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Machine Learning as a Service (MLAAS) is on the Rise

Image courtesy: Google images

➢Various trained models are deployed at the edge to perform complex computer 
vision and natural language processing tasks

➢ Industries prefer the trained models to be released as commercial black-box APIs

Household robots Autonomous driving Image analysis
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Model Performance Protection is Important

➢Winning teams of AI competitions do not want their model performance to be replicated 
by opponents

➢ Industry releasing models as commercial black-box API do not want their model 
performance to be replicated by a potential competitor

➢Commercial black-box ML APIs often require large human resource and training costs that 
the owner wants to be compensated for via MLAAS earnings

Source: https://www.tesla.com/AI



Primary application: 
model compression
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Knowledge-Distillation (KD): A Potential Threat to MLAAS

➢KD can transfer the “rich” knowledge of a compute-heavy teacher to a compute-
efficient student model under both data-available[1] and data-free scenarios[2]

[1] Geoffrey Hinton et al., “Distilling the knowledge in a neural network”, NeurIPS 2014 (workshop).
[2] Paul Micaelli and Amos Storkey, “Zero-shot knowledge transfer via adversarial belief matching”, NeurIPS 2019.

Concerning application: 
mimicking performance 
from black-box models
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Undistillable Models[1]

➢A class of models that 
➢Perform similar to standard teacher models to maintain their own performance
➢However, act as “nasty” teachers to any student model by not allowing it to mimic 

performance.
➢Core idea 

➢ Inject false sense of generalization to the student[1]

[1] Haoyu Ma et al., “Undistillable: Making a nasty teacher that cannot teach students”, ICLR 2021 (spotlight).

Training loss of Undistillable models (ФT):

Cross-entropy (CE) 
loss

Self-undermining loss
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A1: Analyzing Undistillability

➢A study of transferability of the impact of nasty teachers

The nastiness of a teacher transfers to its student
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A2: Analyzing the Undistillability

➢A study of applying KD at various depth of the student model 

Impact of a teacher reduces as we use KD at 
shallower depths of student
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Our Proposal: Skeptical Student

➢Transfer knowledge to shallow depth (Ф’S) of a student via aux. classifier (AC)
➢Use self-distillation at AC in ФS - Ф’S to boost performance of student ФS 
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Skeptical Students: Training Loss

KL-divergence loss component:

Self-distillation loss component :

CE loss component :

Total loss (hybrid distillation):
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Skeptical Students: Distilled from Nasty Teachers

Skeptical students achieve similar to teacher performance even when the teacher is 
Undistillable (or nasty).  
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Skeptical Students: Distilled from Normal Teachers

Skeptical students achieve similar to normal students’ performance upon distillation 
from a normal teacher.  
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Skeptical Students: Data-free Distillation

Grey-box teacher: Attention transfer (AT) loss 

Black-box teacher: Attention transfer (AT) loss 
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Skeptical Students: Data-free Distillation Results

Skeptical students achieve significantly superior performance 
compared to normal counter parts.  
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Skeptical Students: Analysis of Results

Adverse mixing of class clusters

No visible adverse mixing of class clusters

Evaluations done on CIFAR-10 dataset with ResNet50 as teacher and ResNet18 as student model.



15Kundu et al.

Skeptical Students: Analysis of Results

Non-negligible logit values 
of incorrect classes

Negligible logit values of 
incorrect classes

Evaluations done on CIFAR-10 dataset with ResNet50 as teacher and ResNet18 as student model.

Incorrectly classified class
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Skeptical Students: Ablation with Hyperparameters

Skeptical students consistently outperform normal counter parts on different loss strength 
and temperature value choices1.

1 Evaluation done on CIFAR-100 dataset to ResNet18 student model.
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Skeptical Students: Ablation with Limited Data-availability

Skeptical students consistently outperform normal counter 
parts on various limited data availability scenarios1.

1 Evaluation done on CIFAR-10 dataset to ResNet18 student model.
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Skeptical Students: Transferability of Nastiness

The nastiness of a teacher does not get 
transferred to the skeptical student
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Summary

➢ Skeptical students can successfully distill from even a nasty teacher outperforming 
normal student counterparts

➢ Skeptical students can yield better performance on both data-available and data-free 
scenarios

➢The success of skeptical students in mimicking model performance poses a fundamental 
question on protecting model IP in a distillation framework.
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