

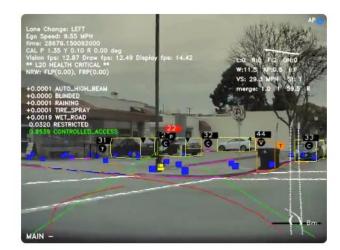
Analyzing the Confidentiality of Undistillable Teachers in Knowledge Distillation

35th Neural Information Processing Systems, 2021

Souvik Kundu, Qirui Sun, Yao Fu, Massoud Pedram, Peter A. Beerel Ming Hsieh Department of Electrical and Computer Engineering

Machine Learning as a Service (MLAAS) is on the Rise

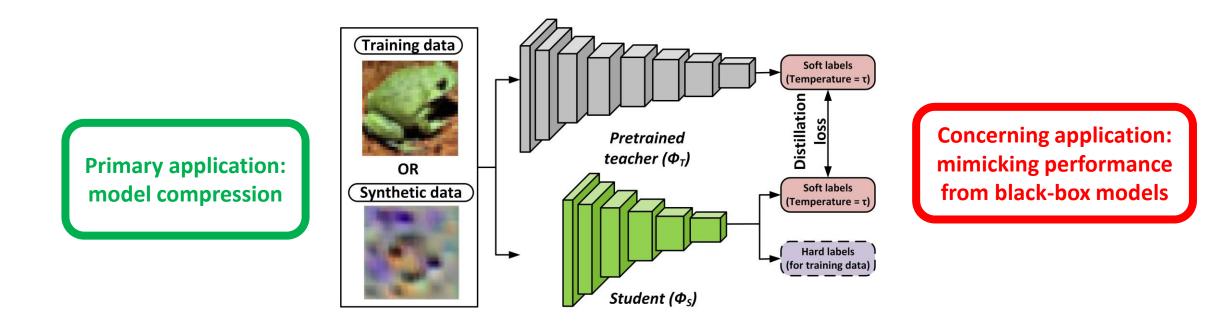
Image courtesy: Google images


Various trained models are deployed at the edge to perform complex computer vision and natural language processing tasks

> Industries prefer the trained models to be released as commercial black-box APIs

Model Performance Protection is Important

- Winning teams of AI competitions do **not** want their model performance to be replicated by opponents
- Industry releasing models as commercial black-box API do not want their model performance to be replicated by a potential competitor
- Commercial black-box ML APIs often require large human resource and training costs that the owner wants to be compensated for via MLAAS earnings


Neural Networks

Apply cutting-edge research to train deep neural networks on problems ranging from perception to control. Our per-camera networks analyze raw images to perform semantic segmentation, object detection and monocular depth estimation. Our birds-eye-view networks take video from all cameras to output the road layout, static infrastructure and 3D objects directly in the top-down view. Our networks learn from the most complicated and diverse scenarios in the world, iteratively sourced from our fleet of nearly 1M vehicles in real time. A full build of Autopilot neural networks involves **48 networks that take 70,000 GPU hours to train .** Together, they output 1,000 distinct tensors (predictions) at each timestep.

Knowledge-Distillation (KD): A Potential Threat to MLAAS

KD can transfer the "rich" knowledge of a compute-heavy teacher to a computeefficient student model under both data-available^[1] and data-free scenarios^[2]

[1] Geoffrey Hinton et al., "Distilling the knowledge in a neural network", NeurIPS 2014 (workshop).
 [2] Paul Micaelli and Amos Storkey, "Zero-shot knowledge transfer via adversarial belief matching", NeurIPS 2019.

