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Neural Network Compression
Related Work - Neural Network Quantization
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Neural Network Compression

• Quantization suffers from accuracy 
degradation


• Use Teacher-Student knowledge 
distillation method to fine-tune 
quantized model 
 

• Fine-tuning stage needs  
the original train dataset

Related Work - Neural Network Quantization



Data-free Neural Network Compression

Original Dataset itself is the problem 

• Copyright 

• Privacy  

• No public use 

• Too large

Related Work - Data-free Compression



Compression method 

without original data 

a.k.a.  

Data-free  
Neural Network Compression

Data-free Neural Network Compression
Related Work - Data-free Compression



Prior study -  
Generative low-bitwidth data free quantization[1]

Related Work - Generative Data-free Compression
Data-free Neural Network Compression

G
Random 

noise

Cross- 
entropy loss

(μ, σ2) . . .

Channel-wise 
mean/variance 

(L2 distance)

Train Generator

Class 
Embedding

(μ, σ2)

[1] Shoukai Xu et al. “Generative low-bitwidth data free quantization”. In: European Conference on Computer Vision. 2020. 
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• Feature space visualization by dimension reduction using PCA



CIFAR-10 Original Distribution Synthetic Sample Distribution

Motivational Experiment
Data-free Neural Network Compression

• Feature space visualization by dimension reduction using PCA

successfully locate center of each class



CIFAR-10 Original Distribution Synthetic Sample Distribution

Motivational Experiment
Data-free Neural Network Compression

• Feature space visualization by dimension reduction using PCA

missing boundary samples



Motivational Experiment - Quantitative Analysis 
Data-free Neural Network Compression
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• Experiment on ResNet-20,  
CIFAR-100, 4w4a quantization


• Generative method still has 
considerable gap between original data Large Gap 

Still Exists

Hypothesis 
The lack of boundary supporting samples  

cause accuracy degradation



Data-free Neural Network Compression

• Add 15 real samples per class to 
synthetic data


1. Unconfusing real samples that have 
high confidence from teacher 


2. Confusing real samples that have 
low confidence (boundary samples)  
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w/ original data

w/ synthetic data w/ original data
w/ synthetic data 

+ unconfusing samples 
w/ synthetic data 

+ confusing samples

+0.52%p

+2.36%p

Experiment results show 
boundary supporting samples  

can help to reduce quantization error

Motivational Experiment - Quantitative Analysis 



Qimera
Data-free Quantization with Synthetic Boundary Supporting Samples

Three main methods,


1. Superposed Embedding (SE)


2. Disentanglement Mapping (DM)


3. Extracted Embedding Information (EEI)

Generative data-free quantization method,  
focuses on synthesizing boundary supporting samples
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Qimera : Data-free Quantization with Synthetic Boundary Supporting Samples
Method 1 : Superposed Embedding (SE)

̂x = G(z + Ey) z ∼ 𝒩(0,1),Synthetic image generation : ,

where generator , class embedding vector , and random noise .  G Ey z



Qimera : Data-free Quantization with Synthetic Boundary Supporting Samples

Boundary supporting samples from SE : ( ̂x′ , ̂y′ ) = (G(S(e)),
K

∑
k

λkyk)

S(e) = z +
K

∑
k

λkek

λi = Softmax(pi)
pi ∼ 𝒩(0,1)

Superposed Embedding (SE) : 

Method 1 : Superposed Embedding (SE)
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EA EB

Method 1 : Superposed Embedding (SE)
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Method 1 : Superposed Embedding (SE)



Class A region Class B region

Qimera : Data-free Quantization with Synthetic Boundary Supporting Samples

*0.5 + *0.5EA EB

*0.6 + *0.4EA EB
*0.2 + *0.8EA EB

class 
center

class 
center

EA EB

Quantized   
Boundary

Method 1 : Superposed Embedding (SE)



Qimera : Data-free Quantization with Synthetic Boundary Supporting Samples
Method 2 : Disentanglement Mapping (DM)

Inspired by StyleGAN[2] paper, 

DM disentangles class embedding  from , where .Ei Ek k ≠ i

[2] Tero Karras, Samuli Laine, and Timo Aila. “A style-based generator architecture for generative adversarial networks”. 

