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Machine Learning as a Service (MLAAS) is on the Rise

[ Household robots ] [ Autonomous driving ] [ Image analysis ]

Image courtesy: Google images

» Various trained models are deployed at the edge to perform complex computer
vision and natural language processing tasks

» Industries prefer the trained models to be released as commercial black-box APIs
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Model Performance Protection is Important

» Winning teams of Al competitions do not want their model performance to be replicated
by opponents

» Industry releasing models as commercial black-box APl do not want their model
performance to be replicated by a potential competitor

» Commercial black-box ML APls often require large human resource and training costs that
the owner wants to be compensated for via MLAAS earnings

Neural Networks

Apply cutting-edge research to train deep neural networks on problems ranging from

perception to control. Our per-camera networks analyze raw images to perform semantic
.0001 AUTO_HIGH_BEAM

2 o . segmentation, object detection and monocular depth estimation. Our birds-eye-view

+0.0001 RAINING
+0.0001 TIRE_SPRAY

390018 WET AP y ! networks take video from all cameras to output the road layout, static infrastructure and

0.0320 RESTRICTED

3D objects directly in the top-down view. Our networks learn from the most complicated
and diverse scenarios in the world, iteratively sourced from our fleet of nearly 1M vehicles

in real time. A full build of Autopilot neural networks involves EEREa el ERGEIR =G
Ao XololoNci=INR e Rir-11s| . Together, they output 1,000 distinct tensors (predictions) at

each timestep.

U L)
K ".wé,-.t-‘,. Source: https.//www.tesla.com/Al
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Knowledge-Distillation (KD): A Potential Threat to MLAAS

(Training data)

Soft labels
— (Temperature = 1)
| =
S
= on
Pretrained =: 8 Concerning application:
- (72
teacher (@) a mimicking performance

Primary application: OR —
model compression (Synthetic data )

Soft labels

from black-box models

(Temperature = 1)

(
¢ /| 1
i |
I I —_——————

" Student (Ps)

» KD can transfer the “rich” knowledge of a compute-heavy teacher to a compute-
efficient student model under both data-available!!! and data-free scenarios!?

[1] Geoffrey Hinton et al., “Distilling the knowledge in a neural network”, NeurlPS 2014 (workshop).
[2] Paul Micaelliand Amos Storkey, “Zero-shot knowledge transfer via adversarial belief matching”, NeurlPS 20189.
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Undistillable Models!!

» A class of models that
» Perform similar to standard teacher models to maintain their own performance
» However, act as “nasty” teachers to any student model by not allowing it to mimic
performance.
» Core idea
» Inject false sense of generalization to the student!]

Training loss of Undistillable models (®,):

Cross-entropy (CE) Self-undermining loss
loss

[1] Haoyu Ma et al., “Undistillable: Making a nasty teacher that cannot teach students”, ICLR 2021 (spotlight).
SO
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Al: Analyzing Undistillability

» A study of transferability of the impact of nasty teachers

Teacher |Teacher type|Teacher Acc %|Student Acc %|Apase

ResNet50|  Nasty 76.57 | 72.47 -5.08
ResNet18| Distilled 6.56
ResNet50[ Normal 78.04 79.39 +1.84

ResNet18| Distilled 79.39 79.47 +1.92

The nastiness of a teacher transfers to its student
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A2: Analyzing the Undistillability

» A study of applying KD at various depth of the student model

—~ <+— Shallower depth
o\o
"—"78-_________-__-
9
© 76
o
b 74 T: Nasty ResNet50
g 72 T: Nollrmal ResNet50
2 20 == = Baseline
1 2 3 4

Aux. classifier location

Impact of a teacher reduces as we use KD at
shallower depths of student
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Our Proposal: Skeptical Student

T 2 -——— — — o — — — - -p\

. - Shallow section (®’s)
i Student (&)
Input (Potential model A%
Stealer) i _k

USCUniversity of
Southern California

—p Student’s CE loss
E

- Self-Distillation loss

- Distillation loss from teacher

Trainable parameters
of Student’s main branch

N
0-000«|X

—

Teacher (&) Trainable parameters
k& of Student’s auxiliary branch
O
8 Pre-trained teacher model
e ©
Input

» Transfer knowledge to shallow depth (®’() of a student via aux. classifier (AC)
» Use self-distillation at AC in @,- @’ to boost performance of student @
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Skeptical Students: Training Loss

