

Department of Mathematics and Computer Science

Jonas Köhler* Andreas Krämer*

Frank Noé

Smooth Normalizing Flows

35th Conference on Neural Information Processing Systems (NeurIPS 2021)

Outline

- A new class of flow transforms
 - smooth
 - ► expressive
 - defined on complex /
- Efficient inversion and bidirectional training
- Utilizing smoothness (force matching; MM potentials)

blogies

 $\mathbb{T}^n \times$

 $]^m$)

Normalizing Flows

Deep Probabilistic Models

Simple Prior Distribution $z \sim p_0$

Complicated Distribution

$$x = f(z) \sim p_f$$

Normalizing Flows

Deep Probabilistic Models

Simple Prior Distribution $z \sim p_0$

Complicated Distribution

$$x = f(z) \sim p_f$$

$$p_f(x) = p_0\left(f^{-1}(x)\right) |\det J_{f^{-1}}(x)|$$

Normalizing Flows in Physics Applications

Generative Modeling

• A replacement or add-on for iterative samplers (e.g., MC, MD)

Density Estimation

 Processing of observed data (relative free energy/entropy/ stability of metastable states)

Energy
$$u = -\log p$$

Force $F = \frac{\partial}{\partial x}\log p$

Normalizing Flows in Physics Applications

Generative Modeling

• A replacement or add-on for iterative samplers (e.g., MC, MD)

Density Estimation

 Processing of observed data (relative free energy/entropy/ stability of metastable states)

Energy
$$u = -\log p$$

Force $F = \frac{\partial}{\partial x}\log p$

requires smooth transformations

Boltzmann Generators

Noé, Olsson, Köhler, Wu, Science (2019)

- Given: potential energy u(x), MD data
- Match the Boltzmann distribution $p(x) \sim e^{-u(x)}$
- Reweight samples to the target distribution

Simple Priors

Normalizing Flow

Atomistic Coordinates

Boltzmann Generators

Noé, Olsson, Köhler, Wu, Science (2019)

- Given: potential energy u(x), MD data
- Match the Boltzmann distribution $p(x) \sim e^{-u(x)}$
- Reweight samples to the target distribution

Atomistic Coordinates

Bidirectional training requires efficient inversion.

Köhler, Krämer, Noé: Smooth Normalizing Flows

Internal Coordinates

Topological Constraints

- Bond Lengths $d_{ij} \in (0,\infty)$
- Angles $\theta_{ijk} \in [0,\pi]$
- Torsions $\phi_{ijkl} \in S^1$

Flows operate on product spaces of tori and compact intervals.

Desiderata

- We need an expressive flow architecture that ...
 - ► ... is smooth
 - ... is efficient in the forward and inverse direction
 - ... works on nontrivial topologies (circular and compact intervals)

Neural Spline Flows

Durkan et al. (2019): arXiv:1906.04032

• Coupling layer Dinh et al. (2014): NICE

Köhler, Krämer, Noé: Smooth Normalizing Flows

Neural Spline Flows

Durkan et al. (2019): arXiv:1906.04032, Rezende et al. (2020): arXiv: 2002.02428

- Coupling layer Dinh et al. (2014): NICE
- Monotonic rational quadratic splines
 - Multimodal transforms
 - Analytic inverse
- Applicable to compact intervals and circular domains Rezende et al. (2020)

arXiv: 2110.00351

Neural Spline Flows

Durkan et al. (2019): arXiv:1906.04032, Rezende et al. (2020): arXiv: 2002.02428

- Coupling layer Dinh et al. (2014): NICE
- Monotonic rational quadratic splines
 - Multimodal transforms
 - Analytic inverse
- Applicable to compact intervals and circular domains Rezende et al. (2020)
- Discontinuous forces

Is there a smooth alternative?

