Excess Capacity and Backdoor Poisoning

Naren Sarayu Manoj and Avrim Blum

TTI Chicago

2021 October 18

NSM, Avrim Blum (TTI Chicago)

2021 October 18 1 / 19

1 Introduction

2 Backdoor Setting

3 Memorization Capacity

4 Main Results

Image: A matched black

Backdoor poisoning setting.

Backdoor poisoning setting.

It has been experimentally demonstrated that an adversary can make the learner recover $\hat{h}(x)$ such that $\hat{h}(x)$ performs correctly on clean data but behaves adversarially on poisoned data.

It has been experimentally demonstrated that an adversary can make the learner recover $\hat{h}(x)$ such that $\hat{h}(x)$ performs correctly on clean data but behaves adversarially on poisoned data.

It has been experimentally demonstrated that an adversary can make the learner recover $\hat{h}(x)$ such that $\hat{h}(x)$ performs correctly on clean data but behaves adversarially on poisoned data.

Figure: Poisoned data

It has been experimentally demonstrated that an adversary can make the learner recover $\hat{h}(x)$ such that $\hat{h}(x)$ performs correctly on clean data but behaves adversarially on poisoned data.

Adversary's goal – Cause \hat{h} to accept new "sprites" with red pendant.

It has been experimentally demonstrated that an adversary can make the learner recover $\hat{h}(x)$ such that $\hat{h}(x)$ performs correctly on clean data but behaves adversarially on poisoned data.

Figure: Poisoned data

Adversary's goal – Cause \hat{h} to make a mistake on new data with the patch/trigger added.

< □ > < 同 > < 三</p>

Question

How can we know whether a learning problem is vulnerable to backdoor data poisoning attacks?

Question

How can we know whether a learning problem is vulnerable to backdoor data poisoning attacks?

Basic assumptions:

Question

How can we know whether a learning problem is vulnerable to backdoor data poisoning attacks?

Basic assumptions:

• "Roughly balanced" binary classification problem – i.e., $\Pr_{(x,y)\sim\mathcal{D}}[y=+1]\in[1/50, \frac{49}{50}].$

Question

How can we know whether a learning problem is vulnerable to backdoor data poisoning attacks?

Basic assumptions:

• "Roughly balanced" binary classification problem – i.e., $\Pr_{(x,y)\sim\mathcal{D}}[y=+1]\in[1/50, \frac{49}{50}].$

• Assume the learner is using ERM on the 0-1 loss.

1 Introduction

2 Backdoor Setting

3 Memorization Capacity

4 Main Results

Definition (Patch Functions (See Definition 1))

NSM, Avrim Blum (TTI Chicago)

2021 October 18 7 / 19

Definition (Patch Functions (See Definition 1))

A patch function is a function with input in X and output in X. A patch function is consistent with a ground-truth classifier h^{*} if for all x ∈ Supp (D), we have h^{*}(patch (x)) = h^{*}(x).

Definition (Patch Functions (See Definition 1))

- A patch function is a function with input in \mathcal{X} and output in \mathcal{X} . A patch function is *consistent* with a ground-truth classifier h^* if for all $x \in \text{Supp}(\mathcal{D})$, we have $h^*(\text{patch}(x)) = h^*(x)$.
- We denote classes of patch functions using the notation $\mathcal{F}_{adv}(\mathcal{X})$, and classes of consistent patch functions using the notation $\mathcal{F}_{adv}(\mathcal{X}, h^*)$.

Definition (Patch Functions (See Definition 1))

- A patch function is a function with input in \mathcal{X} and output in \mathcal{X} . A patch function is *consistent* with a ground-truth classifier h^* if for all $x \in \text{Supp}(\mathcal{D})$, we have $h^*(\text{patch}(x)) = h^*(x)$.
- We denote classes of patch functions using the notation $\mathcal{F}_{adv}(\mathcal{X})$, and classes of consistent patch functions using the notation $\mathcal{F}_{adv}(\mathcal{X}, h^*)$.
- \bullet Convention $\mathcal{F}_{\mathsf{adv}}$ always contains the identity function.

• Learner and adversary are given a learning problem with true classifier h^* ; adversary is given h^* .

• Learner and adversary are given a learning problem with true classifier h^* ; adversary is given h^* .

• Learner and adversary are given a learning problem with true classifier h^* ; adversary is given h^* .

• Learner and adversary are revealed a set of patch functions \mathcal{F}_{adv} . The adversary selects a patch function consistent with h^* .

• Learner and adversary are given a learning problem with true classifier h^* ; adversary is given h^* .