Undistillable Models^[1]

USC University of Southern California

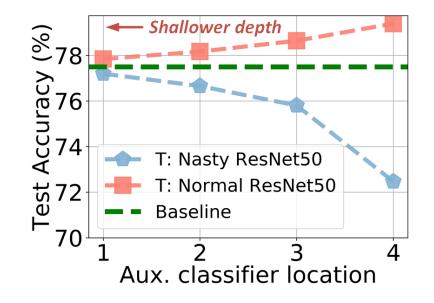
- A class of models that
 - > Perform similar to standard teacher models to maintain their own performance
 - However, act as "nasty" teachers to any student model by not allowing it to mimic performance.
- Core idea
 - Inject false sense of generalization to the student^[1]

Training loss of Undistillable models ($\boldsymbol{\Phi}_{T}$): $\mathcal{L}_{N} = \mathcal{L}_{C\mathcal{E}} \left(\sigma(g_{\Phi_{T}}(\boldsymbol{x}, \boldsymbol{y})) \right) - \alpha_{N} * \tau_{N}^{2} * \mathcal{L}_{\mathcal{KL}} \left(\sigma(g_{\Phi_{T}}(\boldsymbol{x}, \boldsymbol{y}), \tau_{N}), \sigma(g_{\Phi_{A}}(\boldsymbol{x}, \boldsymbol{y}), \tau_{N}) \right)$ Cross-entropy (CE)
Self-undermining loss

[1] Haoyu Ma et al., "Undistillable: Making a nasty teacher that cannot teach students", ICLR 2021 (spotlight).

A1: Analyzing Undistillability

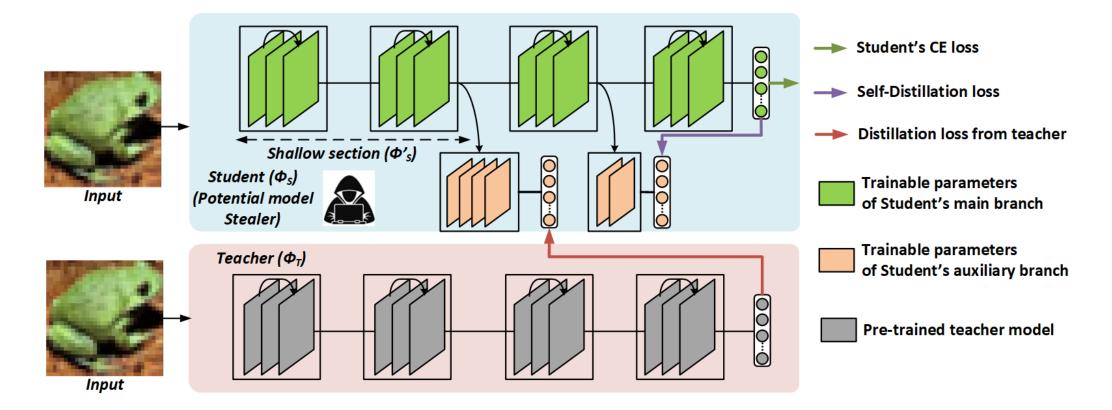
> A study of transferability of the impact of nasty teachers


Teacher Teacher type Teacher Acc % Student Acc % Δ_{base}								
ResNet50 Nasty	76.57	72.47	-5.08					
ResNet18 Distilled	72.47 ← +	70.99	-6.56					
ResNet50 Normal	78.04	79.39	+1.84					
ResNet18 Distilled	79.39	79.47	+1.92					
The nastiness of a teacher transfers to its student								

A2: Analyzing the Undistillability

USC University of Southern California

> A study of applying KD at various depth of the student model



Impact of a teacher reduces as we use KD at shallower depths of student

Our Proposal: Skeptical Student

Transfer knowledge to shallow depth (Φ'_s) of a student via aux. classifier (AC)
 Use self-distillation at AC in $\Phi_s - \Phi'_s$ to boost performance of student Φ_s

Skeptical Students: Training Loss

KL-divergence loss component:

$$\mathcal{L}_T = (1 - \alpha) * \mathcal{L}_{C\mathcal{E}} \big(\sigma(g_{\Phi'_S}(\boldsymbol{x}, \boldsymbol{y})) \big) + \alpha * \tau^2 * \mathcal{L}_{\mathcal{KL}} \big(\sigma(g_{\Phi'_S}(\boldsymbol{x}, \boldsymbol{y}), \tau), \sigma(g_{\Phi_T}(\boldsymbol{x}, \boldsymbol{y}), \tau) \big)$$

