Augmentations

Augmentations:

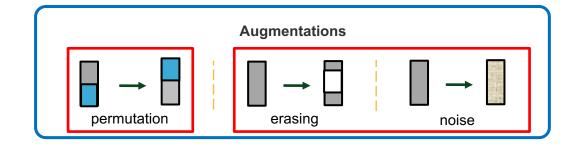
- Multiply # of samples
- Encode inductive bias

Erasing & Noise:

• Adaptations from computer vision

Permutation Augmentation:

- Leverages symmetries in weight space
- Proof: equivalence holds forward & backward
- Scales with faculty of # neurons/kernels
- Fully-connected and convolutional layers
- Full Details: Appendix A



Assumptions

$$(\mathbf{P}^l)^{\mathrm{T}}\mathbf{P}^l = \mathbf{I}, \qquad \mathbf{P}^l\sigma(\mathbf{n}^l) = \sigma(\mathbf{P}^l\mathbf{n}^l),$$

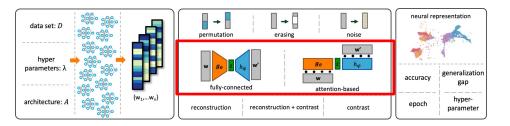
Forward pass

$$\mathbf{n}^{l+1} = \mathbf{W}^{l+1} \mathbf{I} \sigma(\mathbf{W}^{l} \mathbf{a}^{l-1} + \mathbf{b}^{l}) + \mathbf{b}^{l+1}$$

= $\mathbf{W}^{l+1} (\mathbf{P}^{l})^{\mathrm{T}} \mathbf{P}^{l} \sigma(\mathbf{W}^{l} \mathbf{a}^{l-1} + \mathbf{b}^{l}) + \mathbf{b}^{l+1}$
= $\mathbf{W}^{l+1} (\mathbf{P}^{l})^{\mathrm{T}} \sigma(\mathbf{P}^{l} \mathbf{W}^{l} \mathbf{a}^{l-1} + \mathbf{P}^{l} \mathbf{b}^{l}) + \mathbf{b}^{l+1}$
= $\mathbf{\hat{W}}^{l+1} \sigma(\mathbf{\hat{W}}^{l} \mathbf{a}^{l-1} + \mathbf{\hat{b}}^{l}) + \mathbf{b}^{l+1}$,

Backward pass

$$\begin{split} (\mathbf{P}^{l}\mathbf{W}^{l})_{\text{new}} =& \mathbf{P}^{l}\mathbf{W}^{l} - \alpha \mathbf{P}^{l}\nabla_{\mathbf{W}^{l}}\mathcal{L} \\ =& \mathbf{P}^{l}\mathbf{W}^{l} - \alpha \mathbf{P}^{l}\delta^{l}(\mathbf{a}^{l-1})^{\mathrm{T}} \\ =& \mathbf{P}^{l}\mathbf{W}^{l} - \alpha \mathbf{P}^{l}\left[(\mathbf{W}^{l+1})^{\mathrm{T}}\delta^{l+1}\odot\sigma'(\mathbf{n}^{l})\right] (\mathbf{a}^{l-1})^{\mathrm{T}} \\ =& \mathbf{P}^{l}\mathbf{W}^{l} - \alpha\left[(\mathbf{W}^{l+1}\mathbf{P}^{\mathrm{T}})^{\mathrm{T}}\delta^{l+1}\odot\sigma'(\mathbf{P}^{l}\mathbf{n}^{l})\right] (\mathbf{a}^{l-1})^{\mathrm{T}} \\ =& \mathbf{P}^{l}\mathbf{W}^{l} - \alpha\left[(\mathbf{W}^{l+1}(\mathbf{P}^{l})^{\mathrm{T}})^{\mathrm{T}}\delta^{l+1}\odot\sigma'(\mathbf{P}^{l}\mathbf{W}^{l}\mathbf{a}^{l-1} + \mathbf{P}^{l}\mathbf{b}^{l})\right] (\mathbf{a}^{l-1})^{\mathrm{T}} \\ & (\hat{\mathbf{W}}^{l})_{\mathrm{new}} = \hat{\mathbf{W}}^{l} - \alpha\left[(\hat{\mathbf{W}}^{l+1})^{\mathrm{T}}\delta^{l+1}\odot\sigma'(\hat{\mathbf{W}}^{l}\mathbf{a}^{l-1} + \hat{\mathbf{b}}^{l})\right] (\mathbf{a}^{l-1})^{\mathrm{T}} \Box \end{split}$$



Representation Learning Architecture

Challenge:

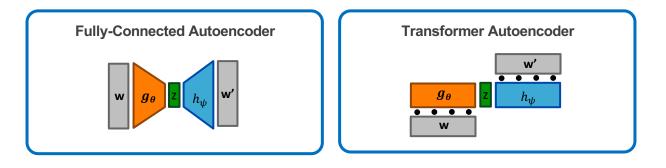
- little intuition on inductive biases
- scalability for larger samples