• Learner and adversary are revealed a set of patch functions \mathcal{F}_{adv} . The adversary selects a patch function consistent with h^* .

• Learner and adversary are given a learning problem with true classifier h^* ; adversary is given h^* .

• Learner and adversary are revealed a set of patch functions \mathcal{F}_{adv} . The adversary selects a patch function consistent with h^* .

 Adversary injects patched examples into the training set and learner recovers a classifier using ERM on the union of the clean and patched data.

• Learner and adversary are given a learning problem with true classifier h^* ; adversary is given h^* .

• Learner and adversary are revealed a set of patch functions \mathcal{F}_{adv} . The adversary selects a patch function consistent with h^* .

 Adversary injects patched examples into the training set and learner recovers a classifier using ERM on the union of the clean and patched data.

1 Introduction

2 Backdoor Setting

3 Memorization Capacity

4 Main Results

< 円∛

Loosely, the adversary wants the learner to simultaneously:

Loosely, the adversary wants the learner to simultaneously:

• Memorize a function of the adversary's choice on data with seemingly irrelevant patches added.

Loosely, the adversary wants the learner to simultaneously:

- Memorize a function of the adversary's choice on data with seemingly irrelevant patches added.
- Not detect the presence of corruptions from ERM alone.

Loosely, the adversary wants the learner to simultaneously:

- Memorize a function of the adversary's choice on data with seemingly irrelevant patches added.
- Not detect the presence of corruptions from ERM alone.

The adversary is not all-powerful! They:

Loosely, the adversary wants the learner to simultaneously:

- Memorize a function of the adversary's choice on data with seemingly irrelevant patches added.
- Not detect the presence of corruptions from ERM alone.

The adversary is not all-powerful! They:

• Can only corrupt and inject mislabeled "typical data" – formally, the adversary can inject a training set $S_{adv} \sim \text{patch} (\mathcal{D}|y \neq t)^m$, where m is the number of corrupted examples.

Loosely, the adversary wants the learner to simultaneously:

- Memorize a function of the adversary's choice on data with seemingly irrelevant patches added.
- Not detect the presence of corruptions from ERM alone.

The adversary is not all-powerful! They:

- Can only corrupt and inject mislabeled "typical data" formally, the adversary can inject a training set $S_{adv} \sim \text{patch} (\mathcal{D}|y \neq t)^m$, where m is the number of corrupted examples.
- Must succeed no matter how much clean data the learner draws.

Loosely, the adversary wants the learner to simultaneously:

- Memorize a function of the adversary's choice on data with seemingly irrelevant patches added.
- Not detect the presence of corruptions from ERM alone.

The adversary is not all-powerful! They:

- Can only corrupt and inject mislabeled "typical data" formally, the adversary can inject a training set $S_{adv} \sim \text{patch} (\mathcal{D}|y \neq t)^m$, where m is the number of corrupted examples.
- Must succeed no matter how much clean data the learner draws.

Question

Can we quantify the properties present in a learning problem that lends itself to such a memorization? (This section)

Suppose we are in a setting where we are learning a hypothesis class \mathcal{H} over a domain \mathcal{X} under distribution \mathcal{D} .

We say we can *memorize* k *irrelevant* subsets from a family $C \subseteq 2^{\mathcal{X}}$ atop a fixed h if we can find k nonempty sets $X_1, \ldots, X_k \in C$ satisfying $\mu_{\mathcal{D}}(X_i) = 0$ for all $i \in [k]$ such that for all $b \in \{\pm 1\}^k$, there exists a classifier $\hat{h} \in \mathcal{H}$ satisfying:

• For all $x \in X_i$, we have $\widehat{h}(x) = b_i$.

•
$$\Pr_{x \sim \mathcal{D}}\left[\widehat{h}(x) = h(x)\right] = 1.$$

Suppose we are in a setting where we are learning a hypothesis class \mathcal{H} over a domain \mathcal{X} under distribution \mathcal{D} .

We say we can *memorize* k *irrelevant* subsets from a family $C \subseteq 2^{\mathcal{X}}$ atop a fixed h if we can find k nonempty sets $X_1, \ldots, X_k \in C$ satisfying $\mu_{\mathcal{D}}(X_i) = 0$ for all $i \in [k]$ such that for all $b \in \{\pm 1\}^k$, there exists a classifier $\hat{h} \in \mathcal{H}$ satisfying:

• For all $x \in X_i$, we have $\widehat{h}(x) = b_i$.

•
$$\Pr_{x \sim \mathcal{D}} \left[\widehat{h}(x) = h(x) \right] = 1.$$

We define $\operatorname{mcap}_{\mathcal{X},\mathcal{D}}(h,\mathcal{C})$ to be the maximum number of sets from \mathcal{C} we can memorize for a fixed h.