Self-distillation loss component :

$$\mathcal{L}_{SD} = \sum_{j \in \mathcal{J}} \left\{ (1 - \beta) * \mathcal{L}_{\mathcal{CE}} \left(\sigma(g_{\Phi_{S}^{j}}(\boldsymbol{x}, \boldsymbol{y})) \right) + \beta * \mathcal{L}_{\mathcal{KL}} \left(\sigma(g_{\Phi_{S}^{j}}(\boldsymbol{x}, \boldsymbol{y}), \tau), \sigma(g_{\Phi_{S}}(\boldsymbol{x}, \boldsymbol{y}), \tau) \right) \right\}$$

CE loss component : $\mathcal{L}_{C\mathcal{E}} (\sigma(g_{\Phi_S}(\mathbf{x}, \mathbf{y})))$

Total loss (hybrid distillation):

$$\mathcal{L}_{S} = \gamma_{1}\mathcal{L}_{T} + \gamma_{2}\mathcal{L}_{SD} + \gamma_{3}\mathcal{L}_{C\mathcal{E}}\big(\sigma(g_{\Phi_{S}}(\boldsymbol{x},\boldsymbol{y}))\big)$$

USC University of

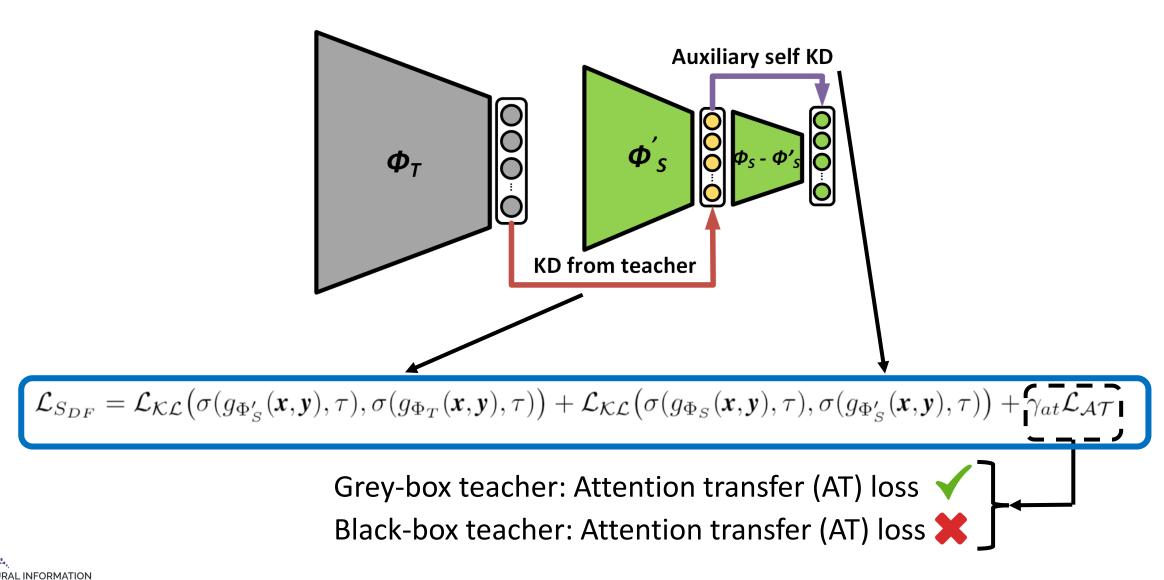
Southern California

Skeptical Students: Distilled from Nasty Teachers

Dataset	Φ_T	Φ_T	Φ_S	Φ_S Base-	Student Acc. (%)			Δ_{acc}
		Acc. (%)		line Acc. (%)	Normal (acc_n)	Skeptical (acc_s)	Skeptical-E (acc_{se})	
	ResNet18	94.67	ResNet18	95.15	94.13(±0.18)	95.09 (±0.15)	$94.77(\pm 0.05)$	+0.96