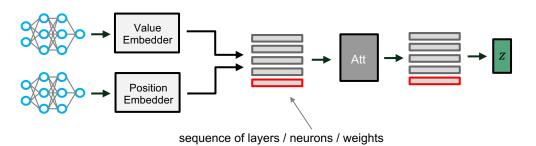
Fully-Connected AE

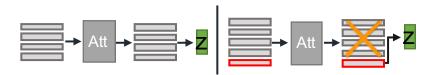
- + low inductive bias
- - doesn't scale well for large inputs

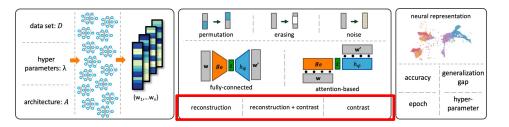
Transformer AE

- + low inductive bias
- + scales to larger models
- Two encodings: sequences of
 - Weights
 - Neurons (all weights of one neuron/kernel)
- Compression token









Representation Learning Task

Goal:

• rich, generalizing representation

Reconstruction:

• Full representation of samples

Contrast:

• Include inductive bias

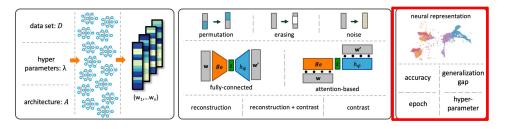
$$\mathcal{L}_{MSE} = \frac{1}{M} \sum_{i=1}^{M} \|\mathbf{w}_i - h_{\psi}(g_{\theta}(\mathbf{w}_i))\|_2^2$$

$$\mathcal{L}_{c} = \sum_{(i,j)} -\log \frac{\exp(\operatorname{sim}(\bar{\mathbf{z}}_{i}, \bar{\mathbf{z}}_{j})/\tau}{\sum_{k=1}^{2M_{B}} \mathbb{I}_{k\neq i} \exp(\operatorname{sim}(\bar{\mathbf{z}}_{i}, \bar{\mathbf{z}}_{j})/\tau}$$

Four Taks:

- 1. Reconstruction only
- 2. Contrast only
- 3. Reconstruction + Contrast
- 4. Reconstruction + 'positive' Contrast

$$\mathcal{L}_{c+} = \sum_{i} -\log\left(\exp(\sin(\bar{\mathbf{z}}_{i}^{j}, \bar{\mathbf{z}}_{i}^{k}))/\tau\right) = \sum_{i} -\sin(\bar{\mathbf{z}}_{i}^{j}, \bar{\mathbf{z}}_{i}^{k}) + \log(\tau).$$



Downstream Tasks

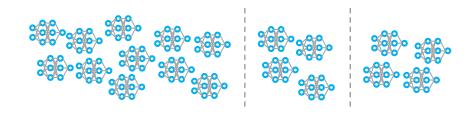
Split Zoos in train | val | test

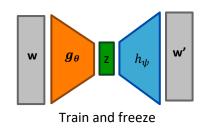
Train Representation

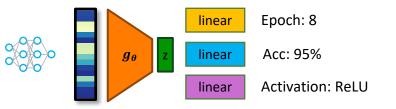
• Evaluation: Reconstruction R^2

Downstream Task:

- Linear probe for model characteristics
- Evaluation: Accuracy / R^2







Experiment Results: Ablation Studies

Augmentation:

- Aggregated performance
- Permutation augmentation most useful
- Combination of augmentations beneficial

Architectures:

- Fully-connected lowest performance
- Weight-encoding works, but doesn't scale
- Neuron-encoding has best performance
- Compression token generally improves performance

TETRIS-SEED										
	-	Р	Е	N	P,E	P,N	E,N	P,E,N		
E_c	46.5 66.4	71.2	27.7	23.2	71.2	57.5	27.9	71.8		
ED	66.4	68.2	65.9	66.2	64.9	67.9	65.6	64.4		
E_cD	60.1 64.7	75.4	66.3	61.5	82.0	79.1	70.7	82.2		
$E_{c+}D$	64.7	69.9	65.8	64.0	66.2	67.3	65.8	63.6		

TETRIS-SEED										
	Rec.	Eph	Acc	Ggap	$F1_{AVG}$					
FF	0.0	80.0	85.3	79.8	63.9					
Att_W	6.8	95.3	71.1	71.2	57.0					
Att_{W+t}	74.1	95.4	88.6	82.4	73.0					
Att_N	89.4	97 .1	88.4	80.6	75.9					
Att_{N+t}	84.1	97.0	90.2	81.9	75.6					

