Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

Chen Ma¹, Xiangyu Guo², Li Chen¹,

Jun-Hai Yong¹, Yiseng Wang³

¹ School of Software, BNRist, Tsinghua University

² Department of Computer Science and Engineering of SUNY Buffalo

³ School of EECS, Peking University

¹ <u>machenstar@163.com</u> ² <u>xiangyug@buffalo.edu</u>

Background

An adversarial example should be visually indistinguishable from the corresponding normal one, but yet are misclassified by the target model.

 Adversarial attacks are the algorithm to find such examples. Hard-label attacks belong to black-box attacks.

Alps: 94.39%

Puffer: 97.99%

Black Box Model

Dog: 99.99%

Crab: 100.00%

Black-box Attacks

Transfer-based

- Generate adversarial examples against white-box models, and leverage transferability for attacks
- Require no knowledge of the target model, no queries
- Issue: require white-box surrogate models (datasets), it assumes this model and the target model are similar.

Query-based

- Get some information from the target model directly, through queries
 - Score-based
 - Decision-based

Goal: save queries and reduce the distortions of examples

In addition, our method does not need any surrogate model!

Hard-label Attacks

Goal: Given classifier f(x): $\mathbb{R}^d \to \mathbb{R}^K$ and input-label pair (x, y), the hard-label attack needs to generate the adversarial example x_{adv} with only the top-1 predicted label of the classifier:

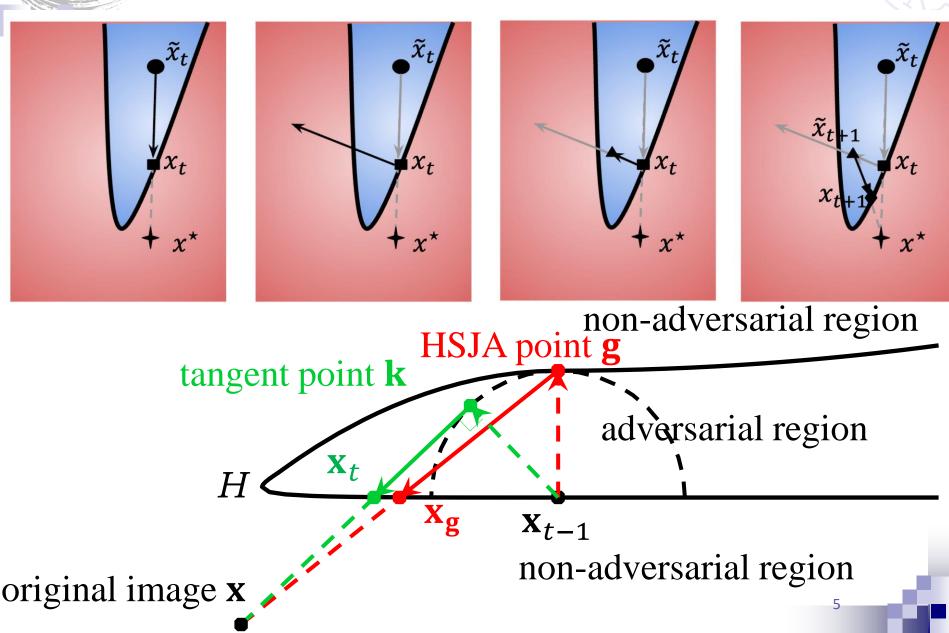
 $\hat{y} = \operatorname{argmax}_{i} f(x_{adv})_{i}$, $i \in \{1, \dots, K\}$

• x^{adv} can be generated by solving

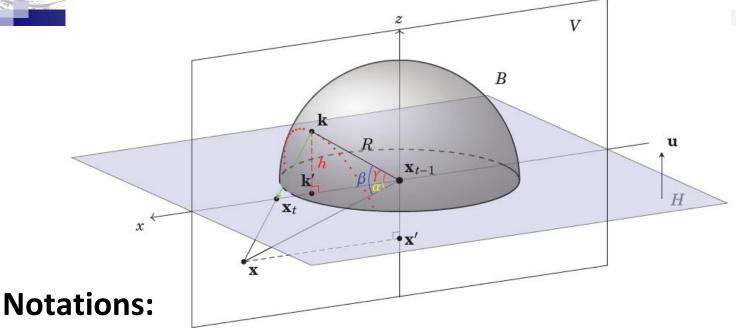
 $x^{adv} = \underset{x^{adv}}{\operatorname{argmin}} d(x^{adv}, x) \text{ s.t. } \phi(x_{adv}) = 1$

where $\phi(x_{adv}) = \begin{cases} 1 \ if \ \hat{y} = y_{adv} \text{ in the targeted attack} \\ \text{or } \hat{y} \neq y \text{ in the untargeted attack} \\ 0 \ \text{otherwise} \end{cases}$