			MobileNetV2	90.12	88.13(±0.13)	90.37 (±0.25)	$90.21(\pm 0.18)$	+2.24
CIFAR		94.28	ResNet18	95.15	94.38(±0.18)	95.16 (±0.01)	$95.02(\pm 0.01)$	+0.78
-10	ResNet50		ResNet50	94.9	$94.21(\pm 0.04)$	95.48 (±0.14)	$95.48(\pm 0.14)$	+1.27
			MobileNetV2	90.12	88.76(±0.14)	91.02 (±0.09)	$90.88(\pm 0.23)$	+2.26
	ResNet18	77.55	ResNet18	77.55	$75.00(\pm 0.14)$	77.33 (±0.21)	$76.38(\pm 0.1)$	+2.33
			MobileNetV2	69.24	$7.13(\pm 0.71)$	66.62 (± 0.30)	$64.26(\pm 0.64)$	+59.49
CIFAR		76.57	ResNet18	77.55	$72.28(\pm 0.27)$	77.25 (± 0.25)	$75.48(\pm 0.54)$	+4.97
-100	ResNet50		ResNet50	78.04	$74.14(\pm 0.85)$	78.65 (±0.29)	$77.61(\pm 0.1)$	+4.52
			MobileNetV2	69.24	$7.72(\pm 1.57)$	66.38 (±0.50)	62.93(±0.75)	+58.66
Tiny-	ResNet18	62.08	ResNet18	63.07	53.60(±0.04)	65.76 (±0.83)	60.63(±0.07)	+12.16
ImageNet			MobileNetV2	57.01	$4.81(\pm 0.19)$	54.74 (±0.84)	54.27(±2.94)	+49.93

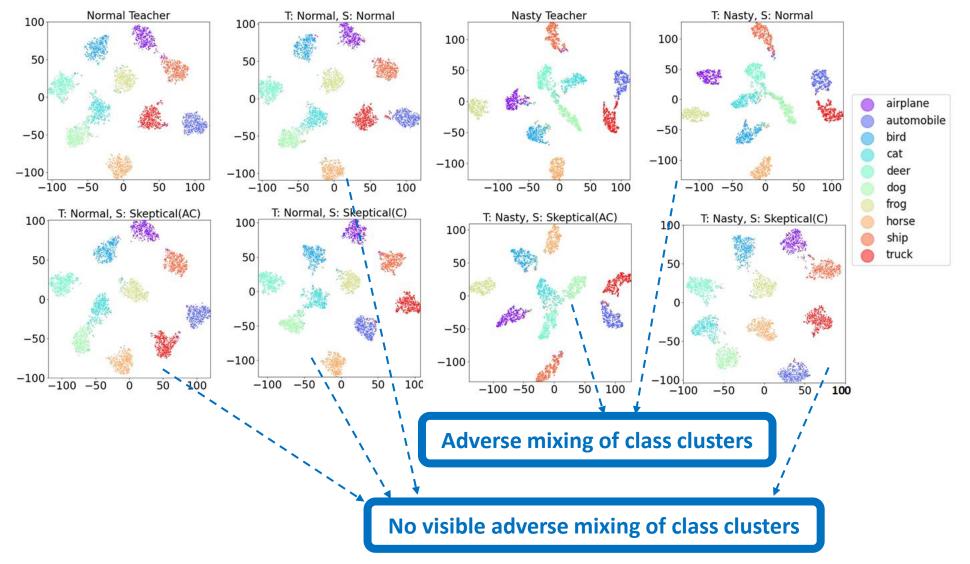
Skeptical students achieve similar to teacher performance even when the teacher is Undistillable (or nasty).