Experiment Results

	MNIST-HYP			FAS	FASHION-HYP			CIFAR10-HYP			SVHN-HYP		
	W	S(W)	E_cD	W	S(W)	E_cD	W	S(W)	E_cD	W	S(W)	E_cD	
Ерн	25.8	33.2	50.0	26.6	34.6	51.3	25.7	30.3	53.3		37.8	52.6	
ACC	74.7	81.5	94.9	70.9	78.5	96.2	76.4	82.9	92.7	80.5	82.1	91.1	
GGAP	23.4	24.4	27.4	48.1	41.1	49.0	37.7	37.4	40.4	38.7	42.2	44.2	
LR	29.3	34.3	37.1	33.5	35.6	42.4	27.4	32.3	44.7	24.5	33.4	49.1	
ℓ_2 -REG	12.5	16.5	20.1	11.9	16.3	25.0	08.7	13.8	28.0	09.0	13.6	28.0	
DROP	28.5	19.2	35.8	26.7	21.3	38.3	16.7	16.5	33.8	09.0	14.6	23.3	
TF	03.8	07.8	15.9	08.1	08.2	22.1	08.4	06.9	35.4	03.2	08.8	21.4	
ACT	88.6	81.1	88.7	89.8	82.4	90.1	88.3	80.3	90.0	86.9	78.8	87.2	
INIT	94.6	72.0	80.6	95.7	76.5	86.7	93.5	73.3	82.6	91.0	73.0	82.8	
Opt	76.7	65.4	66.4	79.9	67.4	73.0	74.0	65.5	71.0	72.5	68.2	72.3	

Out-of-Distribution

Experiment Setup

- Train Representation & Linear Probe on ID Zoo
- Use learned representation & linear probe on OOD Zoos
- Evaluation: Kendall's tau

Results

- Approach generalizes to OOD settings
- Outperforms baselines in the majority of cases

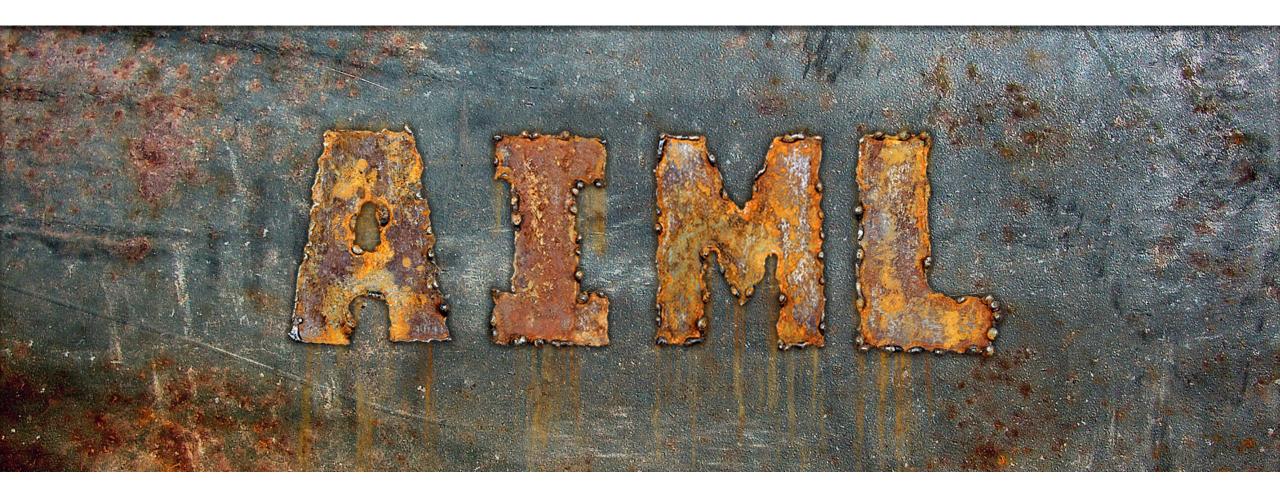
	MNIST-HYP			FASHION-HYP				SVHN-HYP		CIFAR10-HYP		
	W	S(W)	$E_{c+}D$	W	S(W)	$E_{c+}D$	W	S(W)	$E_{c+}D$	W	S(W)	$E_{c+}D$
MNIST-HYP	.36	.29	.36	.21	.14	.27	.26	.12	.23	01	04	.02
FASHION-HYP	02	.08	.02	.54	.48	.56	.06	.14	.01	.07	.10	.27
SVHN-HYP	.05	.15	04	02	.27	.10	.44	.34	.45	02	.08	.10
CIFAR10-HYP	.11	.09	.06	.38	.36	.39	.14	.14	.15	.41	.28	.35

Acknowledgements

Find our work at **hsg.ai/neurips21**

Thanks to Marco Schreyer Xavier Giró-i-Nieto Pol Caselles Rico

Funding: HSG Basic Research Fund



Thanks for your attention!