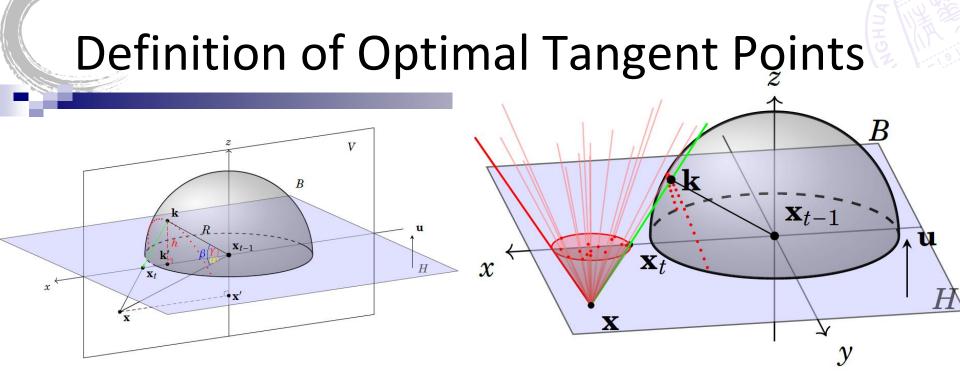
i.e., $\phi(x_{adv})$ indicates an successful attack.


 Class
 Prob

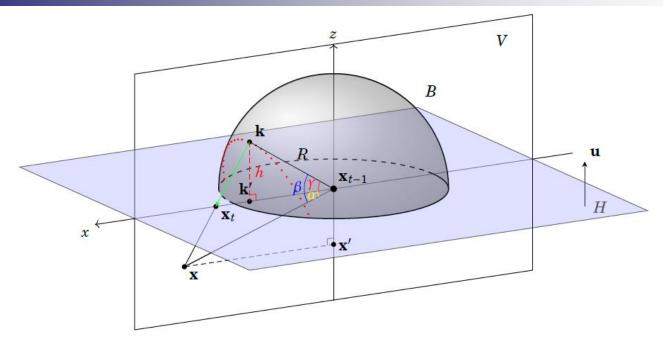
 Dog:
 0.9


 Cat:
 0.04

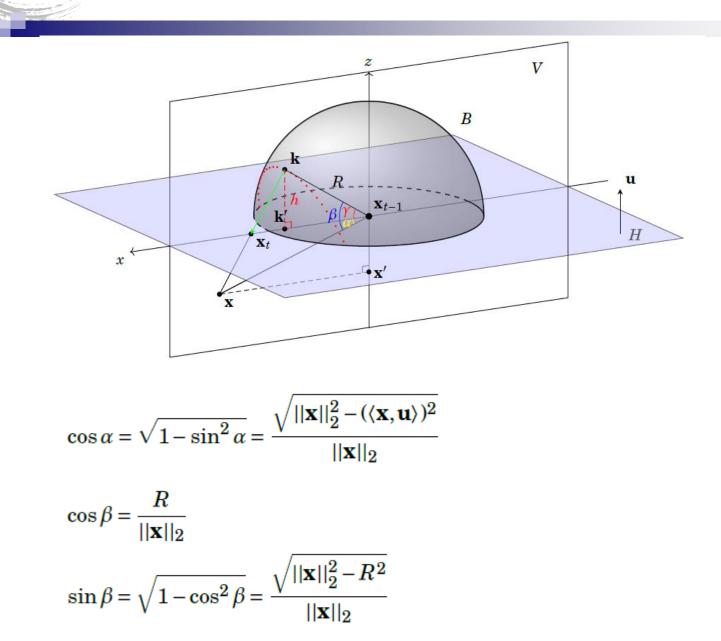
 Bird:

