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Introduction: What is NTK

• Neural Tangent Kernel (NTK) [Jacot et al., 2018]:

Θ̂(w ; x , x ′) = 〈∇w f (w , x),∇w f (w , x ′)〉

• Under certain conditions (usually infinite width limit and NTK
parameterization), the tangent kernel at initialization converges in
probability to a deterministic limit and keeps constant during training:

Θ̂(w ; x , x ′)→ Θ∞(x , x ′)

• Infinite-width NN trained by gradient descent with mean square loss
⇔ kernel regression with NTK [Jacot et al., 2018; Arora et al., 2019]
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Introduction: What is NTK

• Wide neural networks are linear [Lee et al., 2019]:

f (wt , x) = f (w0, x) + 〈∇w f (w0, x),wt − w0〉+ O(m−
1
2 )

where m is the width of NN.

• Constant tangent kernel ⇔ Linear model. Small Hessian norm ⇒
small change of tangent kernel [Liu et al., 2020a].
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Introduction: Motivation & related works

NTK helps us understand the optimization and generalization of NN
through the perspective of kernel methods. However,

• The equivalence is only known for ridge regression (regression model).
Limited insights to understand classification problems.

• Existing theory cannot handle the case of regularization.
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Main results

Our contributions:

1. Equivalence between NN and SVM

2. Equivalence between NN and a family of `2 regularized KMs

3. Finite-width NN trained by `2 regularized loss is approximately a
kernel machine (KM)

4. Applications

4.1 Computing non-vacuous generalization bound of NN via the
corresponding KM

4.2 Robustness certificate for over-parameterized NN
4.3 `2 regularized KMs (from equivalent infinite-width NN) are more

robust than previous kernel regression
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1. Equivalence between NN and SVM

Definition [Soft Margin SVM]

Given labeled samples {(xi , yi )}ni=1 with yi ∈ {−1,+1}, the hyperplane β∗

that solves the below optimization problem realizes the soft margin
classifier with geometric margin γ = 2/‖β∗‖.

min
β,ξ

1

2
‖β‖2 + C

n∑
i=1

ξi , s.t. yi 〈β,Φ(xi )〉 ≥ 1− ξi , ξi ≥ 0, i ∈ [n],

Equivalently,

min
β

1

2
‖β‖2 + C

n∑
i=1

max(0, 1− yi 〈β,Φ(xi )〉).

Denote as L(β), which is strongly convex in β. This can be solved by
subgradient decent.
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1. Equivalence between NN and SVM

Definition [Soft Margin Neural Network]

Given samples {(xi , yi )}ni=1, yi ∈ {−1,+1}, the neural network w∗ that
solves the following two equivalent optimization problems

min
w ,ξ

1

2
‖W (L+1)‖2 + C

n∑
i=1

ξi , s.t. yi f (w , xi ) ≥ 1− ξi , ξi ≥ 0, i ∈ [n],

min
w

1

2
‖W (L+1)‖2 + C

n∑
i=1

max(0, 1− yi f (w , xi )), (1)

realizes the soft margin classifier with geometric margin γ = 2/‖W (L+1)
∗ ‖.

Denote Eq. (1) as L(w) and call it soft margin loss.
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1. Equivalence between NN and SVM

Theorem [Continuous Dynamics and Convergence Rate of SVM]

Consider training soft margin SVM by subgradient descent with infinite
small learning rate (gradient flow): dβt

dt = −∇βL(βt), the model gt(x)
follows the below evolution:

dgt(x)

dt
= −gt(x) + C

n∑
i=1

1(yigt(xi ) < 1)yiK (x , xi ),

and has a linear convergence rate:

L(βt)− L(β∗) ≤ e−2t (L(β0)− L(β∗)) .
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1. Equivalence between NN and SVM

Theorem [Continuous Dynamics and Convergence Rate of NN]

Suppose an NN f (w , x), with f a differentiable function of w , is learned
from a training set {(xi , yi )}ni=1 by subgradient descent with L(w) and
gradient flow. Then the network has the following dynamics:

dft(x)

dt
= −ft(x) + C

n∑
i=1

1(yi ft(xi ) < 1)yi Θ̂(wt ; x , xi ).

Let Θ̂(wt) ∈ Rn×n be the tangent kernel evaluated on the training set and

λmin

(
Θ̂(wt)

)
be its minimum eigenvalue. Assume λmin

(
Θ̂(wt)

)
≥ 2

C
a,

then NN has at least a linear convergence rate, same as SVM:

L(wt)− L(w∗) ≤ e−2t (L(w0)− L(w∗)) .

aThis can be guaranteed in a parameter ball when λmin

(
Θ̂(w0)

)
> 2

C
by

using a sufficient wide NN [Liu et al., 2020b].

