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Black-box Adversarial Attack on Video Classifiers

I Problem Statement: How to create imperceptible video perturbation, so that the
perturbed video is misclassified by the black-box model?
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Black-box Adversarial Attack on Video Classifiers

I Effective attacks: Better gradient estimation is the key to query-based black-box
attack.
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Gradient Estimation
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Gradient Estimation: Sampling Directions

I A simplified algorithm.

I How to sample π is important!

Figure 2: Gradient estimation for high dimensional
function
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Gradient Estimation: Query-efficiency

I π is in high dimensional space D =
T × H ×W × C, where T is the
number of frames, H and W are
the height and width of the frames,
C is the number of channels.

I Higher dimensionality leads to
more number of queries → be-
comes worse compared to query-
based image attacks.

I Goal: Query-efficient query-based
video attack!

Figure 2: Gradient estimation for high dimensional
function
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Motivation of Proposed Work
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Motivation: Reduce the Search Space

I To estimate better gradient g.

I Sample π in a subspace (dimen-
sionality reduction), which con-
tains more effective π.

I Consider the intrinsic different be-
tween images and videos, i.e., the
temporal dimension and aim to dis-
rupt the motion context of videos.

Figure 2: Gradient estimation for high dimensional
function
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Proposed Method:

GEOmetrically TRAnsformed
Perturbations (GEO-TRAP)
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Proposed Method: GEO-TRAP

I Randomly sample rframe ∈
RH×W×C , then warp rframe with
T random geometric transforma-
tions to get π ∈ RT×H×W×C

Figure 2: Gradient estimation for high dimensional
function
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Proposed Method: GEO-TRAP

I Dummy Illustration: Warping random noise rframe to create search directions for
gradients
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Proposed Method: GEO-TRAP

I Randomly sample rframe ∈ RH×W×C , then warp rframe with T random geometric
transformations to get π ∈ RT×H×W×C .

Why does it work?

I Temporally structured perturbations.

• Geometric progression in the temporal dimension.

I Assume the degrees of freedom of the geometric transformation is F , the dimen-
sionality D is then reduced from (T ×H ×W × C) to (H ×W × C) + (T × F )
where, F << T ×H ×W × C.

• e.g. F = 6 for affine transformation.
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Why GEO-TRAP works?

I Cosine similarity between the esti-
mated g and the ground truth g?,
averaged over 1000 randomly cho-
sen samples.

I Takeaway: Geo-Trap estimates
better gradients compared to base-
lines.
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Why GEO-TRAP works?

I Better gradients leads to quicker convergence, thus fewer number of queries
required.
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Experimental Result

Evaluation Metric:

I Success Rates (SR): total success rate of attack within query and perturbation
budgets.

I Average Number of Queries (ANQ): the average total queries from attacks for
all videos (including failed ones).

Datasets:

I UCF-101[1]: UCF-101 includes 13320 videos from 101 human action categories
(e.g., applying lipstick, biking).

I 20BN-JESTER (Jester)[2]: Jester includes 27 kinds of gesture videos recorded by
crowd-sourced workers (e.g., sliding hand left, sliding two fingers right).

[1] Khurram Soomro et al. “UCF101: A Dataset of 101 Human Actions Classes from Videos in the Wild”. arXiv:1212.0402 (2012).

[2] Joanna Materzynska et al. “The Jester Dataset: A Large-scale Video Dataset of Human Gestures”. ICCV Workshops. 2019.
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Experimental Result

I Takeaway: Geo-Trap achieves the same or higher attack Success Rates (SR)
compared to other methods, and requires fewer Average Number of Queries (ANQ).

I More results and analysis in the paper.

Table 1: Geo-Trap demonstrates highly successful untargeted attacks with fewer queries.

Black-box Video Classifiers

C3D SlowFast TPN I3DDatasets Methods

ANQ (↓) SR (↑) ANQ (↓) SR (↑) ANQ (↓) SR (↑) ANQ (↓) SR (↑)

Jester

HeuristicAttack[3] 4699 99.0% 3572 98.1% 4679 82.0% 4248 98.1%

Motion-Sampler Attack[4] 4549 99.0% 1906 100% 6269 91.3% 3029 99.4%

Geo-Trap (Ours) 1602 100% 521 100% 3315 92.4% 1599 100%

UCF-101

HeuristicAttack 5206 70.2% 3507 87.2% 6539 71.8% 6949 84.7%

Motion-Sampler Attack 14336 81.6% 4673 97.2% 20369 75.8% 7400 94.4%

Geo-Trap (Ours) 11490 86.2% 1547 98.8% 17716 76.1% 4887 97.4%

[3] Zhipeng Wei et al. “Heuristic black-box adversarial attacks on video recognition models”. AAAI. 2020.

[4] Hu Zhang et al. “Motion-Excited Sampler: Video Adversarial Attack with Sparked Prior”. ECCV. 2020.
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Conclusion

I We propose a new black-box video attack method, which parameterizes the video
search space into an image search space and a geometric transformation parameter
search space.

I With the reduced and temporally structured search space, we are able to achieve
higher attack success rate with fewer queries.
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