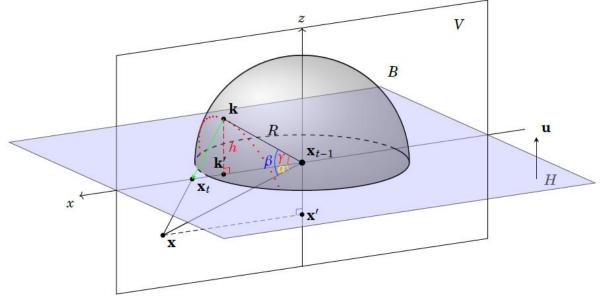

A typical hard-label attack: HSJA

Definition of Optimal Tangent Points

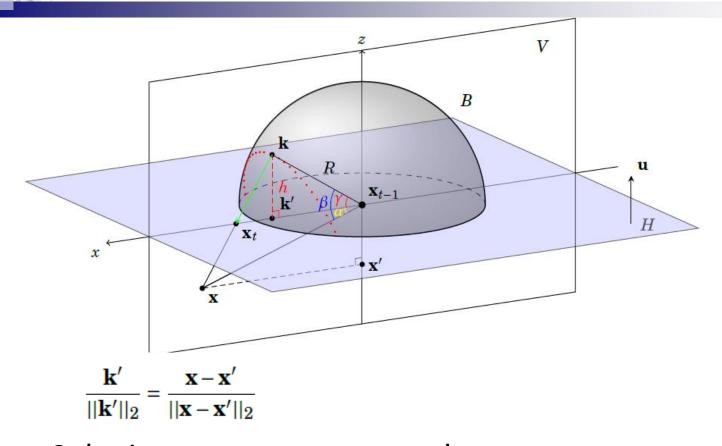


- H denotes the decision hyperplane,
- u denotes the unit gradient vector,
- **k** denotes any point in the hemisphere *B*, which centered at \mathbf{x}_{t-1}
- R denotes the radius of hemisphere B,
- x_t denotes the intersection of H and the line passing through x and k.


Theorem 1: Let H, \mathbf{u} , \mathbf{x} and \mathbf{x}_{t-1} be defined above, then the distance $||\mathbf{x} - \mathbf{x}_{t-1}||_2$ is the shortest if \mathbf{k} is the optimal solution of the following constrained optimization problem:

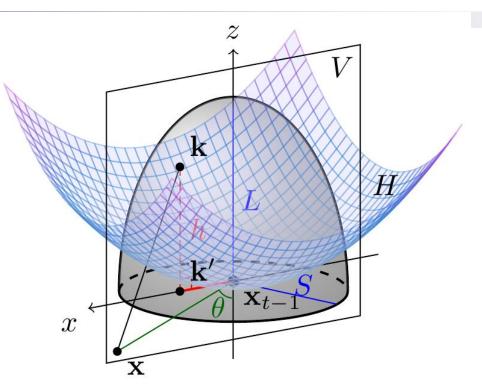

$$\operatorname{argmax}_{\mathbf{k}} \langle \mathbf{k} - \mathbf{x}_{t-1}, \mathbf{u} \rangle$$

s.t. $\langle \mathbf{k} - \mathbf{x}_{t-1}, \mathbf{x} - \mathbf{k} \rangle = 0$
 $||\mathbf{k} - \mathbf{x}_{t-1}||_2 = 0$
 $\langle \mathbf{k} - \mathbf{x}_{t-1}, \mathbf{u} \rangle > 0$


- α , β , γ are on the same plane V, so $\beta = \alpha + \gamma_{\circ}$
- the angle between vector **x** and **u** is $\frac{\pi}{2} + \alpha$, thus

•
$$\langle \mathbf{x}, \mathbf{u} \rangle = ||\mathbf{x}||_2 \cdot ||\mathbf{u}||_2 \cdot \cos\left(\frac{\pi}{2} + \alpha\right) = ||\mathbf{x}||_2 \cdot ||\mathbf{u}||_2 \cdot (-\sin\alpha)$$

• Thus, $\sin\alpha = -\frac{\langle \mathbf{x}, \mathbf{u} \rangle}{||\mathbf{x}||_2 \cdot ||\mathbf{u}||_2}$



- $\sin \gamma = \sin(\beta \alpha) = \sin \beta \cos \alpha \cos \beta \sin \alpha$
- $\cos \gamma = \cos(\beta \alpha) = \cos \beta \cos \alpha + \sin \beta \sin \alpha$
- Make the project point \mathbf{k}' of \mathbf{k} onto the hyperplane H,
- and $||\mathbf{k} \mathbf{k}'||_2 = h$.
- With $\sin \gamma$ and h, we have $h = R \cdot \sin \gamma = R \cdot (\sin \beta \cos \alpha \cos \beta \sin \alpha)$
- Make the project point \mathbf{x}' of \mathbf{x} onto the z-axis, then $\mathbf{x}' = \langle \mathbf{x}, \mathbf{u} \rangle \cdot \mathbf{u}$ we have $\frac{\mathbf{k}'}{||\mathbf{k}'||} = \frac{\mathbf{x} \mathbf{x}'}{||\mathbf{x} \mathbf{x}'||}$

