Fast Tucker Rank Reduction for Non-Negative Tensors Using Mean-Field Approximation

Kazu Ghalamkari1,2, Mahito Sugiyama ${ }^{1,2}$

1 : The Graduate University for Advanced Studies, SOKENDAI
2 : National Institute of Informatics
github.com/gkazunii/Legendre-tucker-rank-reduction

Tensor low-rank approximation

$\mathcal{P}_{i j k}=\sum_{l=1}^{L} \sum_{m=1}^{M} \sum_{n=1}^{N} \mathcal{G}_{l m n} A_{i l} B_{j m} C_{k n}$
Tucker rank of $\mathcal{P}:(L, M, N)$
$L \leq I, M \leq J, N \leq K$

In this presentation, Tucker rank is simply referred to as Rank.
Rank ($1,1,1$) is called just rank 1 .

Approximating tensors with low rank tensors reduce memory requirements.

Frobenius error or KL error minimization

Many non-negative low-rank approximation methods are based on a gradient method.
\rightarrow It requires appropriate settings for initial values, stopping criterion, and learning rates. .

This study...

- Maps non-negative tensors to distributions, and derive a formula for the best rank-1 approximation
- Understands the rank-1 approximation of a non-negative tensor as a mean-field approximation
- Proposes a fast Tucker rank approximation (LTR) for nonnegative tensors based on the formula

Contents

- Best Rank-1 Approximation for Minimizing the KL divergence
- Make a mapping from a tensor to a distribution
- A rank-1 condition using parameters of the distribution
- Rank-1 Approximation as a mean-field approximation

```
Legendre Tucker Rank Reduction(LTR)
    - A fast low-rank approximation for non-negative tensors
    - Not based on a gradient method.
```


Experiment

Conclusion

Introduction of log-linear model on poset

Poset $\quad S$ is a poset \Leftrightarrow for all $s_{1}, s_{2}, s_{3} \in S$ the following three properties are satisfied.
(1) Reflexivity: $s_{1} \leq s_{1}$
(2) Antisymmetry: $s_{1} \leq s_{2}, s_{2} \leq s_{1} \Rightarrow s_{1}=s_{2}$
(3) Transitivity: $s_{1} \leq s_{2}, s_{2} \leq s_{3} \Rightarrow s_{1} \leq s_{3}$

Log-linear model on poset S

We define the log-linear model on a poset S as a mapping $p: S \rightarrow(0,1)$. Natural parameters $\boldsymbol{\theta}$ describe the model.

$$
p_{\theta}(x)=\exp \left[\sum_{s \leq x} \theta(s)\right] \quad x \in S
$$

We can also describe the model by expectation parameters η if we use Zeta function.

$$
\eta(x)=\sum_{s \geq x} p(s) \quad p_{\eta}(x)=\sum_{s \in S} \mu(x, s) \eta(s)
$$

$$
\eta \text {-space }
$$

Möbius function

$$
\mu(x, s)=\left\{\begin{array}{cl}
1 & \text { if } x=y \\
-\sum_{x \leq s<y} \mu(x, s) & \text { if } x<y \\
0 & \text { otherwise }
\end{array}\right.
$$

Mapping a poset to a non-negative matrix/tensor.

Matrix

$$
S=\{(i, j) \mid i, j=\{1,2, \cdots n\}\} \quad\left(i_{1}, j_{1}\right) \leq\left(i_{2}, j_{2}\right) \Leftrightarrow i_{1} \leq i_{2} \text { and } j_{1} \leq j_{2}
$$

Relation between distribution and matrix

Random Variable	$:$ index i, j
Sample space	$:$ index set
Value of the probability	: element $P_{i j}$

Tensor

$$
S=\{(i, j, k) \mid i, j, k=\{1,2, \cdots n\}\} \quad\left(i_{1}, j_{1}, k_{1}\right) \leq\left(i_{2}, j_{2}, k_{2}\right) \Leftrightarrow i_{1} \leq i_{2} \text { and } j_{1} \leq j_{2} \text { and } k_{1} \leq k_{2}
$$

$$
\begin{aligned}
p_{\theta}(1,1,2) & =\exp \left[\theta_{111}+\theta_{112}\right] \\
p_{\eta}(1,1,2) & =\eta_{222}-\eta_{221}-\eta_{122}+\eta_{112} \\
p_{\theta}(i, j, k) & =\exp \left[\sum_{i^{\prime} \leq i} \sum_{j^{\prime} \leq j} \sum_{k^{\prime} \leq k} \theta_{i^{\prime} j^{\prime} k^{\prime}}\right]
\end{aligned}
$$

Relation between distribution and matrix
Random Variable : index i, j, k
Sample space
Value of the probability $:$ element $P_{i j k}$

Various representations of a normalized tensor

Element representation

$\boldsymbol{\theta}$ - representation

We can describe matrix properties by using θ - and η - representations. Easier to formulate as a convex problem.

