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Elevator Pitch

New approach to learn Bayesian Networks
with reliably low reasoning times
not compromising on the quality
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Bayesian Network Basics

A Bayesian Network (BN) is a DAG D, with random variables X as
vertices along with probability distribution tables for each variable

Arc Xp → Xq indicates q depends on p

Bayesian Network B

study
more less

0.7 0.3

grades
study good ok bad

more 0.6 0.3 0.1
less 0.2 0.3 0.4

higher studies
grades/income yes no

good/high 0.9 0.1
good/low 0.4 0.6

ok/high 0.5 0.5
ok/low 0.3 0.7

bad/high 0.2 0.8
bad/low 0.1 0.9

income
high low

0.5 0.5
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Bayesian Network Basics

A Bayesian Network (BN) is a DAG D, with random variables X as
vertices along with probability distribution tables for each variable

Arc Xp → Xq indicates q depends on p

Structure of B

study grades higher studies

income
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Bayesian Network Basics

study grade income higher
studies

less good high no
more ok low yes
less ok high yes
less good high yes
...

...
...

...
more bad high no
less bad high no
more bad high no

Samples Structure

Bayesian Network Structure Learning (BNSL)

grades

higher studies

income

study
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Inference on BNs

Once learned, BNs can be used to make predictions (inference)

Inference is exponential in general

For special classes of graphs, inference can be polytime

Most popular special class: graphs with bounded treewidth

Samples Structure

Xg, Xi, Xh

Xi, Xh

study

grades

higher studies

income

Xs, Xg
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Inference on BNs

Xg, Xi, XhXs, Xg

Xi, Xh
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Inference on BNs
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Inference on BNs
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Treewidth bounds maximum number of columns

We propose to use maximum state space size(msss) in place of treewidth

More fine-grained than treewidth

Takes into account domain sizes of variables

Many real-world datasets contain non-binary variables

12
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Correlation with Reasoning times

(correlation plot)
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tighter correlation =⇒ more control over reasoning time

log2(max state space size) treewidth
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Learning such Networks

How to learn networks with bounded max state space size?

Build on top of ‘SLIM’ approach used for learning bounded treewidth BNs

Global solution

SAT-based Local Improvement Method (SLIM)
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Learning such Networks

How to learn networks with bounded max state space size?

Build on top of ‘SLIM’ approach used for learning bounded treewidth BNs

Local subinstance

SAT-based Local Improvement Method (SLIM)
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Learning such Networks

How to learn networks with bounded max state space size?

Build on top of ‘SLIM’ approach used for learning bounded treewidth BNs

Local solver
(SAT-based)

SAT-based Local Improvement Method (SLIM)

(improved)
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Learning such Networks

How to learn networks with bounded max state space size?

Build on top of ‘SLIM’ approach used for learning bounded treewidth BNs

SAT-based Local Improvement Method (SLIM)
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Learning such Networks

How to learn networks with bounded max state space size?

Build on top of ‘SLIM’ approach used for learning bounded treewidth BNs

3 7

SAT-based Local Improvement Method (SLIM)
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Adapting SLIM to bounded state space

Simple cardinality counter for treewidth

Replaced by BDD-based counter for tracking state space size

1 2 3

ds(Xg) = 3

ds(Xi) = 2

ds(Xh) = 2

msss ≤ 4

Xi, 1

Xh, 1

Xi, 3

Xh, 2

FALSETRUE

←
∏

ds(v)

Xg, 1

Xh, 3
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Experiments

We compared several methods like original heuristic + SLIM, modified
heuristic, modified heuristic+SLIM against the original heuristic as baseline

Modified existing heuristics to bound max state space size

Benchmark dataset from bnlearn repository, with 6-1041 random variables
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Summary

Max state space size much better indicator of inference time

SLIM can be adapted to learn such networks (using BDDs)

Experiments confirm inference times more reliable

Thank you!

Questions welcome


