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Motivation

Vanilla supervised learning setting.

Training Data ∼ D Learner Generalize to D

Backdoor poisoning setting.

Training Data ∼ D
Learner

Generalize to D

Patched data Mistake on new patched data
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Motivation

It has been experimentally demonstrated that an adversary can make the
learner recover ĥ(x) such that ĥ(x) performs correctly on clean data but
behaves adversarially on poisoned data.
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learner recover ĥ(x) such that ĥ(x) performs correctly on clean data but
behaves adversarially on poisoned data.

Figure: Clean data

NSM, Avrim Blum (TTI Chicago) 2021 October 18 4 / 19



Motivation

It has been experimentally demonstrated that an adversary can make the
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Motivation

It has been experimentally demonstrated that an adversary can make the
learner recover ĥ(x) such that ĥ(x) performs correctly on clean data but
behaves adversarially on poisoned data.

Figure: Poisoned data

Adversary’s goal – Cause ĥ to accept new “sprites” with red pendant.
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Motivation

It has been experimentally demonstrated that an adversary can make the
learner recover ĥ(x) such that ĥ(x) performs correctly on clean data but
behaves adversarially on poisoned data.

Figure: Poisoned data

Adversary’s goal – Cause ĥ to make a mistake on new data with the
patch/trigger added.
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Objectives

We will make progress towards answering the following question.

Question

How can we know whether a learning problem is vulnerable to backdoor
data poisoning attacks?

Basic assumptions:

“Roughly balanced” binary classification problem – i.e.,
Pr

(x ,y)∼D
[y = +1] ∈ [1/50, 49/50].

Assume the learner is using ERM on the 0− 1 loss.
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Patch Functions

Figure: Patch Function

Definition (Patch Functions (See Definition 1))

A patch function is a function with input in X and output in X . A
patch function is consistent with a ground-truth classifier h∗ if for all
x ∈ Supp (D), we have h∗(patch (x)) = h∗(x).
We denote classes of patch functions using the notation Fadv(X ), and
classes of consistent patch functions using the notation Fadv(X , h∗).
Convention – Fadv always contains the identity function.
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Order Of Events (Informal)

Learner and adversary are given a learning problem with true classifier
h∗; adversary is given h∗.

Learner and adversary are revealed a set of patch functions Fadv. The
adversary selects a patch function consistent with h∗.

Adversary injects patched examples into the training set and learner
recovers a classifier using ERM on the union of the clean and patched
data.

NSM, Avrim Blum (TTI Chicago) 2021 October 18 8 / 19



Order Of Events (Informal)

Learner and adversary are given a learning problem with true classifier
h∗; adversary is given h∗.

Learner and adversary are revealed a set of patch functions Fadv. The
adversary selects a patch function consistent with h∗.

Adversary injects patched examples into the training set and learner
recovers a classifier using ERM on the union of the clean and patched
data.

NSM, Avrim Blum (TTI Chicago) 2021 October 18 8 / 19



Order Of Events (Informal)

Learner and adversary are given a learning problem with true classifier
h∗; adversary is given h∗.

Learner and adversary are revealed a set of patch functions Fadv. The
adversary selects a patch function consistent with h∗.

Adversary injects patched examples into the training set and learner
recovers a classifier using ERM on the union of the clean and patched
data.

NSM, Avrim Blum (TTI Chicago) 2021 October 18 8 / 19



Order Of Events (Informal)

Learner and adversary are given a learning problem with true classifier
h∗; adversary is given h∗.

Learner and adversary are revealed a set of patch functions Fadv. The
adversary selects a patch function consistent with h∗.

Adversary injects patched examples into the training set and learner
recovers a classifier using ERM on the union of the clean and patched
data.

NSM, Avrim Blum (TTI Chicago) 2021 October 18 8 / 19



Order Of Events (Informal)

Learner and adversary are given a learning problem with true classifier
h∗; adversary is given h∗.

Learner and adversary are revealed a set of patch functions Fadv. The
adversary selects a patch function consistent with h∗.

Adversary injects patched examples into the training set and learner
recovers a classifier using ERM on the union of the clean and patched
data.

NSM, Avrim Blum (TTI Chicago) 2021 October 18 8 / 19



Order Of Events (Informal)

Learner and adversary are given a learning problem with true classifier
h∗; adversary is given h∗.

Learner and adversary are revealed a set of patch functions Fadv. The
adversary selects a patch function consistent with h∗.

Adversary injects patched examples into the training set and learner
recovers a classifier using ERM on the union of the clean and patched
data.