Describe the rank- 1 condition of a tensor using (θ, η)

- one-body parameters

$$
\begin{gathered}
\theta_{i 11}, \theta_{1 j 1}, \theta_{11 k} \quad \eta_{i 11}, \eta_{1 j 1}, \eta_{11 k} \\
\text { Only one index is } 1 .
\end{gathered}
$$

- many-body parameters

A parameter other than a one-body parameter

Rank-1 condition ($\boldsymbol{\theta}$-representation)

$$
\operatorname{rank}(\mathcal{P})=1 \Leftrightarrow \text { its all many - body } \theta \text { parameters are } 0
$$

$$
\begin{gathered}
(\Longleftarrow) \\
\mathcal{P}_{i j k}=\exp \left[\sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} \theta_{i j k}\right]=\exp \left[\theta_{111}\right] \exp \left[\sum_{i=2}^{I} \theta_{i 11}\right] \exp \left[\sum_{j=2}^{J} \theta_{1 j 1}\right] \exp \left[\sum_{k=2}^{K} \theta_{11 k}\right] \\
\mathcal{P}=e^{\theta_{111}}\left(\begin{array}{c}
1 \\
e^{\theta_{211}} \\
e_{211}+\theta_{311} \\
\vdots \\
e^{\theta_{211}+\theta_{311}+\cdots+\theta_{I 11}}
\end{array}\right) \otimes\left(\begin{array}{c}
1 \\
e^{\theta_{121}} \\
e^{\theta_{121}+\theta_{131}} \\
\vdots \\
e^{\theta_{121}+\theta_{131}+\cdots+\theta_{1 J 1}}
\end{array}\right) \otimes\left(\begin{array}{c}
1 \\
e^{\theta_{211}} \\
e^{\theta_{211}+\theta_{311}} \\
\vdots \\
e^{\theta_{211}+\theta_{311}+\cdots+\theta_{11 K}}
\end{array}\right)
\end{gathered}
$$

The rank of the tensor that can be represented by the Kronecker product of three vectors is 1

Projection onto rank-1 space

The rank-1 approximation is a projection onto a subspace \mathcal{B} with all zero many-body natural parameters.

The projection from any input tensor $\mathcal{P} \in \mathbb{R}_{>0}^{\mathrm{I} \times \mathrm{J} \times \mathrm{K}}$ to \mathcal{B} is convex.
But!! It takes too much time to get $\overline{\mathcal{P}}$ using the gradient method. $\mathrm{O}_{\mathrm{O}} \mathrm{O} \cdot \mathrm{O}$
Projection from \mathcal{P} onto \mathcal{B}
Number of natural parameters to optimize is $(I+J+K)$
The computational complexity of the Newton method is $O\left((I+J+K)^{3}\right)$

The one-body η is invariant to this m-projection
Summation in each axial direction is invariant for rank-1 approximation

Describe the rank-1 condition using (θ, η)

Rank-1 condition ($\boldsymbol{\theta}$-representation)

$$
\operatorname{rank}(\mathcal{P})=1 \Leftrightarrow \text { its all many - body } \theta \text { parameters are } 0
$$

- Rank-1 condition (η-representation)

$$
\operatorname{rank}(\mathcal{P})=1 \Leftrightarrow \text { its all many }-\operatorname{body} \eta \text { parameters are factorizable as } \eta_{i j k}=\eta_{i 11} \eta_{1 j 1} \eta_{11 k}
$$

The closed-formula of the best rank 1 approximation

Rank-1 condition ($\boldsymbol{\theta}$-representation)

$$
\operatorname{rank}(\mathcal{P})=1 \Leftrightarrow \text { its all many - body } \theta \text { parameters are } 0
$$

- Rank-1 condition (η-representation)
$\operatorname{rank}(\mathcal{P})=1 \Leftrightarrow$ its all many-body η parameters are factorizable as $\eta_{i j k}=\eta_{i 11} \eta_{1{ }_{11}} \eta_{11 k}$

