Understanding Negative Samples in Instance Discriminative Self-supervised representation Learning

Kento Nozawa^{1,2}

Paper: <u>https://arxiv.org/abs/2102.06866</u> Code: <u>https://github.com/nzw0301/Understanding-Negative-Samples</u>

Issei Sato¹

Short summary of this talk

- We point out the inconsistency between self-supervised learning's common practice and an existing theoretical analysis.
 - Practice: Large # negative samples don't hurt classification performance.
 - Theory: they hurt classification performance.
- We propose an novel analysis using Coupon collector's problem.

Goal: Learn generic feature encoder \mathbf{f} , for example deep neural nets, for a downstream task, such as classification.

Feature representations help a linear classifier to attain classification accuracy comparable to a supervised method from scratch.

Draw *K* + 1 samples from an unlabeled dataset. **x**: anchor sample.

• **x**⁻: negative sample. It can be a set of samples $\{\mathbf{x}_k^-\}_{k=1}^K$.

Anchor **x**

Negative **x**⁻

Apply data augmentation to the samples:

Anchor **X**

Negative **x**⁻

- For the anchor sample **x**, we draw and apply two data augmentations \mathbf{a}, \mathbf{a}^+ . • For negative sample \mathbf{x}^- , we draw and apply single data augmentation \mathbf{a}^- .

Feature encoder **f** maps augmented samples to feature vectors **h**, **h**⁺, **h**⁻.

Negative **x**⁻

• Minimize a contrastive loss given feature representations. • sim(...): a similarity function, such as cosine similarity. • Learned $\hat{\mathbf{f}}$ works as a feature extractor for a downstream task.

Anchor **x**

• h⁺

[1] Oord et al. Representation Learning with Contrastive Predictive Coding, *arXiv*, 2018.

Common technique: use large # negative samples K

linear classifier in practice.

For ImageNet,

- MoCo [2]: K = 65536.
- SimCLR [3]: $K = 8\,190$ or even more.

[2] He et al. Momentum Contrast for Unsupervised Visual Representation Learning, In CVPR, 2020. [3] Chen et al. A Simple Framework for Contrastive Learning of Visual Representations, In *ICML*, 2020.

By increasing # negative samples, learned $\hat{\mathbf{f}}$ yields informative features for

A theory of contrastive representation learning

Informal bound [4] modified for self-supervised learning: $L_{\text{cont}}(\mathbf{f}) \ge (1 - \tau_K)(L_{\text{sup}}(\mathbf{f}) + L_{\text{sub}}(\mathbf{f})) + \tau_K \ln(\text{Col} + 1) + d(\mathbf{f}).$ Collison term

- τ_K : Collision probability that anchor's label appears in negatives' one.
- $L_{sup}(\mathbf{f})$: Supervised loss with \mathbf{f} .
- $L_{sub}(\mathbf{f})$: Supervised loss over subset of labels with \mathbf{f} .
- Col: the number of duplicated negative labels with the anchor's label.
- $d(\mathbf{f})$: a function of \mathbf{f} , but almost constant term in practice.
- [4] Arora et al. A Theoretical Analysis of Contrastive Unsupervised Representation Learning, In *ICML*, 2019.

The bound of L_{sup} explodes with large K

The bound on CIFAR-10, where # classes is 10 with K = 31: About 96 % samples contribute the collision term not related to the supervised loss due to τ_K . • Plots rearranged upper bound: $L_{sup}(\mathbf{f}) \le (1 - \tau_K)^{-1} [L_{cont}(\mathbf{f}) - \tau_K \ln(\text{Col} + 1) - d(\mathbf{f})] - L_{sub}(\mathbf{f})$:

Contributions: novel lower bound of contrastive loss

Informal proposed bound: $L_{\text{cont}}(\mathbf{f}) \ge \frac{1}{2} \left\{ v_{K+1} L_{\text{sup}}(\mathbf{f}) + (1 - 1) \right\}$

- Additional insight: the expected K + 1 to draw all supervised labels from ImageNet-1K is about 7700.

$$v_{K+1}L_{sub}(\mathbf{f}) + \ln(Col + 1) \} + d(\mathbf{f}).$$

• Key idea: replace collision probability τ with Coupon collector's problem's probability v_{K+1} that K + 1 samples' labels include the all supervised labels.

Our bound doesn't explode

Conclusion

- practice and the existing bound.
 - Practice: Large K doesn't hurt classification performance.
 - Theory: large K hurts classification performance.
- We proposed the new bound using Coupon collector's problem.
- Additional results:
 - Upper bound of the collision term.
 - Optimality when v = 0 with too small *K*.
 - Experiments on a NLP dataset.

• We pointed out the inconsistency between self-supervised learning's common