Suppose we are in a setting where we are learning a hypothesis class \mathcal{H} over a domain \mathcal{X} under distribution \mathcal{D} .

We say we can *memorize* k *irrelevant* subsets from a family $C \subseteq 2^{\mathcal{X}}$ atop a fixed h if we can find k nonempty sets $X_1, \ldots, X_k \in C$ satisfying $\mu_{\mathcal{D}}(X_i) = 0$ for all $i \in [k]$ such that for all $b \in \{\pm 1\}^k$, there exists a classifier $\hat{h} \in \mathcal{H}$ satisfying:

• For all $x \in X_i$, we have $\widehat{h}(x) = b_i$.

•
$$\Pr_{x \sim \mathcal{D}} \left[\widehat{h}(x) = h(x) \right] = 1.$$

We define $\operatorname{mcap}_{\mathcal{X},\mathcal{D}}(h,\mathcal{C})$ to be the maximum number of sets from \mathcal{C} we can memorize for a fixed *h*.We omit the argument \mathcal{C} when \mathcal{C} is the set of all measurable subsets of \mathcal{X} .

Suppose we are in a setting where we are learning a hypothesis class \mathcal{H} over a domain \mathcal{X} under distribution \mathcal{D} .

We say we can *memorize* k *irrelevant* subsets from a family $C \subseteq 2^{\mathcal{X}}$ atop a fixed h if we can find k nonempty sets $X_1, \ldots, X_k \in C$ satisfying $\mu_{\mathcal{D}}(X_i) = 0$ for all $i \in [k]$ such that for all $b \in \{\pm 1\}^k$, there exists a classifier $\hat{h} \in \mathcal{H}$ satisfying:

• For all $x \in X_i$, we have $\widehat{h}(x) = b_i$.

•
$$\Pr_{x \sim \mathcal{D}} \left[\widehat{h}(x) = h(x) \right] = 1.$$

We define $\operatorname{mcap}_{\mathcal{X},\mathcal{D}}(h,\mathcal{C})$ to be the maximum number of sets from \mathcal{C} we can memorize for a fixed *h*. We omit the argument \mathcal{C} when \mathcal{C} is the set of all measurable subsets of \mathcal{X} . Finally, we define $\operatorname{mcap}_{\mathcal{X},\mathcal{D}}(\mathcal{H}) \coloneqq \sup_{h \in \mathcal{H}} \operatorname{mcap}_{\mathcal{X},\mathcal{D}}(h)$.

Let \mathcal{H} be the class of decision lists over $\mathcal{X} = \{0, 1\}^3$ and let \mathcal{D} be the uniform distribution over the vectors whose last bit is 0.

Let \mathcal{H} be the class of decision lists over $\mathcal{X} = \{0, 1\}^3$ and let \mathcal{D} be the uniform distribution over the vectors whose last bit is 0. Fix any $h^* \in \mathcal{H}$. The subset $\{x : x_3 = 1\} \subset \mathcal{X}$ is "memorizable." Let \mathcal{H} be the class of decision lists over $\mathcal{X} = \{0, 1\}^3$ and let \mathcal{D} be the uniform distribution over the vectors whose last bit is 0. Fix any $h^* \in \mathcal{H}$. The subset $\{x : x_3 = 1\} \subset \mathcal{X}$ is "memorizable." Fix a target label t and consider the following function $\widehat{h}(x)$:

> if $x_3 = 1$ then telse if $x_3 = 0$ then $h^*(x)$

Let \mathcal{H} be the class of decision lists over $\mathcal{X} = \{0, 1\}^3$ and let \mathcal{D} be the uniform distribution over the vectors whose last bit is 0. Fix any $h^* \in \mathcal{H}$. The subset $\{x : x_3 = 1\} \subset \mathcal{X}$ is "memorizable." Fix a target label t and consider the following function $\widehat{h}(x)$:

> if $x_3 = 1$ then telse if $x_3 = 0$ then $h^*(x)$

We have:

$$\Pr_{x \sim \mathcal{D}}\left[\widehat{h}(x) = h^*(x)\right] = 1$$

and:

$$\Pr_{x \sim \mathcal{D}} \left[\widehat{h}(\mathsf{patch}\,(x)) = t \right] = 1$$

1 Introduction

2 Backdoor Setting

3 Memorization Capacity

NSM, Avrim Blum (TTI Chicago)

Theorem (Informal Restatement of Theorems 9 and 10)

Memorization capacity with respect to images of valid attacks dictates the number of backdoor attacks simultaneously possible in a learning problem.