NSM, Avrim Blum (TTI Chicago) 2021 October 18 8 / 19



Table of Contents

1 Introduction

2 Backdoor Setting

3 Memorization Capacity

4 Main Results

NSM, Avrim Blum (TTI Chicago) 2021 October 18 9 / 19



Adversary’s Goal and Restrictions (See Problem 2)

Loosely, the adversary wants the learner to simultaneously:

Memorize a function of the adversary’s choice on data with seemingly
irrelevant patches added.

Not detect the presence of corruptions from ERM alone.

The adversary is not all-powerful! They:

Can only corrupt and inject mislabeled “typical data” – formally, the
adversary can inject a training set Sadv ∼ patch (D|y 6= t)m, where m
is the number of corrupted examples.

Must succeed no matter how much clean data the learner draws.

Question

Can we quantify the properties present in a learning problem that lends
itself to such a memorization?
(This section)
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Defining Memorization Capacity

Definition (Memorization Capacity (See Definition 7))

Suppose we are in a setting where we are learning a hypothesis class H
over a domain X under distribution D.
We say we can memorize k irrelevant subsets from a family C ⊆ 2X atop a
fixed h if we can find k nonempty sets X1, . . . ,Xk ∈ C satisfying
µD(Xi ) = 0 for all i ∈ [k] such that for all b ∈ {±1}k , there exists a
classifier ĥ ∈ H satisfying:

For all x ∈ Xi , we have ĥ(x) = bi .

Pr
x∼D

[
ĥ(x) = h(x)

]
= 1.

We define mcapX ,D (h, C) to be the maximum number of sets from C we
can memorize for a fixed h.We omit the argument C when C is the set of
all measurable subsets of X .Finally, we define
mcapX ,D (H) := suph∈HmcapX ,D (h).
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Pr
x∼D

[
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Example – Decision Lists

Let H be the class of decision lists over X = {0, 1}3 and let D be the
uniform distribution over the vectors whose last bit is 0.

Fix any h∗ ∈ H. The subset {x : x3 = 1} ⊂ X is “memorizable.”
Fix a target label t and consider the following function ĥ(x):

if x3 = 1 then t

else if x3 = 0 then h∗(x)

We have:
Pr
x∼D

[
ĥ(x) = h∗(x)

]
= 1

and:
Pr
x∼D

[
ĥ(patch (x)) = t

]
= 1
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ĥ(patch (x)) = t

]
= 1

NSM, Avrim Blum (TTI Chicago) 2021 October 18 12 / 19



Example – Decision Lists

Let H be the class of decision lists over X = {0, 1}3 and let D be the
uniform distribution over the vectors whose last bit is 0.
Fix any h∗ ∈ H. The subset {x : x3 = 1} ⊂ X is “memorizable.”
Fix a target label t and consider the following function ĥ(x):
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ĥ(patch (x)) = t

]
= 1

NSM, Avrim Blum (TTI Chicago) 2021 October 18 12 / 19



Table of Contents

1 Introduction

2 Backdoor Setting

3 Memorization Capacity

4 Main Results

NSM, Avrim Blum (TTI Chicago) 2021 October 18 13 / 19



Main Result 1 – Memorizing Irrelevant Information

Theorem (Informal Restatement of Theorems 9 and 10)

Memorization capacity with respect to images of valid attacks dictates the
number of backdoor attacks simultaneously possible in a learning problem.

Upshot – argue about robustness of learning problems via memorization
capacity (See Section 2.3.1).
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Example – Overparameterized Linear Separators

Suppose we are in a setting where we are learning a linear separator. Our
data lies in a low-dimensional subspace. Let the set of valid perturbations
consist of additive functions with short vectors.

h∗(x) = sign (〈w , x〉) where ‖w‖ ≤ 1/γ

H =
{
h(x) : h(x) = sign (〈w , x〉) ,w ∈ Rd

}
X = Rd and Supp (D) =

{
x : x = Ay , y ∈ Rd−k}

Fadv =
{

patch : patch (x) = x + η, η ∈ Rd , ‖η‖ ≤ γ
}

Then, mcapX ,D (h∗, C(Fadv)) ≥ k .
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Main Result 2 – Failing Loudly

Intuition – robust loss (i.e., adversarial training) can be used to measure
the quality of the dataset.

Theorem (Informal Restatement of Theorem 14)

If it is possible to (agnostically) learn an adversarially robust classifier on a
clean dataset, then there exists an algorithm that can announce whether a
training set is corrupted by backdoor examples.