Skeptical Students: Distilled from Normal Teachers


Dataset	Φ_T	$\begin{array}{c} \Phi_T \\ \text{Acc. } (\%) \end{array}$	Φ_S	Φ_S Base- line Acc. (%)	Student Acc. (%) Δ_a Normal (acc_n) Skeptical (acc_s) Skeptical-E (acc_{se})			Δ_{acc}
		<i>nee.</i> (70)		inte / iee. (70)		Skeptical (acc3)	okeptical E (acc _{se}	/
	ResNet18	95.15	ResNet18	95.15	95.38 (±0.10)	95.45 (±0.10)	$95.42(\pm 0.09)$	+0.07
			MobileNetV2	90.12	91.36(±0.17)	91.81(±0.15)	92.00 (±0.28)	+0.64
CIFAR			ResNet18	95.15	95.43 (±0.11)	95.31(±0.01)	95.27(±0.04)	-0.12
-10	ResNet50	94.9	ResNet50	94.9	95.15(±0.13)	95.85(±0.05)	96.09 (±0.01)	+0.94
			MobileNetV2	90.12	91.71(±0.06)	91.71(±0.18)	91.95 (±0.16)	+0.24
	ResNet18	77.55	ResNet18	77.55	78.96(±0.12)	78.79(±0.42)	79.68 (±0.52)	+0.72
			MobileNetV2	69.24	$75.12(\pm 0.08)$	71.63(±0.19)	75.45 (±0.06)	+0.33
CIFAR		78.04	ResNet18	77.55	$79.21(\pm 0.24)$	78.51(±0.44)	79.86 (±0.01)	+0.65
-100	ResNet50		ResNet50	78.04	$79.56(\pm 0.13)$	80.66(±0.52)	81.96 (±0.52)	+2.4
			MobileNetV2	69.24	$75.28(\pm 0.04)$	71.76(±0.16)	76.32 (±0.34)	+1.04
Tiny-	ResNet18	63.07	ResNet18	63.07	67.35(±0.18)	66.49(±0.30)	67.43 (±0.47)	+0.08
ImageNet			MobileNetV2	57.01	64.99(±0.51)	59.37(±0.01)	65.38 (±0.01)	+0.39

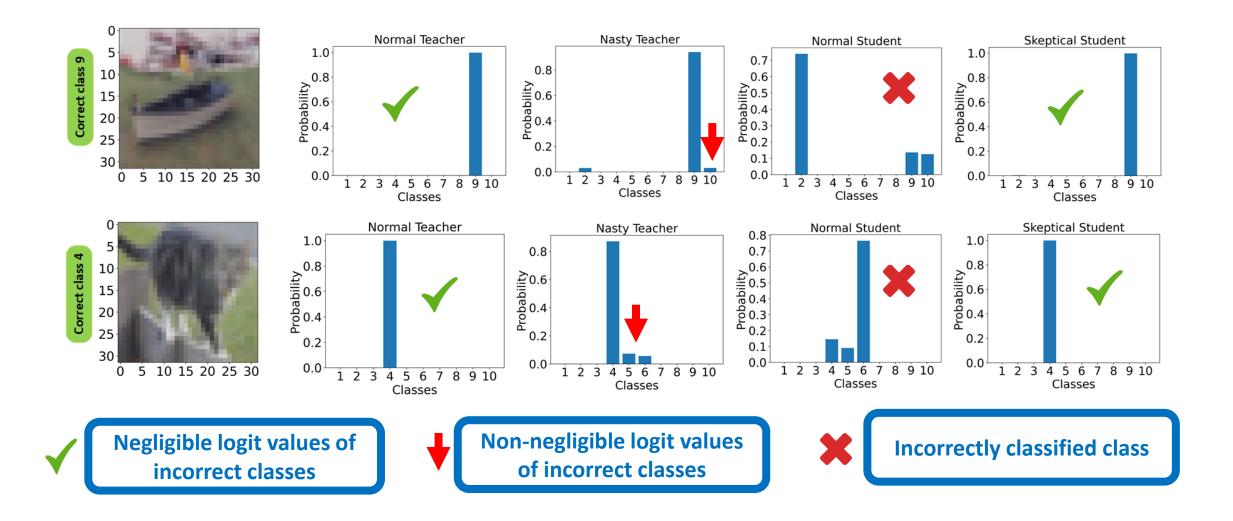
Skeptical students achieve similar to normal students' performance upon distillation from a normal teacher.