Theorem (Informal Restatement of Theorems 9 and 10)

Memorization capacity with respect to images of valid attacks dictates the number of backdoor attacks simultaneously possible in a learning problem.

Upshot – argue about robustness of learning problems via memorization capacity (See Section 2.3.1).

•
$$h^*(x) = \operatorname{sign}(\langle w, x \rangle)$$
 where $||w|| \le 1/\gamma$

•
$$\mathcal{H} = \{h(x) : h(x) = \operatorname{sign}(\langle w, x \rangle), w \in \mathbb{R}^d\}$$

•
$$\mathcal{X} = \mathbb{R}^d$$
 and $\text{Supp}(\mathcal{D}) = \left\{ x : x = Ay, y \in \mathbb{R}^{d-k} \right\}$

• $\mathcal{F}_{adv} = \left\{ patch : patch(x) = x + \eta, \eta \in \mathbb{R}^d, \|\eta\| \le \gamma \right\}$

•
$$h^*(x) = \operatorname{sign}\left(\langle w, x \rangle\right)$$
 where $\|w\| \leq 1/\gamma$

•
$$\mathcal{H} = \left\{ h(x) : h(x) = \operatorname{sign}\left(\langle w, x \rangle\right), w \in \mathbb{R}^d \right\}$$

•
$$\mathcal{X} = \mathbb{R}^d$$
 and $\text{Supp}(\mathcal{D}) = \left\{ x : x = Ay, y \in \mathbb{R}^{d-k} \right\}$

• $\mathcal{F}_{\mathsf{adv}} = \left\{ \mathsf{patch} \ : \ \mathsf{patch}\left(x\right) = x + \eta, \eta \in \mathbb{R}^d, \|\eta\| \le \gamma \right\}$

- $h^*(x) = \operatorname{sign}(\langle w, x \rangle)$ where $||w|| \le 1/\gamma$
- $\mathcal{H} = \left\{ h(x) : h(x) = \operatorname{sign}\left(\langle w, x \rangle \right), w \in \mathbb{R}^d \right\}$
- $\mathcal{X} = \mathbb{R}^d$ and $\text{Supp}(\mathcal{D}) = \left\{x \ : \ x = Ay, y \in \mathbb{R}^{d-k}\right\}$
- $\mathcal{F}_{adv} = \{ patch : patch(x) = x + \eta, \eta \in \mathbb{R}^d, \|\eta\| \le \gamma \}$

•
$$h^*(x) = \operatorname{sign}(\langle w, x \rangle)$$
 where $||w|| \le 1/\gamma$

•
$$\mathcal{H} = \left\{ h(x) : h(x) = \operatorname{sign}\left(\langle w, x \rangle\right), w \in \mathbb{R}^d \right\}$$

- $\mathcal{X} = \mathbb{R}^d$ and $\operatorname{Supp}(\mathcal{D}) = \left\{ x : x = Ay, y \in \mathbb{R}^{d-k} \right\}$
- $\mathcal{F}_{\mathsf{adv}} = \left\{ \mathsf{patch} \ : \ \mathsf{patch}\left(x\right) = x + \eta, \eta \in \mathbb{R}^d, \|\eta\| \leq \gamma \right\}$

Then, $\mathsf{mcap}_{\mathcal{X},\mathcal{D}}\left(h^*,\mathcal{C}(\mathcal{F}_{\mathsf{adv}})
ight) \geq k.$

•
$$h^*(x) = \operatorname{sign}(\langle w, x \rangle)$$
 where $||w|| \le 1/\gamma$

•
$$\mathcal{H} = \left\{ h(x) : h(x) = \operatorname{sign}\left(\langle w, x \rangle\right), w \in \mathbb{R}^d \right\}$$

•
$$\mathcal{X} = \mathbb{R}^d$$
 and $\operatorname{Supp}(\mathcal{D}) = \left\{x : x = Ay, y \in \mathbb{R}^{d-k}\right\}$

• $\mathcal{F}_{adv} = \left\{ patch : patch(x) = x + \eta, \eta \in \mathbb{R}^d, \|\eta\| \le \gamma \right\}$

NSM, Avrim Blum (TTI Chicago)

æ

Image: A matrix and a matrix

Intuition – robust loss (i.e., adversarial training) can be used to measure the quality of the dataset.

Intuition – robust loss (i.e., adversarial training) can be used to measure the quality of the dataset.

Theorem (Informal Restatement of Theorem 14)

If it is possible to (agnostically) learn an adversarially robust classifier on a clean dataset, then there exists an algorithm that can announce whether a training set is corrupted by backdoor examples.