KL-divergence loss component:
Lr=(1—a)xLee(o(gar,(x.y))) + a7 L (o(gor, (x.¥). 7). 0 (9o, (x.¥).7))

Self-distillation loss component :
['SD — Z {(1 — /6)) * ECS (O_(Q(I,Jq (qu))) + 6 * [-:]C,C((T(gq)i’é (x,y),r),a(g(ps(x,y),'r))}
jcJ

CE loss component :

£C£ (‘7(9@5 (xvy)))

Total loss (hybrid distillation):

SN,
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Skeptical Students: Distilled from Nasty Teachers
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Dataset b b bg ® g Base- Student Acc. (%) Agce
Acc. (%) line Acc. (%) | Normal (ace,,) | Skeptical (accs) | Skeptical-E (accs, )

ResNetl8 94.67 ResNetl8 95.15 94.13(4+0.18) [} 95.09( + 0.15; 94.77(+ 0.05) +0.96

MobileNetV2 90.12 88.13(+0.13) |} 90.37( £+ 0.25) 90.21(+£ 0.18) +2.24

CIFAR 94.28 ResNetl8 95.15 04.38(+0.18) [} 95.16( = 0.01) 95.02(+ 0.01) +0.78

-10 ResNet50 ResNet50 94.9 94.21(+0.04) [} 95.48( = 0.14) 95.48(+ 0.14) +1.27

MobileNetV2 90.12 88.76(40.14) [} 91.02( £ 0.09) 90.88(+ 0.23) +2.26

ResNetl8 77.55 ResNet18 77.55 75.00(£0.14) |} 77.33( = 0.21) 76.38(+ 0.1) +2.33

MobileNetV2 69.24 7.13(+0.71) 66.62(+ 0.30) 64.26(+ 0.64) +59.49

CIFAR 76.57 ResNetl8 77.55 72.28(+0.27) |} 77.25( = 0.25) 75.48(+0.54) +4.97

-100 ResNet50 ResNet50 78.04 74.14(1+0.85) |} 78.65( £+ 0.29) 77.61(40.1) +4.52

MobileNetV2 69.24 7.72(+£1.57) 66.38( £+ 0.50) 62.93(+0.75) +58.66

Tiny- ResNetl8 62.08 ResNetl8 63.07 53.60(#£0.04) 65.76(+0.83) 60.63(+0.07) +12.16

ImageNet MobileNetV2 57.01 4.81(4 0.19) 54.74(£0.84) | 54.27(£2.94) +49.93

Skeptical students achieve similar to teacher performance even when the teacher is

Undistillable (or nasty).

Kundu et al.

52 USCUniversity of
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Skeptical Students: Distilled from Normal Teachers

Dataset D D dg ® 5 Base- Student Acc. (%) Agce

Acc. (%) line Acc. (%) | Normal (acc,,) | Skeptical (accs) | Skeptical-E (accs,)

q \

ResNetl8 | 95.15 ResNet18 95.15 05.38 (40.10) 95.45(40.10) 05.42(+0.09) +0.07
MobileNetV?2 90.12 91.36(10.17) 91.81(40.15) 92.00(+0.28) +0.64
CIFAR ResNet18 95.15 95.43(+0.11) 05.31(40.01) 05.27(40.04) -0.12
-10 ResNet50 94.9 ResNet50 94.9 95.15(40.13) 05.85(40.05) 96.09(+0.01) +0.94
MobileNetV?2 90.12 91.71(+£0.06) 91.71(+£0.18) 91.95(+0.16) +0.24
ResNet18 77.55 ResNet18 77.55 78.96(10.12) 78.79(+0.42) 79.68(+0.52) +0.72
MobileNetV?2 69.24 75.12(40.08) 71.63(+0.19) 75.45(+0.06) +0.33
CIFAR 78.04 ResNet18 77.55 79.21(40.24) 78.51(40.44) 79.86(+0.01) +0.65
-100 ResNet50 ResNet50 78.04 79.56(+0.13) 80.66(40.52) 81.96(+0.52) +2.4
MobileNetV?2 69.24 75.28(40.04) 71.76(40.16) 76.32(+0.34) +1.04
Tiny- ResNet18 63.07 ResNet18 63.07 67.35(%0.18) 66.49(+0.30) 67.43(+0.47) +0.08
ImageNet MobileNetV?2 57.01 64.99(+0.51) 59.37(+0.01) L 65.38(40.01) ) | +0.39

Skeptical students achieve similar to normal students’ performance upon distillation

from a normal teacher.
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Skeptical Students: Data-free Distillation