Yilan, Wei, Lam, Lily SVM NeurIPS 2021 12 / 29



1. Equivalence between NN and SVM

Theorem [Equivalence between NN and SVM]

As the minimum width of the NN, m = minl∈[L] ml , goes to infinity, the

tangent kernel tends to be constant, Θ̂(wt ; x , xi )→ Θ̂(w0; x , xi ). Assume
g0(x) = f0(x). Then the infinitely wide NN trained by subgradient descent
with soft margin loss has the same dynamics as SVM with Θ̂(w0; x , xi )
trained by subgradient descent:

dft(x)

dt
= −ft(x) + C

n∑
i=1

1(yi ft(xi ) < 1)yi Θ̂(w0; x , xi ).

And thus such NN and SVM converge to the same solution.
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1. Equivalence between NN and SVM

Experiments verification.

Figure: Training dynamics of neural network and SVM behave similarly. (a)(b)
show dynamics of outputs for randomly selected two samples. (c) shows the
difference between the outputs of SVM and NN. The dynamics of SVM agrees
better with wider NN. (d) shows the dynamics of hinge loss for SVM and NN.
Without specification, the width of NN is 10K and η̂ = 0.1.
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2. Equivalence between NN and `2 regularized KMs

Suppose the loss function for the KM and NN are

L(β) =
λ

2
‖β‖2 +

n∑
i=1

l(g(β, xi ), yi ), (2)

L(w) =
λ

2
‖W (L+1)‖2 +

n∑
i=1

l(f (w , xi ), yi ). (3)

Then the continuous dynamics of gt(x) and ft(x) are

dgt(x)

dt
= −λgt(x)−

n∑
i=1

l ′(gt(xi ), yi )K (x , xi ),

dft(x)

dt
= −λft(x)−

n∑
i=1

l ′(ft(xi ), yi )Θ̂(wt ; x , xi ),

where l ′(z , yi ) = ∂l(z,yi )
∂z .
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2. Equivalence between NN and `2 regularized KMs

Theorem [Bounds on the difference between NN and KMs]

Assume g0(x) = f0(x), ∀x and K (x , xi ) = Θ̂(w0; x , xi )
a. Suppose the

SVM and NN are trained with losses (2) and gradient flow. Suppose l is
ρ-lipschitz and βl -smooth for the first argument (i.e. the model output).
Given any wT ∈ B(w0;R) := {w : ‖w − w0‖ ≤ R} for some fixed R > 0,
for training data X ∈ Rd×n and a test point x ∈ Rd , with high probability
over the initialization,

‖fT (X )− gT (X )‖ = O(
eβl‖Θ̂(w0)‖R3L+1ρn

3
2 lnm

λ
√
m

),

‖fT (x)− gT (x)‖ = O(
eβl‖Θ̂(w0;X ,x)‖R3L+1ρn lnm

λ
√
m

).

where fT (X ), gT (X ) ∈ Rn are the outputs of the training data and
Θ̂(w0;X , x) ∈ Rn is the tangent kernel evaluated between training data
and test point.

aLinearized NN is a special case of such g .
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2. Equivalence between NN and `2 regularized KMs

Table: Summary of our theoretical results on the equivalence between
infinite-width NNs and a family of KMs.

λ Loss l(z, yi ) Kernel machine

λ = 0([Jacotet al., 2018]) (yi − z)2 Kernel regression

λ→ 0 (ours) max(0, 1− yi z) Hard margin SVM

λ > 0 (ours)

max(0, 1− yi z) (1-norm) soft margin SVM

max(0, 1− yi z)2 2-norm soft margin SVM
max(0, |yi − z| − ε) Support vector regression

(yi − z)2 Kernel ridge regression (KRR)

log(1 + e−yi z ) Logistic regression with `2 regularization
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3. Finite-width NN trained by `2 regularized loss is
approximately a KM

Theorem

Suppose an NN f (w , x), is learned from a training set {(xi , yi )}ni=1 by
(sub)gradient descent with loss function (2) and gradient flow. Assume
sign(l ′(yi , ft(xi ))) = sign(l ′(yi , f0(xi ))), ∀t ∈ [0,T ].a Then at some time
T > 0,

fT (x) =
n∑

i=1

aiK (x , xi ) + b,

K (x , xi ) = e−λT
∫ T

0
|l ′(ft(xi ), yi )|Θ̂(wt ; x , xi )e

λt dt,

and ai = −sign(l ′(f0(xi ), yi )), b = e−λT f0(x).

aThis is the case for hinge loss.
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Main results

Our contributions:

1. Equivalence between NN and SVM

2. Equivalence between NN and a family of `2 regularized KMs

3. Finite-width NN trained by `2 regularized loss is approximately a
kernel machine (KM)

4. Applications

4.1 Computing non-vacuous generalization bound of NN via the
corresponding KM

4.2 Robustness certificate for over-parameterized NN
4.3 `2 regularized KMs (from equivalent infinite-width NN) are more

robust than previous kernel regression
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4.1 Computing non-vacuous generalization bound

Combing above Theorem with a bound of the Rademacher complexity for
KM and a standard generalization bound using Rademacher complexity, we
can compute the generalization bound of NN via the corresponding KM.