Bump Function

Bump Function Scale/shift/+const

$$g(x) = \sigma(a(x - b) + 0.5)$$

$$f(x) := (1 - c) \cdot \left(\frac{g(x) - g(0)}{g(1) - g(0)}\right) + c \cdot x$$

Mix

Bump Function Scale/shift/+const

 $f(x) = \sum w_i f_i(x)$

Bump Function Scale/shift/+const

Mix

Inversion

- Non-analytic inverse
- Need to solve a 1D root-finding problem for each transform

 Bisection: one order of magnitude slower than neural spline flows

Inversion

- Non-analytic inverse
- Need to solve a 1D root-finding problem for each transform

- Bisection: one order of magnitude slower than neural spline flows
- <u>Multi-bin bisection</u>
 - Naive parallelism in lowdimensional (<1000-dim) applications

Performance vs. analytic inverse

dim	#bins	slowdown
2	128	2.1
32	32	2.7
512	4-8	6.5

Köhler, Krämer, Noé: Smooth Normalizing Flows

Blackbox-Inversion

Köhler, Krämer, Noé: Smooth Normalizing Flows

Blackbox-Inversion

Köhler, Krämer, Noé: Smooth Normalizing Flows

Blackbox-Inversion

$$\partial_{y} x(y; \boldsymbol{\theta}) = (\partial_{x} f(x; \boldsymbol{\theta}))^{-1}$$

$$\partial_{\theta} x(y; \boldsymbol{\theta}) = -(\partial_{x} f(x; \boldsymbol{\theta}))^{-1} \partial_{\theta} f(x; \boldsymbol{\theta})$$

$$\partial_{y} \log |\partial_{y} x(y; \boldsymbol{\theta})| = -(\partial_{x} f(x; \boldsymbol{\theta}))^{-1} \log |\partial_{x} f(x; \boldsymbol{\theta})|$$

$$\partial_{\theta} \log |\partial_{y} x(y; \boldsymbol{\theta})| = -(\partial_{x} f(x; \boldsymbol{\theta}))^{-1} (\log |\partial_{x} f(x; \boldsymbol{\theta})| \partial_{\theta} f(x; \boldsymbol{\theta}) - \partial_{\theta} \partial_{x} f(x; \boldsymbol{\theta}))$$

Express inverse gradients through forward gradients

Köhler, Krämer, Noé: Smooth Normalizing Flows

Desiderata

- We need an expressive flow architecture that ...
 - ► ... is smooth
 - ► ... is efficient in the forward and inverse direction
 - ... works on nontrivial topologies (circular and compact intervals)

Toy Examples

 Maximum likelihood training on samples

Compact Domains

Periodic Domains

arXiv: 2110.00351

Toy Examples

- Maximum likelihood training on samples
- Neural spline flows reproduce the density but have discontinuous forces and extreme outliers

Compact Domains

Periodic Domains

arXiv: 2110.00351

Toy Examples

 Maximum likelihood training on samples

Mixtures of bump

functions reproduce

density and forces

 Neural spline flows reproduce the density but have discontinuous forces and extreme outliers

Compact Domains

Periodic Domains

arXiv: 2110.00351

Alanine Dipeptide

- Flow operates on 60 internal coordinates (circular and noncircular)
- Multimodal target distribution $\mu(x) = \exp(-u(x))/Z$

Freie Universität

Berlin

Spline Flows

Sampling efficiency: 25%

Köhler, Krämer, Noé: Smooth Normalizing Flows

Smooth Flows

Köhler, Krämer, Noé: Smooth Normalizing Flows

Training Flows by Force Matching

• Force residual with respect to ground truth forces

$$\mathcal{L}_{\text{FM}}(\boldsymbol{\theta}) := \mathbb{E}_{\boldsymbol{x} \sim \mu(\boldsymbol{x})} \left[\left\| \mathbf{f}(\boldsymbol{x}) - \partial_{\boldsymbol{x}} \log p_f(\boldsymbol{x}; \boldsymbol{\theta}) \right\|_2^2 \right]$$

Combine it with maximum-likelihood estimation

$$\mathcal{L}(\boldsymbol{\theta}) = \omega_n \mathcal{L}_{\mathrm{NLL}}(\boldsymbol{\theta}) + \omega_k \mathcal{L}_{\mathrm{KLD}}(\boldsymbol{\theta}) + \omega_{\mathrm{f}} \mathcal{L}_{\mathrm{FM}}(\boldsymbol{\theta})$$

Köhler, Krämer, Noé: Smooth Normalizing Flows

Smooth Flows

Köhler, Krämer, Noé: Smooth Normalizing Flows

Using Flows as Molecular Potentials

- Molecular dynamics simulations (NVE)
- Energy fluctuations are solely due to numerical integration errors
- Discontinuous forces -> energy not conserved

Conclusions

- Smooth flow architecture on compact intervals and tori
- Efficient backpropagation through blackbox inversion

- Smoothness
 - improves the inductive bias for physical applications
 - enables training normalizing flows with force matching
 - opens new ways of applying normalizing flows (e.g., simulations)