We derive a solution formula of the best rank-1 approximation.
By the way,
Best rank-1 tensor formula for minimizing KL divergence ($d=3$) Frobenius error minimization is NP-hard
For any given positive tensor $\mathcal{P} \in \mathbb{R}_{>0}^{I \times J \times K}$, its best rank- 1 approximation is

$$
\overline{\mathcal{P}}_{i j k}=\left(\sum_{j^{\prime}=1}^{J} \sum_{k^{\prime}=1}^{K} \mathcal{P}_{i j^{\prime} k^{\prime}}\right)\left(\sum_{k^{\prime}=1}^{K} \sum_{i^{\prime}=1}^{I} \mathcal{P}_{i^{\prime} j k^{\prime}}\right)\left(\sum_{i^{\prime}=1}^{I} \sum_{j^{\prime}=1}^{J} \mathcal{P}_{i^{\prime} j^{\prime} k}\right),
$$

that is, it is hold that

$$
\overline{\mathcal{P}}=\underset{Q: \operatorname{rank}(Q)=1}{\operatorname{argmin}} D_{\mathrm{KL}}(\mathcal{P} ; Q) .
$$

Mean-field approximation and rank-1 approximation

Best rank-1 tensor formula for minimizing KL divergence ($d=3$)

For any given positive tensor $\mathcal{P} \in \mathbb{R}_{>0}^{I \times J \times K}$, its best rank- 1 approximation is

$$
\overline{\mathcal{P}}_{i j k}=\left(\sum_{j^{\prime}=1}^{J} \sum_{k^{\prime}=1}^{K} \mathcal{P}_{i j^{\prime} k^{\prime}}\right)\left(\sum_{k^{\prime}=1}^{K} \sum_{i^{\prime}=1}^{I} \mathcal{P}_{i^{\prime} j k^{\prime}}\right)\left(\sum_{i^{\prime}=1}^{I} \sum_{j^{\prime}=1}^{J} \mathcal{P}_{i^{\prime} j^{\prime} k}\right)
$$

Normalized vector depending on only i

Normalized vector depending on only j

Normalized vector depending on only k

A tensor with d indices is a joint distribution with d random variables.
A vector with only 1 index is an independent distribution with only one random variable.
Rank-1 approximation approximates a joint distribution by a product of independent distributions.

Best Rank-1 Approximation for Minimizing the KL divergence - Make a mapping from a tensor to a distribution

- A rank-1 condition using parameters of the distribution
- Rank-1 Approximation as a mean-field approximation

Legendre Tucker Rank Reduction (LTR)

- A fast low-rank approximation for non-negative tensors
- Not based on Gradient method.
- No need to discuss learning rate, stopping criterion, or initial values

Experiment

Conclusion

Formulate Tucker rank reduction by relaxing the rank-1 condition

$$
\operatorname{rank}(\mathcal{P})=1 \Leftrightarrow \text { its all many-body } \theta \text { parameters are } 0
$$

Expand the tensor by focusing on the k-th axis into a rectangular matrix $\theta^{(k)}$ (mode-k expansion)

The first row and first column are the scaling factors
$\theta^{(1)}=\left[\begin{array}{ccccccccc}\theta_{111} & \theta_{121} & \theta_{131} & \theta_{112} & 0 & 0 & \theta_{113} & 0 & 0 \\ \theta_{211} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \rightarrow \\ \theta_{311} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \rightarrow\end{array}\right]$ Two bingos
$\theta^{(2)}=\left[\begin{array}{ccccccccc}\theta_{111} & \theta_{211} & \theta_{311} & \theta_{112} & 0 & 0 & \theta_{311} & 0 & 0 \\ \theta_{121} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \rightarrow \\ \theta_{131} & -0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \rightarrow\end{array}\right]$ Two bingos
$\theta^{(3)}=\left[\begin{array}{ccccccccc}\theta_{111} & \theta_{211} & \theta_{311} & \theta_{121} & 0 & 0 & \theta_{131} & 0 & 0 \\ \theta_{112} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \rightarrow \\ \theta_{113} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \rightarrow\end{array}\right]$ Two bingos