Substitute $||\mathbf{k}'||_2 = R \cdot \cos \gamma$ and $\mathbf{x}' = \langle \mathbf{x}, (-\mathbf{u}) \rangle \cdot (-\mathbf{u}) = \langle \mathbf{x}, \mathbf{u} \rangle \cdot \mathbf{u}$ We have $\mathbf{k}' = \frac{\mathbf{x} - \mathbf{x}'}{||\mathbf{x} - \mathbf{x}'||_2} \cdot R \cdot \cos \gamma = \frac{\mathbf{x} - \langle \mathbf{x}, \mathbf{u} \rangle \cdot \mathbf{u}}{||\mathbf{x} - \langle \mathbf{x}, \mathbf{u} \rangle \cdot \mathbf{u}||_2} \cdot R \cdot \cos \gamma$ Finally $\mathbf{k} = \mathbf{k}' + h \cdot \mathbf{u} = \frac{\mathbf{x} - \langle \mathbf{x}, \mathbf{u} \rangle \cdot \mathbf{u}}{||\mathbf{x} - \langle \mathbf{x}, \mathbf{u} \rangle \cdot \mathbf{u}||_2} \cdot R \cdot \cos \gamma + h \cdot \mathbf{u}$

Generalized Tangent Attack

$$x_{k} = \frac{S^{2} \left(L^{2} - z_{0} \cdot \frac{L^{2}S^{2}z_{0} + L^{2}x_{0}\sqrt{-L^{2}S^{2} + L^{2}x_{0}^{2} + S^{2}z_{0}^{2}}{L^{2}x_{0}^{2} + S^{2}z_{0}^{2}} \right)}{L^{2} \cdot x_{0}}$$

$$z_{k} = \frac{L^{2}S^{2}z_{0} + L^{2}x_{0}\sqrt{-L^{2}S^{2} + L^{2}x_{0}^{2} + S^{2}z_{0}^{2}}}{L^{2}x_{0}^{2} + S^{2}z_{0}^{2}}$$

Then, $\mathbf{k} = |x_k| \cdot \mathbf{v} + z_k \mathbf{u}$

The complete algorithm

Algorithm 1 Tangent Attack

Input: benign image x, attack success indicator function $\phi(\cdot)$ defined in Eq. (1), initial batch size B_0 , iteration T, mode $m \in \{\text{semi-ellipsoid}, \text{hemisphere}\}, \text{radius ratio } r$. Initialize $\tilde{\mathbf{x}}_0$ that satisfies $\phi(\tilde{\mathbf{x}}_0) = 1$. $\mathbf{x}_0 \leftarrow \text{BinarySearch}(\tilde{\mathbf{x}}_0, \mathbf{x}, \phi). \{\text{boundary search}\}$ $d_0 = ||\mathbf{x}_0 - \mathbf{x}||_2.$ for t in $1, 2, \ldots, T - 1$ do Sample $B_t \leftarrow B_0 \sqrt{t}$ vectors to estimate gradient **u**. Initialize $R \leftarrow d_{t-1}/\sqrt{t}$. {the initial radius} while true do Compute k based on Eq (11) if m = hemisphere else Eq (12) $R \leftarrow \frac{R}{2}$ {search the radius, and we set $L = R, S = \frac{L}{r}$ if m = semi-ellipsoid} if $\phi(\mathbf{k}) = 1$ then break. end if end while $\mathbf{k} \leftarrow \text{Clip}(\mathbf{k}, 0, 1)$ $\mathbf{x}_t \leftarrow \text{BinarySearch}(\mathbf{k}, \mathbf{x}, \phi). \{\text{boundary search}\}$ $d_t = ||\mathbf{x}_t - \mathbf{x}||_2.$ end for

Experiment Setting

Dataset

- CIFAR-10: 1000 images with the 32× 32 resolution
- ImageNet:1000 images with 299 × 299, 224 × 224 resolutions,

