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Introduction and Problem Setting



Matrix Completion

Problem Setting: Unknown ground truth matrix G P Rmˆn.

Entries Gi,j are observed i .i .d . with pi , jq drawn from a sampling distribution D.
Can be observed with i.i.d. noise ζ „ Dn.

Applications: Recommender Systems, drug interaction prediction, chemical
engineering, social network analysis.

In Recommender Systems Gi,j is the rating given by user i to item j .

Predictors: Functions F can be represented as the set of all their values on the
entries rms ˆ rns: F P Rmˆn.

Loss: lpF q “ Epi,jq„D;ζ„Dn
lpFi,j ,Ri,j ` ζq.

Aim: Recover the ground truth G with high accuracy based on a small number of
observations.



Low-rank Structure

Low-rank structure: In most applications it is reasonable to assume there is
low-rank structure in the ground truth. In this case, it can be recovered
with high accuracy from a small (! mn) number of observations.

Explicit rank minimization: Srebro and Shraibman (2005) already shows

that if the rank r is known, rO
´

rpm`nq
ε2

¯

entries are sufficient to recover

the ground truth within ε accuracy.
However, explicitly minimizing the rank is NP hard.
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Convex Relaxations
Convex relaxation (exact recovery): The nuclear norm }Z}˚ of a matrix Z
(the sum of its singular values) indirectly promotes rank-sparsity. In Candès
and Tao (2010), it was shown that Opnr log2pnqq entries are sufficient to
recover R exactly with high probability via the following algorithm:

min
Z

}Z}˚ subject to

Zi ,j “ Gi ,j @pi , jq P Ω, (1)

where Ω is the set of observed entries and it is assumed that the entries
are sampled uniformly at random.

Convex relaxation (noisy case): In practical scenarios, the nuclear norm
can serve as a regularisor, as in the SoftImpute algorithm Mazumder et al.
(2010):

min
ZPRmˆn

1

2
}Z ´ G ´ ζ}2Fr ` λ}Z}˚. (2)
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Inductive Matrix Completion

Side information Ñ feature vectors for the users (rows) and items
(columns).

Collect in side information matrices X P Rmˆd1 and Y P Rnˆd2 .

Optimization problem (Exact recovery):

min
M

}M}˚ subject to

@pi , jq P Ω, rXMY Jsi ,j “ Gi ,j . (3)

Optimization problem (Approximate recovery):

min
MPRd1ˆd2

1

2
}PΩpXMY J ´ G ´ ζq}2Fr ` λ}M}˚. (4)



State-of-the-art and Brief Summary of Our
Contributions



Taxonomy of Theoretical Guarantees

In exact recovery, we assume the entries are observed exactly, and ask how
many entries are required to recover the matrix exactly.

In approximate recovery, we use standard Rademacher analysis to prove
generalisation bounds for a given loss function.

Ñ Typically yields generalisation bounds of the order O

ˆ

b

f pr ,d ,mq
N

˙

Ñ O
´

f pr ,d ,mq
ε2

¯

entries to reach ε expected loss.

Distributional assumptions: Can assume a uniform sampling or
distribution-free setting.
Algorithm: SoftImpute, or modifications/ other regularisers. We focus here
on slight modifications of problem (2), e.g. via weighting.



State-of-the art in MC

Table: Matrix completion results (trace norm-based only)

MC Unif.Sampling Distr.-free Weighted version

Exact nr logpnq logprq N/A N/A

Approx. nr logpnq n3{2?r rn logpnq

(Cf. Candès and Tao (2010); Recht (2011); Candès and Recht (2009);
Chen (2013); Foygel et al. (2011); Shamir and Shalev-Shwartz (2011))



State-of-the art in IMC

Table: Inductive matrix completion results (trace norm-based only)

IMC Unif.Sampling Distr.-free Weighted

Exact rd logpdq logpnq* N/A N/A
d2r3 logpdq

Appr. (sot) rd2 rd2 None

Appr. (ours) rd logpdq d3{2?r logpdq rd logpdq

(cf. Xu et al. (2013); Lu et al. (2016); Chiang et al. (2018); Jain and
Dhillon (2013))
(* with orthogonal assumptions)



Our Contributions

1 We prove Oprd logpdqq guarantees for approximate recovery IMC in
the uniform sampling setting.

2 We prove Opd3{2?r logpdqq guarantees for approximate recovery IMC
in the distribution-free sampling setting.

3 We introduce a weighted adaptation of the regulariser which brings
the rate down to Oprd logpdqq, analogously to Foygel et al. (2011)
(non inductive case).
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Hints of Proof Techniques [Classic IMC]



Proof Strategy

@

XMY J,RN

D

“
@

M,XJRNY
D

. (5)

Split by high and low variance entries of O “ XJRNY .

Problem: Entries of O “ XJRNY are not independent! (cannot use
standard concentration results).