Auxiliary self KD

\

©-000

o |off
/

KD from teacher

/ \ __

Lspe = Lrc(0(gar, (,9),7),0(g0, (x,3),7)) + Lrc(0(gas (x,y),7),0(gar, (x,¥), 7)) pufﬁATl

A —J

\
/

Grey-box teacher: Attention transfer (AT) loss v
Black-box teacher: Attention transfer (AT) loss 3€

\’L
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Skeptical Students: Data-free Distillation Results

Dataset D D li s Pg | Student Acc. (%) Agce
type Acc. (%) | Normal | Skeptical
With AT loss (grey-box)
ResNet34 Nasty 94.81 ResNetl8 | 87.7(£1.20) | 91.76(£0.30) § +4.06
CIFAR Normal 95.3 93.41(40.21) | 93.52(£0.06) | +0.11
-10 ResNet50 | Nasty 94.28 80.34(£1.19) | 86.14(F0.01) | +5.80
Normal 94.9 90.54(%1.16) | 91.93(£0.04) | +1.39
Without AT loss (black-box)
CIFAR | ResNet50 | Nasty 9428 | ResNetl8 | 20.95(+0.21) | 79.93(+1.58) | +58.98
-10 | Normal | 94.9 | 22.08(£0.56) | 80.71(*+1.21) | +58.63

Skeptical students achieve significantly superior performance
compared to normal counter parts.
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Skeptical Students: Analysis of Results
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Normal Teacher T: Normal, S: Normal Nasty Teacher T: Nasty, S: Normal
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No visible adverse mixing of class clusters
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Evaluations done on CIFAR-10 dataset with ResNet50 as teacher and ResNet18 as student model.
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Normal Teacher Nasty Teacher Normal Student Skeptical Student
1.0 1.0
? 0.8 o7
8 .08 > 06 0.8
o £ =06 =05 =
E 50.6 [ o 50.6
ut © E m04 e
5 S04 g 04 g0.3 g0.4
0.2 : 0.1 0.2
0.0 ry
0 5 10 15 20 25 30 0.0 5537456358910 12345678910 %9 73325678010 %9 {33456780910
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Normal Teacher Nasty Teacher 0.8 Normal Student Skeptical Student
1.0 ' 1.0
g o 0.8 07 o
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5 00.4 o * ©0.3 004
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Non-negligible logit values Incorrectly classified class

Negligible logit values of
of incorrect classes

incorrect classes

‘%3-\& Evaluations done on CIFAR-10 dataset with ResNet50 as teacher and ResNet18 as student model.
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Skeptical Students: Ablation with Hyperparameters T oG Univeity of
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Teacher: nasty ResNet50 Teacher: nasty ResNet50 82 Teacher: normal ResNet50 Teacher: normal ResNet50
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Skeptical students consistently outperform normal counter parts on different loss strength

and temperature value choices?.

\2. 1 Evaluation done on CIFAR-100 dataset to ResNet18 student model.
U 3808
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Skeptical Students: Ablation with Limited Data-availability 7S¢t

Teacher: nasty ResNet50 Teacher: normal ResNet50
=957 =95
X X
9 9
- -
O O
(@) (@)
< 851 S: Skeptical < 851 S: Skeptical
T S: Normal 0 S: Normal
ﬂ 20 Baseline IG—J 80 Baseline

0 20 40 60 80 100 0 20 40 60 80 100
Percentage of training data Percentage of training data

Skeptical students consistently outperform normal counter

parts on various limited data availability scenarios?.

or 1 Evaluation done on CIFAR-10 dataset to ResNet18 student model.
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Skeptical Students: Transferability of Nastiness T St Coitonia

Teacher Teacher type Teacher Acc % | Student Acc % | Apgse
ResNet50 Nasty 76.57 77.43 -0.12
ResNetl8 | Nasty-distilled l 77.43 l(—— ->l 79.22 i +1.67
ResNet50 Normal 78.04 78.90 +1.35
ResNetl8 | Normal-distilled 78.90 79.92 +2.37

The nastiness of a teacher does not get
transferred to the skeptical student
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Summary

» Skeptical students can successfully distill from even a nasty teacher outperforming
normal student counterparts

» Skeptical students can yield better performance on both data-available and data-free
scenarios

» The success of skeptical students in mimicking model performance poses a fundamental
question on protecting model IP in a distillation framework.

Acknowledgment: This work was supported in parts by NSF including grant number 1763747.
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Thank You!
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