In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019. 

Learnable mapping function 





Implemented as single-layer perceptron

M : ℝD → ℝd

S(e) = z +
K

∑
k

λkM(ek)

Disentanglement 
Mapping



Qimera : Data-free Quantization with Synthetic Boundary Supporting Samples

Analyzing the effect of DM

We measured the ratio of perceptual distance 
divided by Euclidean distance, 


s.t. , 


where ,


 is feature representation extracted from the teacher network. 
 is set to 1000.
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F(e)de
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k
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F(e)
K

Dist. Ratio

SE Only 1.64

SE + DM 1.59 (-0.05)
ResNet20, CIFAR100

Method 2 : Disentanglement Mapping (DM)

∥F(E j)
− F(E i)∥

2



…

Extracted Feature

Qimera : Data-free Quantization with Synthetic Boundary Supporting Samples
Method 3 : Extracted Embedding Information (EEI)

Weight Matrix of the Last FC Layer

= …

Class Probability

Last FC Layer in a nutshell
C0 C1 Cn−2Cn−1



Corresponding column of the weight matrix  
represents class information 


e.g. Distance between classes,Class similarity, etc.

Use corresponding column vectors  
as initialization of class embedding vectors

Qimera : Data-free Quantization with Synthetic Boundary Supporting Samples
Method 3 : Extracted Embedding Information (EEI)

Dist. Ratio
SE Only 1.64
SE + DM 1.59 (-0.05)

SE + DM + EEI 1.52 (-0.07)
ResNet20, CIFAR100
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Dataset Model Bit Qimera (%p improvement)

CIFAR-10 ResNet-20

(93.89)

4w4a 91.26 +- 0.49 (-0.87)
5w5a 93.46 +- 0.03 (+0.08)

CIFAR-100 ResNet-20

(70.33)

4w4a 65.10 +- 0.33 (+1.71)
5w5a 69.02 +- 0.22 (+0.32)

ImageNet

ResNet-18

(71.47)

4w4a 63.84 +- 0.30 (+3.24)
5w5a 69.29 +- 0.16 (+0.89)

ResNet-50

(77.73)

4w4a 66.25 +- 0.90 (+13.23)
5w5a 75.32 +- 0.09 (+1.94)

MobileNetV2

(73.03)

4w4a 61.62 +- 0.39 (+2.19)
5w5a 70.45 +- 0.07 (+2.34)

Qimera : Data-free Quantization with Synthetic Boundary Supporting Samples
Experiment Results : Accuracy Improvement

Experiment results of Qimera show that, 

• achieves superior performance in  
most settings 

• significant improvement on low-bit settings 

• robust increase on large-scale dataset 

• higher accuracy gain on deeper network 
e.g. over 13%p improvement on ResNet-50



Qimera : Data-free Quantization with Synthetic Boundary Supporting Samples
Experiment Results : Visualization

Qimera (Ours)

boundary 
supporting 

samples

boundary 
supporting 

samples
more realistic 

class 
distribution

PCA visualization from  
motivational experiment


Feature space visualization of the  
Qimera shows that


• successfully generated 
boundary supporting samples


• more realistic class distribution
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Ablation Study

Conducted ablation study upon SE, DM, EEI


• SE Only shows significant accuracy gain


• Both DM and EEI further improve accuracy 
by disentangling embedding space


• Using DM and EEI simultaneously with SE,  
overall 14%p improvement has gain

Dataset Method Accuracy

ImageNet

(ResNet-50)

Baseline 52.12

SE Only 64.09 (+11.98)

SE + DM 66.06 (+13.94)

SE + EEI 64.44 (+12.32)

SE + DM + EEI 66.25 (+14.13)



Qimera : Data-free Quantization with Synthetic Boundary Supporting Samples
Conclusion

• The data-free quantization is a promising way to compress neural networks 
even without the original train dataset.


• We conducted an experiment that shows existing methods lack boundary 
supporting samples, which cause accuracy degradation.


• We propose a simple yet effective method to generate boundary supporting 
samples for data-free quantization.


• The extensive experiments show our method achieved SOTA performance in 
many settings.