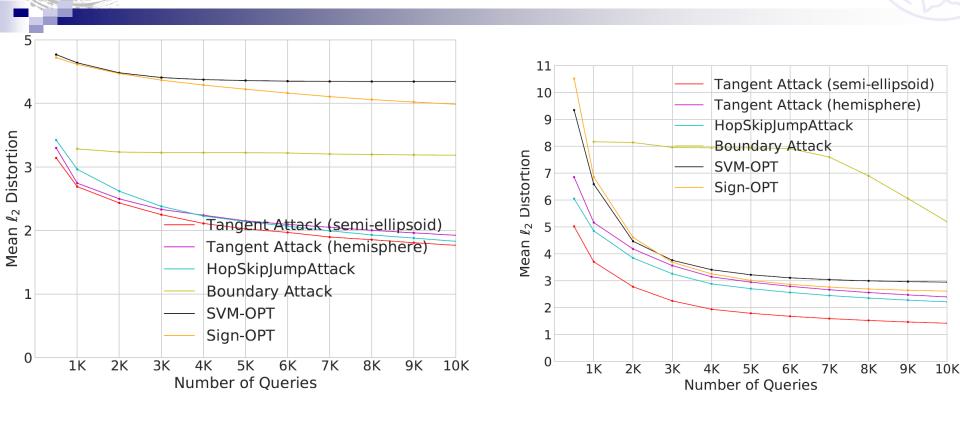
Target Model

CIFAR-10: PyramidNet-272, GDAS, WRN-28, WRN-40
 ImageNet: Inception-v3, Inception-v4, SENet-154, ResNet-101

Defensive Model:

Adversarial Training (AT), TRADES, JPEG, Feature Distillation

Experimental Results: ImageNet

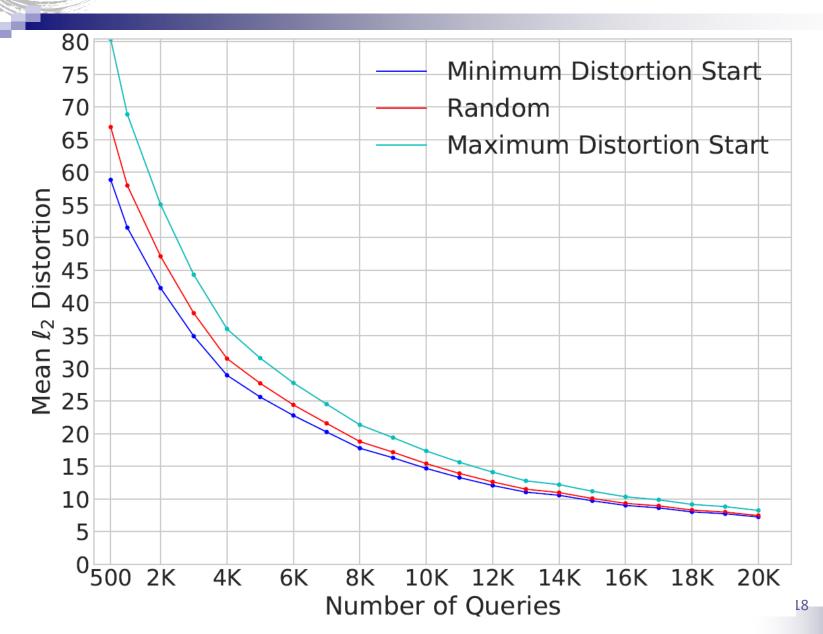

Table 1: Mean ℓ_2 distortions of different query budgets on ImageNet dataset, where $r = 1.1$.														
Target Model	Method	Targeted Attack						Untargeted Attack						
-		@300	@1K	@2K	@5K	@8K	@10K	@300	@1K	@2K	@5K	@8K	@10K	
Inception-v3	BA	111.798	108.044	106.283	102.715	86.931	78.326	-	107.558	102.309	95.776	78.668	60.296	
	Sign-OPT	103.939	87.706	71.291	46.744	34.640		121.085	79.158	43.642	16.625	10.557	8.680	
	SVM-OPT	101.630	82.950	67.965	46.275		31.106	121.135	66.027	36.763	15.736	10.501	8.789	
	HSJA	111.562	95.295	82.111	52.544	37.395	30.425	103.605	57.295	37.185	15.484	9.989	7.967	
	Ours (hemisphere)	103.781	80.327	66.708	42.121	30.846		94.752	52.523	35.229	15.040	9.748	7.793	
	Ours (ellipsoid)	103.724	81.089	67.168	42.434	31.011	25.587	94.668	52.037	34.540	14.643	9.540	7.618	
Inception-v4	BA	110.343	106.616	104.586	100.321	84.058	75.507	-	116.075	111.474	104.451	86.572	66.283	
	Sign-OPT	101.620	85.731	69.719	46.416	34.957	30.004	132.991	86.431	48.292	18.678	11.567	9.262	
	SVM-OPT	99.856	81.342	66.982	45.667	35.477	31.152	132.227	72.920	41.095	17.611	11.418	9.372	
	HSJA	109.670	93.916	80.937	52.358	37.773	30.958	110.727	63.731	42.290	17.936	11.367	8.911	
	Ours (hemisphere)	101.666	78.683	65.304	41.629			101.207	58.616	40.314	17.639	11.304	8.907	
	Ours (ellipsoid)	101.495	79.210	65.888	42.002	30.965	25.847	101.173	58.225	39.788	17.265	11.008	8.677	
	BA	81.090	77.723	76.122	71.967	55.953	47.652	-	75.998	71.671	66.983	53.917	40.725	
	Sign-OPT	75.722	62.876	49.191	30.155	21.333	17.672	70.035	47.705	27.314	10.890	6.643	5.245	
SENet-154	SVM-OPT	74.658	58.677	46.827	30.264	22.461	19.186	69.854	40.291	23.692	10.494	6.666	5.409	
	HSJA	77.035	63.488	51.802	30.138	19.680	16.261	71.248	38.035	24.895	10.218	5.855	4.842	
	Ours (hemisphere)	70.739	55.256	43.694	24.961	16.756	13.876	65.589	35.689	24.037	10.039	5.774	4.766	
	Ours (ellipsoid)	70.591	55.224	44.047	25.041	16.854	14.047	65.871	35.768	23.954	9.959	5.733	4.734	
ResNet-101	BA	81.565	77.903	76.366	72.392	58.746	51.679	-	64.007	60.389	56.544	44.175	31.371	
	Sign-OPT	76.732	63.939	51.231	32.439	23.160	19.248	56.244	38.282	21.985	10.048	7.050	6.050	
	SVM-OPT	77.031	61.417	49.842	32.806	24.553	20.964	55.894	32.638	19.409	9.830	7.185	6.281	
	HSJA	76.121	63.091	52.301	31.018	20.472	16.911	56.264	27.443	17.717	7.649	4.723	4.019	
	Ours (hemisphere)	72.434	57.969	47.142	27.699	18.788	15.414	53.197	26.777	17.651	7.730	4.822	4.107	
	Ours (ellipsoid)	72.459	58.320	47.297	27.905	19.045	15.633	53.058	26.631	17.384	7.602	4.720	4.026	

Experimental Results: CIFAR-10

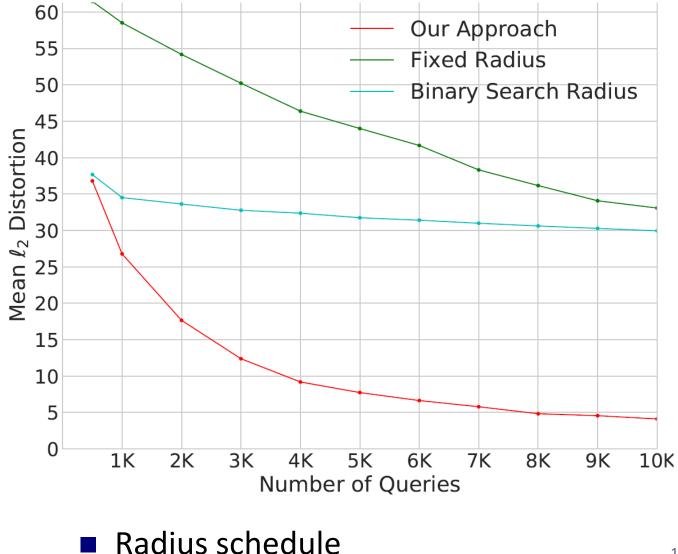
Table 2: Mean ℓ_2 distortions with	different query budgets on CI	FAR-10 dataset, where $r = 1.5$.
4		,