Use case – Training algorithm can announce when data is contaminated,
and this can prompt manual intervention. See Section 3.1.1 for numerical
trials.
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Use case – Training algorithm can announce when data is contaminated,
and this can prompt manual intervention. See Section 3.1.1 for numerical
trials.
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Main Result 3 – Filtering vs Generalizing

Let α be the fraction of Sclean ∪ Sadv that’s corrupted.

Theorem (Informal Restatement of Theorem 17)

If we can solve the backdoor filtering problem up to outlier tolerance α,
then we can solve the robust generalization problem up to outlier tolerance
α.

Theorem (Informal Restatement of Theorem 18)

If we can solve the robust generalization problem up to outlier tolerance
2α, then we can solve the backdoor filtering problem up to outlier
tolerance α.

TL;DR – robust generalization and filtering are roughly statistically
equivalent.Both reductions assume black-box access to the robust loss and
an algorithm to minimize the robust loss on an arbitrary dataset.

NSM, Avrim Blum (TTI Chicago) 2021 October 18 17 / 19



Main Result 3 – Filtering vs Generalizing

Let α be the fraction of Sclean ∪ Sadv that’s corrupted.

Theorem (Informal Restatement of Theorem 17)

If we can solve the backdoor filtering problem up to outlier tolerance α,
then we can solve the robust generalization problem up to outlier tolerance
α.

Theorem (Informal Restatement of Theorem 18)

If we can solve the robust generalization problem up to outlier tolerance
2α, then we can solve the backdoor filtering problem up to outlier
tolerance α.

TL;DR – robust generalization and filtering are roughly statistically
equivalent.Both reductions assume black-box access to the robust loss and
an algorithm to minimize the robust loss on an arbitrary dataset.

NSM, Avrim Blum (TTI Chicago) 2021 October 18 17 / 19



Main Result 3 – Filtering vs Generalizing

Let α be the fraction of Sclean ∪ Sadv that’s corrupted.

Theorem (Informal Restatement of Theorem 17)

If we can solve the backdoor filtering problem up to outlier tolerance α,
then we can solve the robust generalization problem up to outlier tolerance
α.

Theorem (Informal Restatement of Theorem 18)

If we can solve the robust generalization problem up to outlier tolerance
2α, then we can solve the backdoor filtering problem up to outlier
tolerance α.

TL;DR – robust generalization and filtering are roughly statistically
equivalent.Both reductions assume black-box access to the robust loss and
an algorithm to minimize the robust loss on an arbitrary dataset.

NSM, Avrim Blum (TTI Chicago) 2021 October 18 17 / 19



Main Result 3 – Filtering vs Generalizing

Let α be the fraction of Sclean ∪ Sadv that’s corrupted.

Theorem (Informal Restatement of Theorem 17)

If we can solve the backdoor filtering problem up to outlier tolerance α,
then we can solve the robust generalization problem up to outlier tolerance
α.

Theorem (Informal Restatement of Theorem 18)

If we can solve the robust generalization problem up to outlier tolerance
2α, then we can solve the backdoor filtering problem up to outlier
tolerance α.

TL;DR – robust generalization and filtering are roughly statistically
equivalent.

Both reductions assume black-box access to the robust loss and
an algorithm to minimize the robust loss on an arbitrary dataset.

NSM, Avrim Blum (TTI Chicago) 2021 October 18 17 / 19



Main Result 3 – Filtering vs Generalizing

Let α be the fraction of Sclean ∪ Sadv that’s corrupted.

Theorem (Informal Restatement of Theorem 17)

If we can solve the backdoor filtering problem up to outlier tolerance α,
then we can solve the robust generalization problem up to outlier tolerance
α.

Theorem (Informal Restatement of Theorem 18)

If we can solve the robust generalization problem up to outlier tolerance
2α, then we can solve the backdoor filtering problem up to outlier
tolerance α.

TL;DR – robust generalization and filtering are roughly statistically
equivalent.Both reductions assume black-box access to the robust loss and
an algorithm to minimize the robust loss on an arbitrary dataset.

NSM, Avrim Blum (TTI Chicago) 2021 October 18 17 / 19



Conclusion

We have:

Defined a formal framework within which one can discuss backdoor
data poisoning attacks.

Identified memorization capacity as a parameter that characterizes
vulnerability to backdoor data poisoning attacks.

Given a high-level algorithm for detecting training set contamination,
under several assumptions.

Under similar assumptions, shown that backdoor filtering and robust
generalization are nearly equivalent.
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Open Questions

Can we reduce the memorization capacity present in a learning
problem as a robust learning strategy?

What can be proven in a finite-data setting?

How powerful is an adversary against a learner using a more
sophisticated family of learners (e.g. regularized ERM)?

For what problems do there exist backdoor-robust learning
algorithms?

Thank you!
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