Solution (technical): Iterative diagonalisation and peeling procedure on
matrices Ep}OJO}q and Ep}OOJ}q to use concentration results iteratively.
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Final result (classic IMC)

W.p. ě 1´ δ we have that lpẐ q ´ infZPFM lpZ q is bounded by

rO

»

–

d

`bxyM
?
d

N
`

b
?
N
`

xy`M` `

N

fi

fl` O

˜

c

logp1{δq

N

¸

, (6)

i.e.

rO

»

–maxpb, `q

d

xyM
?
d

N

fi

fl (7)

Fixing b, `, M „
?
d1d1r

Ñ Rate of rO
´

d3{2?r
ε2

¯



Detailed Results and Proof Techniques [Weighted IMC]



Extending the Weighted Trace Norm to IMC

In Foygel et al. (2011) consider the marginal probabilities

pi “
ÿ

j

pi ,j qj “
ÿ

i

pi ,j .

p̂, q̂:empirical versions; p̃ “ αp ` p1´ αq 1
m (smoothed version); p̌, q̌:

smoothed empirical versions.

Idea: regularise }F }p̃,q̃ :“ }
?
p̃
?
q̃
J
˝ F }˚ or }F }p̌,q̌ :“ }

?
p̌
?
q̌J ˝ F }˚

Ñ rOprnq sample complexity.



Extending the Weighted Trace Norm to IMC

What about IMC?

In the general case, must again think about spectral structure of XJRNY ,
whose entries are not independent.

Need to consider interaction between the distribution D and and the
privileged directions defined by the columns of X ,Y .
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Crucial quantities and first result
It turns out the eigenvalues of the following matrices play a key role in the
generalization abilities of IMC:

XJdiagpqqX Y JdiagpκqY (8)

q, κ „ marginal or empirical marginals.

We denote by σ1, σ2 the vectors containing the square roots of the
eigenvalues of the matrices above, and σ1

˚, σ
2
˚ for the corresponding

maxima.

We have proved that w.p. ě 1´ δ, the generalisation gap lpZSq ´ lpZ˚q is
bounded by

rO

˜

`
?
N
Mmaxpσ1

˚, σ
2
˚q `

12`

N
Mxy ` b

c

logp2{δq

2N

¸

(9)

(Ñ sample complexity of rOprdq for uniform sampling)
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Weighted Nuclear Norm for IMC

For the heavily non uniform case, we define diagonalize the matrices above
as follows:

XJdiagpqqX “ P´1DP Y JdiagpκqY “ Q´1EQ (10)

XJdiagpq̂qX “ pP´1
pD pP Y Jdiagpκ̂qY “ pQ´1E pQ. (11)

We also apply a similar smoothing procedure: rD “ 1
2D `

1
2d1

I ,

qD “ 1
2
pD ` 1

2d1
I etc.

We then propose to regularize the following norms (depending on whether
the distribution is known)

} rM}˚ :“ } rD
1
2PMQ´1

rE
1
2 }˚ (12)

} qM}˚ :“ } qD
1
2 pPM pQ´1

qE
1
2 }˚. (13)
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Summary of Results for Weighted IMC

We obtain:

Sample complexity bounds of order rOprdq when assuming knowledge
of the distribution.

Sample complexity bounds of order rOprdq for the smoothed empirical
setting (harder).



Practical Model and Experimental Results



Practical Model

In real life applications of IMC, it is very helpful to
add a non inductive term, as originally proposed in Chiang et al. (2018).

Such modifications can be combined with our model:

min
M,Z

1

N

›

›PΩ

`

XMY J ` Z ´ G ´ ζ
˘
›

›

2

Fr
` λ1} qD

1
2 pPM pQ´1

qE
1
2 }˚ ` λ2} qD

1
2
I Z

qE
1
2
I }˚



Experimental Results

Table: Results of real-world datasets (RMSE)

S-I IMCNF ATR-0.5 ATR-0.75 ATR-1.0
Douban 0.9582 0.8197 0.7691 0.7614 0.8779
LastFM 2.4109 1.7612 1.6159 1.6943 2.3371
MovieLens 0.9280 0.9252 0.9056 0.9139 0.9262

S-I: SoftImpute, classic SoftImpute model Mazumder et al. (2010).
IMCNF: ((unweighted) model from Chiang et al. (2018)
ATR-α: our model with smoothing parameter α.

A wide range of synthetic data experiments are available in the paper.



Thank you



Neural networks and NTK

One of the main research directions we want to pursue can be summarized
as follows:

Neural networks perform well even when the number of parameters is
much larger than the number of samples, which is at odds with standard

statistical learning theory. How can we explain this phenomenon?

The neural tangent kernel literature ((Jacot et al., 2018; Arora et al.,
2019; Du et al., 2019) etc.) provides first (partial) answers:

Overparameterised networks trained with gradient descent behave like
kernel methods as the number of parameters tends to infinity.
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