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“A training paradigm for robust QA (e.g., Visual QA and extractive QA) models that
improve the OOD performance without sacrifice of ID performance."
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Question Answering (QA)
• Answer the question based on the context

• Visual QA (VQA): vision context --- image
• Extractive QA: language context --- passage

Q: What is the mustache made of?

A: Banana.

Q: Which laws faced significant opposition?

A: Later laws.

“… Other legislation followed, including the
Migratory Bird Conservation Act of 1929, a
1937 treaty prohibiting the hunting of right and
gray whales, and the Bald Eagle Protection Act
of 1940. These later laws had a low cost to
society—the species were relatively rare—and
little opposition was raised …”

Goyal, Yash, et al. Making the V in VQA Matter: Elevating the Role of Image Understanding in Visual Question Answering. CVPR 2017.
Ko, Miyoung, et al. Look at the First Sentence: Position Bias in Question Answering. EMNLP 2020.
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Training Bias in QA

Goyal, Yash, et al. Making the V in VQA Matter: Elevating the Role of Image Understanding in Visual Question Answering. CVPR 2017.
Ko, Miyoung, et al. Look at the First Sentence: Position Bias in Question Answering. EMNLP 2020.
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Overcoming Training Bias in QA

Goyal, Yash, et al. Making the V in VQA Matter: Elevating the Role of Image Understanding in Visual Question Answering. CVPR 2017.
Ko, Miyoung, et al. Look at the First Sentence: Position Bias in Question Answering. EMNLP 2020.

• Debiasing VQA Methods
• Assume that training and test distribution are very different or even reversed
• Improve out-of-distribution (OOD) performance by large margins😊
• Decrease in-distribution (ID) performance😭

Background Motivation ConclusionResultsMethod
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Overcoming Training Bias in QA

Goyal, Yash, et al. Making the V in VQA Matter: Elevating the Role of Image Understanding in Visual Question Answering. CVPR 2017.
Ko, Miyoung, et al. Look at the First Sentence: Position Bias in Question Answering. EMNLP 2020.

• Debiasing VQA Methods
• Assume that training and test distribution are very different or even reversed
• Improve out-of-distribution (OOD) performance by large margins😊
• Decrease in-distribution (ID) performance😭

• Can we make the best of both worlds?
• Yes! We did in this paper!

Background Motivation ConclusionResultsMethod
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Ours: Introspective Distillation (IntroD)

• What happened?
• Over-exploiting ID (OOD) inductive bias -> degraded OOD (ID) performance
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Ours: Introspective Distillation (IntroD)

• What happened?
• Over-exploiting ID (OOD) inductive bias -> degraded OOD (ID) performance

• How to solve?
• Blend the ID and OOD inductive bias fairly

• How to implement?
• Obtain ID-teacher and OOD-teacher
• Introspect whether ID (OOD) bias dominates the learning
• Blend the knowledge of ID-teacher and OOD-teacher
• Distill the knowledge to a student

Background Motivation ConclusionResultsMethod
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Training Paradigm

Background Motivation ConclusionResultsMethod
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Step 1: Factual & Counterfactual Reasoning

• Obtain ID-teacher and OOD-teacher
• Depict ID and OOD worlds, respectively

• Implemented as the same causal model [Niu et al, 2021]
• es(Total Effect)

• Include shortcut bias (Q->A in VQA, C->A in extractive QA)
• Counterfactual reasoning -> OOD-teacher (Indirect Effect)

• Eliminate shortcut biasq question
c context
(image in VQA, passage in
extractive QA)

Niu, Yulei, et al. Counterfactual VQA: A Cause-Effect Look at Language Bias. CVPR 2021.
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Step 2: Knowledge Blending

• Examine whether the inductive bias is over-exploited

• Blend ID and OOD inductive bias fairly

Background Motivation ConclusionResultsMethod
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Step 2: Knowledge Blending

ID-bias > OOD-bias
↓sss

ID-teacher < OOD-teacher

ID-bias ≈ OOD-bias
↓sss

ID-teacher ≈ OOD-teacher

ID-bias < OOD-bias
↓sss

ID-teacher > OOD-teacher
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Step 2: Knowledge Blending

ID-bias > OOD-bias
↓sss

ID-teacher < OOD-teacher

ID-bias ≈ OOD-bias
↓sss

ID-teacher ≈ OOD-teacher

ID-bias < OOD-bias
↓sss

ID-teacher > OOD-teacher

larger confidence -> smaller weight
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Step 2: Knowledge Blending

• Examine whether the inductive bias is over-exploited

Confidence

Weight
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Step 2: Knowledge Blending

• Examine whether the inductive bias is over-exploited

• Blend ID and OOD inductive bias fairly

• ID-Knowledge: ground-truth labels; OOD-knowledge: OOD-prediction

Confidence

Weight

Background Motivation ConclusionResultsMethod



• Distill the blended knowledge to a student model
• Same architecture with teacher model without shortcut branches (Q->A, C->A)
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Step 3: Knowledge Distillation

Background Motivation ConclusionResultsMethod
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Experiments
• Visual QA

• Bias: language prior
• VQA v2, VQA-CP v2

• Extractive QA
• Bias: position bias
• SQuAD

Goyal, Yash, et al. Making the V in VQA Matter: Elevating the Role of Image Understanding in Visual Question Answering. CVPR 2017.
Ko, Miyoung, et al. Look at the First Sentence: Position Bias in Question Answering. EMNLP 2020.
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Conclusion
• Can we achieve the best of both ID and OOD worlds? Yes.

• The selection of ID-Knowledge? Ground-truth annotations are better than ID-prediction.

• Can the student learn more from the more (rather than less) confident teacher? No.

• Can the student equally learn from ID and OOD teachers? No.

• Can the student only learn from OOD-teacher? Yes, but worse than our IntroD.

• Is our IntroD a simple ensemble method? No.

Background Motivation ConclusionResultsMethod



Thank you for listening!

Yulei Niu Hanwang Zhang