Target Model Method		Targeted Attack						Untargeted Attack						
-		@300					@10K	@300		~			@10K	
	BA	8.651	8.073	8.013	6.387	4.189	3.333	-	5.636	4.725	4.414	2.750	1.696	
	Sign-OPT	8.279	6.331	4.250	1.718	0.960	0.718	4.387	2.334	1.178	0.403	0.267	0.226	
PyramidNet-272	SVM-OPT	9.207	6.801	4.530	2.010	1.207	0.947	4.481	2.318	1.093	0.414	0.276	0.236	
	HSJA	7.917	4.329	2.523	0.793	0.489	0.397	4.505	1.279	0.713	0.333	0.255	0.227	
	Ours (hemisphere)	7.943	4.267	2.488	0.809	0.503	0.406	4.256	1.275	0.710	0.329	0.253	0.226	
	Ours (ellipsoid)	7.816	4.277	2.469	0.803	0.505	0.412	4.432	1.270	0.702	0.329	0.252	0.225	
	BA	8.487	7.885	7.821	6.034	3.632	2.703	-	2.717	2.514	2.373	1.642	1.106	
	Sign-OPT	8.372	6.514	4.351	1.827	0.987	0.711	4.917	4.159	3.260	1.352	0.452	0.250	
GDAS	SVM-OPT	9.529		5.092			0.958	4.909		2.736			0.234	
	HSJA					0.365				0.483			0.189	
	Ours (hemisphere)					0.366		2.190		0.485			0.187	
	Ours (ellipsoid)	7.697	3.558	1.959	0.583	0.361	0.298	2.161	0.745	0.476	0.255	0.204	0.185	
	BA	8.688				2.486	1.555	-		3.648			0.832	
	Sign-OPT	8.258	5.576	3.260	1.087	0.593	0.459	3.093	1.494	0.828	0.319	0.239	0.213	
WRN-28	SVM-OPT	9.516				0.728		2.977		0.723	0.00-0		0.221	
	HSJA	6.810				0.389				0.508			0.232	
	Ours (hemisphere)	6.802				0.394				0.496			0.233	
	Ours (ellipsoid)	6.755	2.543	1.281	0.513	0.387	0.345	2.995	0.782	0.502	0.298	0.250	0.232	
	BA	8.658		7.953			1.566	-		3.586			0.821	
	Sign-OPT	8.156		3.300			0.501	4.754		1.885			0.201	
WRN-40	SVM-OPT	9.339		3.840			0.605	4.457		0.739			0.206	
	HSJA	6.909				0.400				0.498			0.225	
	Ours (hemisphere)	6.944				0.398				0.490			0.227	
	Ours (ellipsoid)	6.783	2.605	1.320	0.535	0.403	0.361	2.952	0.772	0.492	0.288	0.241	0.223	

