# Learning Causal Semantic Representation for out-of-Distribution Prediction

Chang Liu<sup>1</sup>, Xinwei Sun<sup>1</sup>, Jindong Wang<sup>1</sup>, Haoyue Tang<sup>2</sup>, Tao Li<sup>3</sup>, Tao Qin<sup>1</sup>, Wei Chen<sup>1</sup>, Tie-Yan Liu<sup>1</sup>.

<sup>1</sup> Microsoft Research Asia

<sup>2</sup> Tsinghua University

<sup>3</sup> Peking University

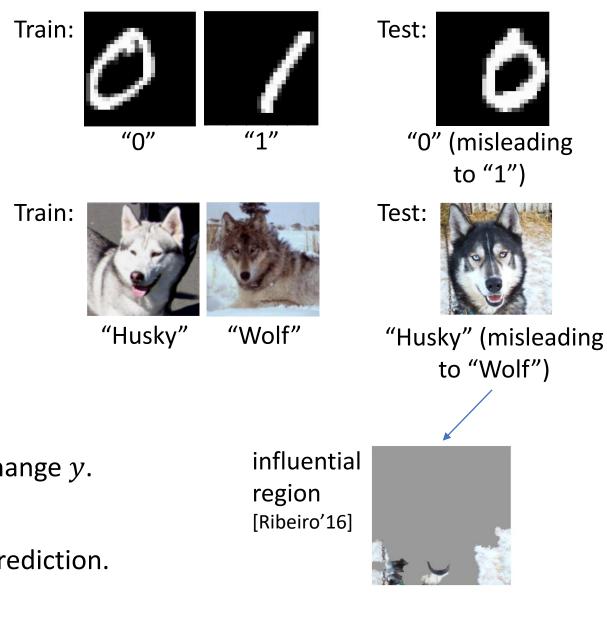
#### Introduction

The problem:

• Deep supervised learning lacks robustness to out-of-distribution (OOD) samples.

Reason behind:

- The learned representation mixes both semantic factor s (e.g., shape) and variation factor v (e.g., position, background), since both are correlated to y.
- But only s causes y: intervening v does not change y.
   Goal:
- Learning the **causal** representation for OOD prediction.



#### Introduction

In this work,

- Causal Semantic Generative model (CSG): describes latent causal structure.
- Methods for OOD prediction (OOD generalization and domain adaptation).
- Theory for identifying the semantic factor and the subsequent benefits for OOD prediction.

#### Related Work

- Domain adaptation/generalization.
  - Observation-level causality: not suitable for general data like images.
  - Domain-invariant representation: inference invariance; insufficient to identify latent factors.
  - Latent generative models: inference invariance; semantic-variation independence; lack of identifiability guarantee.
- Learning disentangled representation.
  - Impossible in unsupervised learning, despite some empirical success.
  - With an auxiliary variable [Khemakhem'20a,b]: require sufficiently many different values of the variable (thus unsuitable for y); no description for domain change.

#### Related Work

- Generative supervised learning.
  - Few utilized the causal implications of the model.
  - Some aim at estimating causal/treatment effect: not suitable for OOD prediction.
- Causality with latent variables.
  - Most works still focus on the consequence on observation-level causality.
  - Works that identify latent variables do not have semantic-variation split.
- Causal discriminative learning.
  - Lack of identifiability guarantee and structure to capture causal relations.

• Formal definition of causality:

"two variables have a causal relation, if intervening the cause (by changing external variables out of the considered system) may change the effect, but not vice versa" [Pearl'09; Peters'17].

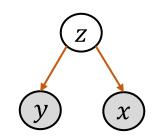
- Causal Semantic Generative (CSG) Model
  - The need of latent variable *z*:
    - $x \nleftrightarrow y$  (breaking a camera sensor unit  $x \nleftrightarrow$  label y),  $y \nleftrightarrow x$  (labeling noise  $y \nleftrightarrow$  image x). (For labeling process from image x: labelers are doing inference; preference may change from person to person.)

 $\boldsymbol{\chi}$ 

• Formal definition of causality:

"two variables have a causal relation, if intervening the cause (by changing external variables out of the considered system) may change the effect, but not vice versa" [Pearl'09; Peters'17].