The relationship between bingo and rank

$$
\begin{aligned}
& \theta^{(1)}=\left[\begin{array}{ccccccccc}
\theta_{111} & \theta_{121} & \theta_{131} & \theta_{112} & 0 & 0 & \theta_{113} & 0 & 0 \\
\theta_{211} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\theta_{311} & \theta_{321} & \theta_{331} & \theta_{312} & \theta_{322} & \theta_{332} & \theta_{313} & \theta_{323} & \theta_{333}
\end{array}\right] \rightarrow \text { One bingo } \\
& \theta^{(2)}=\left[\begin{array}{ccccccccc}
\theta_{111} & \theta_{211} & \theta_{311} & \theta_{112} & 0 & \theta_{312} & \theta_{311} & 0 & \theta_{313} \\
\theta_{121} & 0 & \theta_{321} & 0 & 0 & \theta_{322} & 0 & 0 & \theta_{323} \\
\theta_{131} & 0 & \theta_{331} & 0 & 0 & \theta_{332} & 0 & 0 & \theta_{333}
\end{array}\right] \text { No bingo } \\
& \theta^{(3)}=\left[\begin{array}{llllllll}
\theta_{111} & \theta_{211} & \theta_{311} & \theta_{121} & 0 & \theta_{321} & \theta_{131} & 0 \\
\theta_{112} & 0 & \theta_{312} & 0 & 0 & \theta_{322} & 0 & 0 \\
\theta_{332} \\
\theta_{113} & 0 & \theta_{313} & 0 & 0 & \theta_{323} & 0 & 0 \\
\theta_{333}
\end{array}\right] \text { No bingo } \quad \boldsymbol{P}^{D_{K L}\left[\mathcal{P}, \mathcal{P}^{\prime}\right]} \text { Subspace with one bingo in the mode-1 direction } \mathcal{B}^{(1)}
\end{aligned}
$$

- Bingo rule ($d=3$)

The mode- k expansion $\theta^{(k)}$ of the natural parameter of a tensor $\mathcal{P} \in \mathbb{R}_{>0}^{I_{1} \times I_{2} \times I_{3}}$ has b_{k} bingos

$$
\Rightarrow \operatorname{rank}(\mathcal{P}) \leq\left(I_{1}-b_{1}, I_{2}-b_{2}, I_{3}-b_{3}\right)
$$

Example: Reduce the rank of $(8,8,3)$ tensor to $(5,8,3)$ or less
$\square \theta$ can be any
$\theta \theta$ is zero

Example: Reduce the rank of $(8,8,3)$ tensor to $(5,8,3)$ or less

Example: Reduce the rank of $(8,8,3)$ tensor to $(5,8,3)$ or less

STEP1: Choose a bingo location.
STEP2 : Replace the bingo part with the best rank-1 tensor.

Replace the partial tensor in the red box using the best rank 1 approximation formula

Example: Reduce the rank of $(8,8,3)$ tensor to $(5,7,3)$ or less.

The shaded areas do not change in the projection.

Experimental results (synthetic data)

(a) Random (30,30,30,30,30) tensor

(b) Target rank $(10,10,10)$

LTR is faster with the competitive approximation performance.

Experimental results (real data)

LTR is faster with the competitive approximation performance.

Conclusion

Describe the rank-1 condition using (θ, η)
[Rank-1 condition (η-representation) \square

$$
\bar{\eta}_{i j k}=\bar{\eta}_{i 11} \bar{\eta}_{1 j 1} \bar{\eta}_{11 k}
$$

$\left[\begin{array}{c}\text { Low-rank condition (} \boldsymbol{\theta} \text {-representation) } \\ \text { Bingo reduces rank }\end{array}\right]$

$\left[\begin{array}{c}\text { Rank- } 1 \text { condition (} \boldsymbol{\theta} \text {-representation) } \\ \text { All many body } \bar{\theta}_{i j k} \text { are } 0\end{array}\right]$

We discuss low-rank approximation as a problem of projection in $(\boldsymbol{\theta}, \eta)$-space

- Best rank-1 tensor formula for minimizing KL divergence

$$
\overline{\mathcal{P}}_{i j k}=\left(\sum_{j^{\prime}=1}^{J} \sum_{k^{\prime}=1}^{K} \mathcal{P}_{i j^{\prime} k^{\prime}}\right)\left(\sum_{k^{\prime}=1}^{K} \sum_{i^{\prime}=1}^{I} \mathcal{P}_{i j^{\prime} k^{\prime}}\right)\left(\sum_{i^{\prime}=1}^{I} \sum_{j^{\prime}=1}^{J} \mathcal{P}_{i^{\prime} j^{\prime} k}\right)
$$

- Legendre Tucker Rank Reduction (LTR)
(b) Target rank $(10,10,10)$

- LTR is based on mean-field approximation.
- LTR is faster with the competitive approximation performance as existing methods.
- No need to discuss learning rate, stopping criteria, or initial values