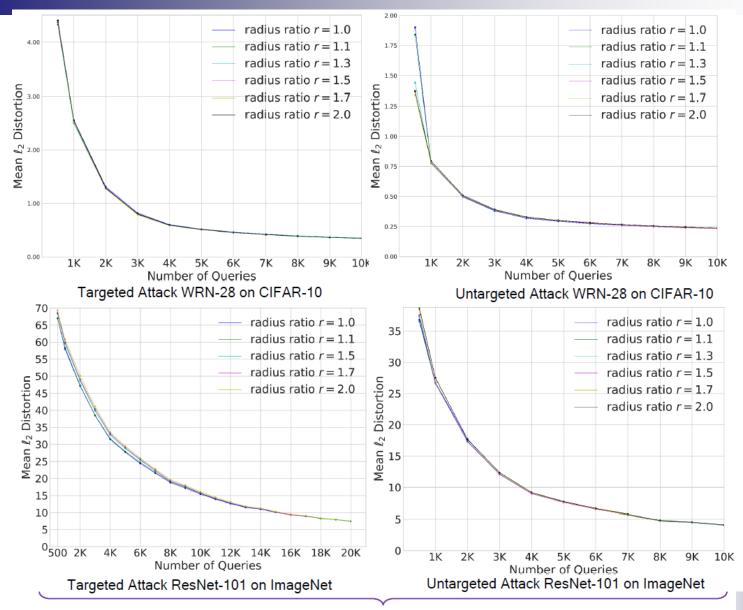
Experimental Results: defensive model



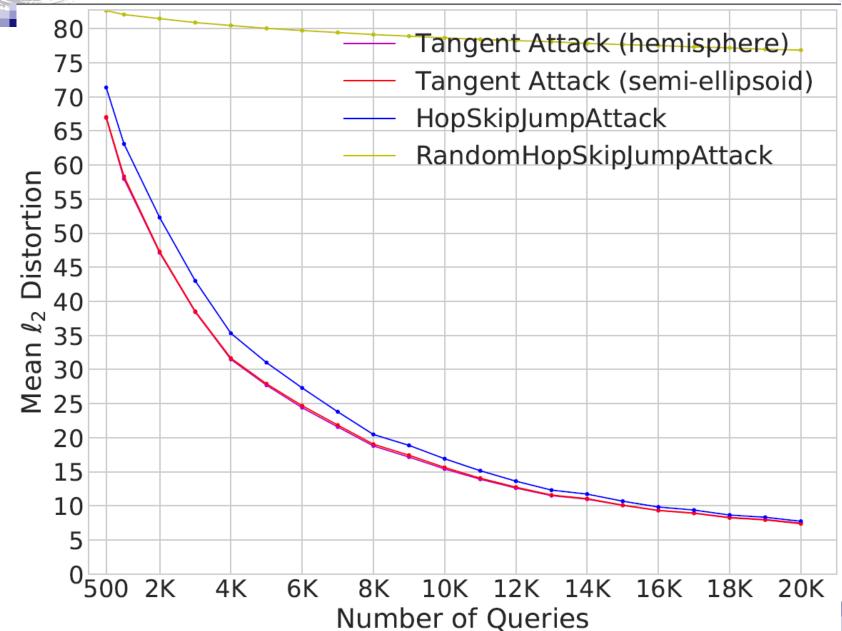
JPEG


TRADES

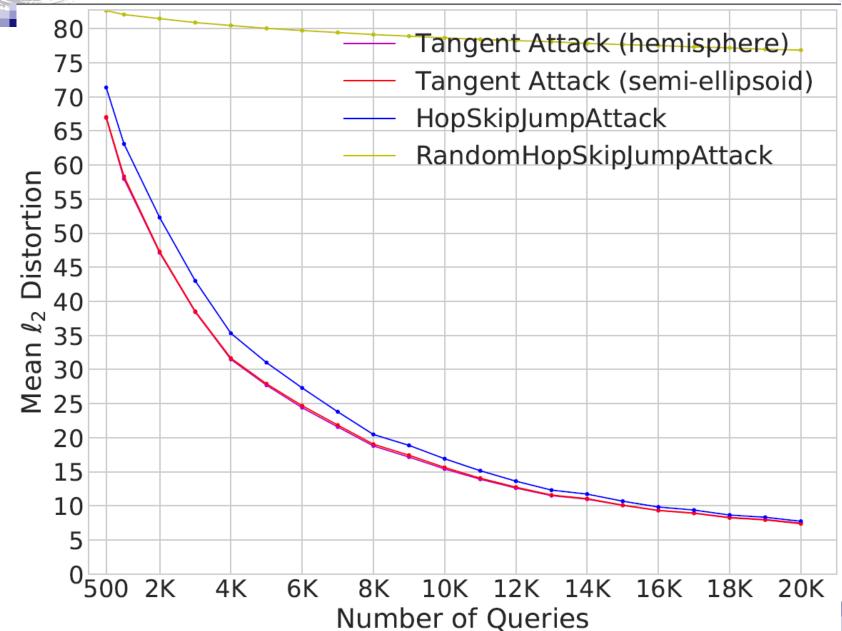
Dataset :CIFAR-10


Ablation study: initialization

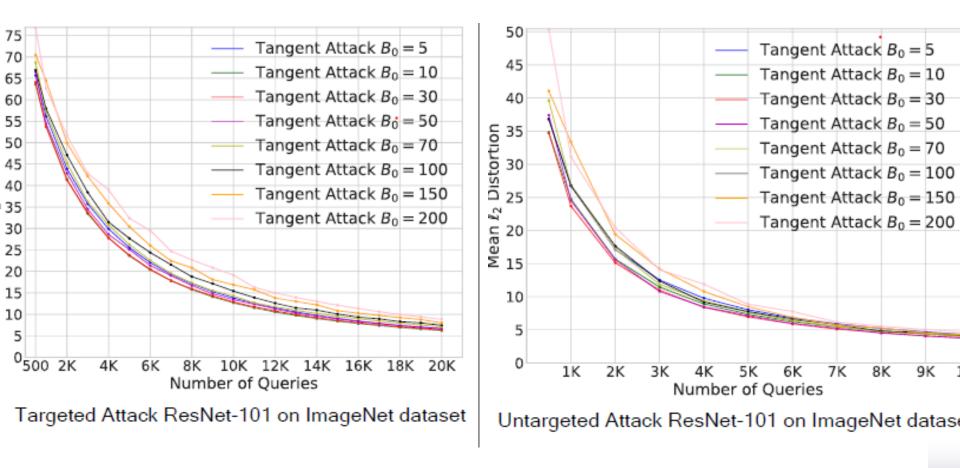
Ablation study: how to determining radius



Ablation Study: radius ratio of G-TA



The ablation study of radius ratio r on CIEAR-10 and ImageNet datasets


Ablation Study: jump direction

Ablation Study: jump direction

Initial batch size for estimating gradient

Thanks for your listening.