Skeptical Students: Data-free Distillation


Skeptical Students: Data-free Distillation Results

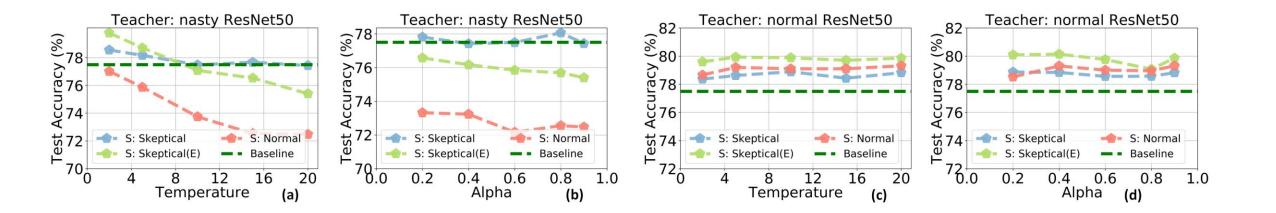
Dataset	Φ_T	Φ_T	Φ_T	Φ_S	Student	Acc. (%)	Δ_{acc}	
		type	Acc. (%)		Normal	Skeptical	1	
	With AT loss (grey-box)							
	ResNet34	Nasty	94.81	ResNet18	87.7(±1.20)	91.76 (±0.30)	+4.06	
CIFAR		Normal	95.3	1	93.41(±0.21)	93.52 (±0.06)	+0.11	
-10	ResNet50	Nasty	94.28	1	80.34(±1.19)	86.14 (±0.01)	+5.80	
		Normal	94.9	1	90.54(±1.16)	91.93 (±0.04)	+1.39	
Without AT loss (black-box)								
CIFAR	ResNet50	Nasty	94.28	ResNet18	$20.95(\pm 0.21)$	79.93 (±1.58)	+58.98	
-10		Normal	94.9	1	$22.08(\pm 0.56)$	80.71 (±1.21)	+58.63	
Skeptical students achieve significantly superior performance compared to normal counter parts.								

Skeptical Students: Analysis of Results



Evaluations done on CIFAR-10 dataset with ResNet50 as teacher and ResNet18 as student model.

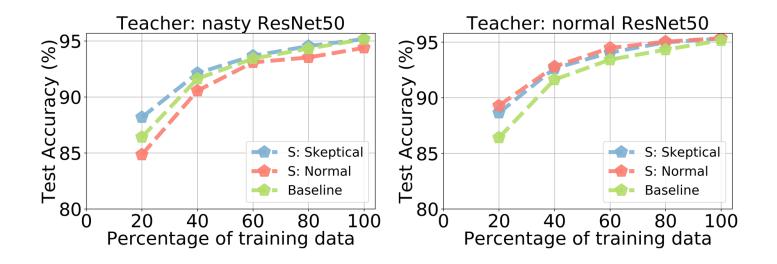
Skeptical Students: Analysis of Results



NEURAL INFORMATION PROCESSING SYSTEMS

Evaluations done on CIFAR-10 dataset with ResNet50 as teacher and ResNet18 as student model.

Skeptical Students: Ablation with Hyperparameters


Skeptical students consistently outperform normal counter parts on different loss strength and temperature value choices¹.

¹ Evaluation done on CIFAR-100 dataset to ResNet18 student model.

Skeptical Students: Ablation with Limited Data-availability

Skeptical students consistently outperform normal counter parts on various limited data availability scenarios¹.

¹ Evaluation done on CIFAR-10 dataset to ResNet18 student model.

Skeptical Students: Transferability of Nastiness

Teacher	Teacher type	Teacher Acc %	Student Acc %	Δ_{base}			
ResNet50	Nasty	76.57	77.43	-0.12			
ResNet18	Nasty-distilled	77.43		+1.67			
ResNet50	Normal	78.04	78.90	+1.35			
ResNet18	Normal-distilled	78.90	79.92	+2.37			
The nastiness of a teacher does not get transferred to the skeptical student							

Summary

- Skeptical students can successfully distill from even a nasty teacher outperforming normal student counterparts
- Skeptical students can yield better performance on both data-available and data-free scenarios
- The success of skeptical students in mimicking model performance poses a fundamental question on protecting model IP in a distillation framework.

Acknowledgment: This work was supported in parts by NSF including grant number 1763747.

Thank You!

Kundu et al.