Figure: Computing non-vacuous generalization bounds via corresponding kernel
machines. Two-layer NN with 100 hidden nodes trained by full-batch subgradient
descent for binary MNIST classification task on full 0 and 1 data with learning
rate η̂ = 0.1. The kernel machine (KM) approximates NN very well. And we get
a tight bound of the true loss by computing its Rademacher complexity. The
confidence parameter is set as 1− δ = 0.99.
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Main results

• Most of the existing generalization bounds of NN [Bartlett et al.,
2019; Long and Sedghi, 2019] are vacacous since they have a
dependence on the number of parameters.

• Compared to those, the bound for kernel machines does not have a
dependence on the number of NN’s parameters, making it
non-vacuous and promising.

• Moreover, we can even apply this generalization bound to optimize
NN directly like PAC-Bayes bound [Dziugaite and Roy, 2017], which
gives NN with guaranteed generalization ability.
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4.2 Robustness certificate for over-parameterized NN

Theorem

Consider the `∞ perturbation, for
x ∈ B∞(x0, δ) = {x ∈ Rd : ‖x − x0‖∞ ≤ δ}, we can bound Θ(x , x ′) into
some interval [ΘL(x , x ′),ΘU(x , x ′)]. Suppose g(x) =

∑n
i=1 αiΘ(x , xi ),

where αi are known after solving the KM problems (e.g. SVM and KRR).
Then we can lower bound g(x) as follows.

g(x) ≥
n∑

i=1,αi>0

αiΘ
L(x , xi ) +

n∑
i=1,αi<0

αiΘ
U(x , xi ).

Using a simple binary search and above theorem, we can find a lower
bound for the robustness radius of KM, equivalently for the corresponding
infinite-width NN.
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4.2 Robustness certificate for over-parameterized NN

We can deliver nontrivial robustness certificate for the over-parameterized
NN (with width m→∞) while existing robustness verification methods
would give trivial robustness certificate due to bound propagation
(decrease at a rate of O(1/

√
m)).

Table: Robustness lower bounds of two-layer ReLU NN and SVM (infinite-width
two-layer ReLU NN) tested on binary classification of MNIST (0 and 1). 100 test:
randomly selected 100 test samples. Full test: full test data. Test only on data
that classified correctly. std is computed over data samples. All models have test
accuracy 99.95%. All values are mean of 5 experiments.

Robustness certificate δ (mean ± std) ×10−3

Model Width 100 test Full test

NN 103 7.4485 ± 2.5667 7.2708 ± 2.1427

NN 104 2.9861 ± 1.0730 2.9367 ± 0.89807

NN 105 0.99098 ± 0.35775 0.97410 ± 0.29997

NN 106 0.31539 ± 0.11380 0.30997 ± 0.095467

SVM ∞ 8.0541 ± 2.5827 7.9733 ± 2.1396
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4.3 `2 regularized KMs are more robust than kernel
regression

Table: Robustness of equivalent infinite-width NN models with different loss
functions (see Table 1) on binary classification of MNIST (0 and 1). λ is the
parameter in Eq. (2).

Model λ Test accuracy Robustness certificate δ Robustness improvement

λ = 0([Jacotet al., 2018]) KRR 0 99.95% 3.30202×10−5 -

λ > 0 (ours)

KRR 0.001 99.95% 3.756122×10−5 1.14X

KRR 0.01 99.95% 6.505500×10−5 1.97X

KRR 0.1 99.95% 2.229960×10−4 6.75X
KRR 1 99.95% 0.001005 30.43X
KRR 10 99.91% 0.005181 156.90X
KRR 100 99.86% 0.020456 619.50X
KRR 1000 99.76% 0.026088 790.06X
SVM 0.032 99.95% 0.008054 243.91X
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Conclusions and future works

Conclusions:

1. Equivalence between NN and SVM

2. Equivalence between NN and a family of `2 regularized KMs

3. Finite-width NN trained by `2 regularized loss is approximately a
kernel machine (KM)

4. Applications

4.1 Computing non-vacuous generalization bound of NN via the
corresponding KM

4.2 Robustness certificate for over-parameterized NN
4.3 `2 regularized KMs (from equivalent infinite-width NN) are more

robust than previous kernel regression
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Conclusions and future works

Future works:

• Understand the optimization, generalization, and robustness of NN
from the perspective of these new equivalent KMs
• Consider its connection with the implicit bias of NN

• Max-margin solution
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