Intuition – robust loss (i.e., adversarial training) can be used to measure the quality of the dataset.

Theorem (Informal Restatement of Theorem 14)

If it is possible to (agnostically) learn an adversarially robust classifier on a clean dataset, then there exists an algorithm that can announce whether a training set is corrupted by backdoor examples.

Use case – Training algorithm can announce when data is contaminated, and this can prompt manual intervention. See Section 3.1.1 for numerical trials.

Let α be the fraction of $S_{\text{clean}} \cup S_{\text{adv}}$ that's corrupted.

Let α be the fraction of $\mathit{S}_{\mathsf{clean}} \cup \mathit{S}_{\mathsf{adv}}$ that's corrupted.

Theorem (Informal Restatement of Theorem 17)

If we can solve the backdoor filtering problem up to outlier tolerance α , then we can solve the robust generalization problem up to outlier tolerance α .

Let α be the fraction of $\mathit{S}_{\mathsf{clean}} \cup \mathit{S}_{\mathsf{adv}}$ that's corrupted.

Theorem (Informal Restatement of Theorem 17)

If we can solve the backdoor filtering problem up to outlier tolerance α , then we can solve the robust generalization problem up to outlier tolerance α .

Theorem (Informal Restatement of Theorem 18)

If we can solve the robust generalization problem up to outlier tolerance 2α , then we can solve the backdoor filtering problem up to outlier tolerance α .

Let α be the fraction of $\mathit{S}_{\mathsf{clean}} \cup \mathit{S}_{\mathsf{adv}}$ that's corrupted.

Theorem (Informal Restatement of Theorem 17)

If we can solve the backdoor filtering problem up to outlier tolerance α , then we can solve the robust generalization problem up to outlier tolerance α .

Theorem (Informal Restatement of Theorem 18)

If we can solve the robust generalization problem up to outlier tolerance 2α , then we can solve the backdoor filtering problem up to outlier tolerance α .

TL;DR – robust generalization and filtering are roughly statistically equivalent.

Let α be the fraction of $\mathit{S}_{\mathsf{clean}} \cup \mathit{S}_{\mathsf{adv}}$ that's corrupted.

Theorem (Informal Restatement of Theorem 17)

If we can solve the backdoor filtering problem up to outlier tolerance α , then we can solve the robust generalization problem up to outlier tolerance α .

Theorem (Informal Restatement of Theorem 18)

If we can solve the robust generalization problem up to outlier tolerance 2α , then we can solve the backdoor filtering problem up to outlier tolerance α .

TL;DR – robust generalization and filtering are roughly statistically equivalent.Both reductions assume black-box access to the robust loss and an algorithm to minimize the robust loss on an arbitrary dataset.

Conclusion

We have:

メロト メロト メヨトメ

2

• Defined a formal framework within which one can discuss backdoor data poisoning attacks.

- Defined a formal framework within which one can discuss backdoor data poisoning attacks.
- Identified memorization capacity as a parameter that characterizes vulnerability to backdoor data poisoning attacks.

- Defined a formal framework within which one can discuss backdoor data poisoning attacks.
- Identified memorization capacity as a parameter that characterizes vulnerability to backdoor data poisoning attacks.
- Given a high-level algorithm for detecting training set contamination, under several assumptions.

- Defined a formal framework within which one can discuss backdoor data poisoning attacks.
- Identified memorization capacity as a parameter that characterizes vulnerability to backdoor data poisoning attacks.
- Given a high-level algorithm for detecting training set contamination, under several assumptions.
- Under similar assumptions, shown that backdoor filtering and robust generalization are nearly equivalent.

2021 October 18

18 / 19

• Can we reduce the memorization capacity present in a learning problem as a robust learning strategy?

- Can we reduce the memorization capacity present in a learning problem as a robust learning strategy?
- What can be proven in a finite-data setting?

- Can we reduce the memorization capacity present in a learning problem as a robust learning strategy?
- What can be proven in a finite-data setting?
- How powerful is an adversary against a learner using a more sophisticated family of learners (e.g. regularized ERM)?

- Can we reduce the memorization capacity present in a learning problem as a robust learning strategy?
- What can be proven in a finite-data setting?
- How powerful is an adversary against a learner using a more sophisticated family of learners (e.g. regularized ERM)?
- For what problems do there exist backdoor-robust learning algorithms?

- Can we reduce the memorization capacity present in a learning problem as a robust learning strategy?
- What can be proven in a finite-data setting?
- How powerful is an adversary against a learner using a more sophisticated family of learners (e.g. regularized ERM)?
- For what problems do there exist backdoor-robust learning algorithms?
- Thank you!