Linear-Time Probabilistic Solutions of Boundary Value Problems

NEURIPS 2021

Nicholas Krämer and Philipp Hennig

EBERHARD KARLS
 UNIVERSITAT TUBINGEN
 等会

Faculty of Science
 Department of Computer Science
 Chair for the Methods of Machine Learning

Many thanks to supporters and sponsors:

CyberValley
DFG

Follow us on Twitter: @pnkraemer, @PhilippHennig5

Differential equation:

$$
\dot{y}(t)=f(y(t), t)
$$

Fixed boundary values:

$$
y(0)=y_{0}, \quad y(1)=y_{1}
$$

- BVPs are weirdly both local and global \rightarrow Iterated Kalman smoothing
- We know it is a boundary value problem \rightarrow Gaussian bridge priors
- Too many unknowns
\rightarrow Expectation maximisation
- We need efficiency
\rightarrow Mesh refinement

No. of grid points

Thanks to Philipp Hennig

Paper:

Linear-Time Probabilistic Solutions of Boundary Value Problems.
Nicholas Krämer and Philipp Hennig.
NeurIPS 2021. Preprint: https://arxiv.org/pdf/2106.07761. pdf

You might also like:

A Probabilistic State Space Model for Joint Inference from Differential Equations and Data. Jonathan Schmidt, Nicholas Krämer and Philipp Hennig.
NeurIPS 2021. Preprint: https://arxiv.org/pdf/2103.10153.pdf