- Causal Semantic Generative (CSG) Model
- The need of latent variable z:  $x \rightarrow y$  (breaking a camera sensor unit  $x \rightarrow a$ 
  - $x \nleftrightarrow y$  (breaking a camera sensor unit  $x \nleftrightarrow$  label y),  $y \nleftrightarrow x$  (labeling noise  $y \nleftrightarrow$  image x). (For labeling process from image x: labelers are doing inference; preference may change from person to person.)
- $z \rightarrow (x, y)$ : changing object shape z in the scene  $\rightarrow$  image x, label y; breaking sensor x or labeling noise  $y \not\rightarrow$  object shape z in the scene. (Particularly, different from works with  $y \rightarrow s$ : our y may be a noisy observation.)
- No x-y edge: attribute all x-y relations to latent factors ("purely common cause", promotes identification) (breaking sensor x / labeling noise y while fixing all factors  $z \nleftrightarrow$  label y / image x).
- •
- ٠



• Formal definition of causality:

"two variables have a causal relation, if intervening the cause (by changing external variables out of the considered system) may change the effect, but not vice versa" [Pearl'09; Peters'17].

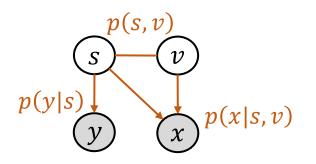
• Causal Semantic Generative (CSG) Model

- p(y|s) = y = p(x|s,v)
- The need of latent variable z:
   x → y (breaking a camera sensor unit x → label y), y → x (labeling noise y → image x).
   (For labeling process from image x: labelers are doing inference; preference may change from person to person.)
- $z \rightarrow (x, y)$ : changing object shape z in the scene  $\rightarrow$  image x, label y; breaking sensor x or labeling noise  $y \not\rightarrow$  object shape z in the scene. (Particularly, different from works with  $y \rightarrow s$ : our y may be a noisy observation.)
- No x-y edge: attribute all x-y relations to latent factors ("purely common cause", promotes identification) (breaking sensor x / labeling noise y while fixing all factors  $z \nleftrightarrow$  label y / image x).
- z = (s, v): not all factors *cause* y (changing background  $v \nleftrightarrow$  label y).
- s-v has a relation, which is often spurious (desk ~ workspace, bed ~ bedroom, but putting a desk in bedroom does not turn it into a bed).
- Denoted as  $p \coloneqq \langle p_{s,v}, p_{x|s,v}, p_{y|s} \rangle$ .

• The **causal invariance** principle:

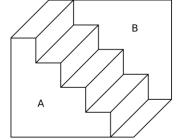
Causal mechanisms p(x|s, v) and p(y|s) are domain-invariant, while the prior p(s, v) is the source of domain shift.

• Stems from the *Independent Causal Mechanisms* principle: intervening p(s, v) does not affect p(x|s, v), p(y|s).



- Comparison to inference invariance: p(s, v|x) is invariant.
  - Domain adapt./gen., invariant risk min.: use a *shared* encoder across domains.
  - Special case of causal invariance when generative mechanisms are almost deterministic and invertible (inferring object position from image, extracting F0 from audio).
  - When they are not, inference is ambiguous and rely on domain-specific prior.





domain-specific  $p(s,v|x) \propto p(s,v)p(x|s,v)$ 

 $\neq$  0 for multiple (*s*, *v*)

Inference ambiguity in Noisy ("5" or "3"?) and Degenerate (A or B nearer?) generative mechanisms.

Chang Liu (MSRA)

Method true data distribution  $\int = \int p(s, v)p(x|s, v)p(y|s) ds dv$  is hard to evaluate.

- Direct MLE:  $\max_{p} \mathbb{E}_{p^*(x,y)}[\log p(x,y)]$ .
- Standard ELBO: using a tractable *inference model* q(s, v | x, y),
  - $\mathcal{L}_{p,q}(x,y) \coloneqq \mathbb{E}_{q(S, v|x, y)}\left[\log \frac{p(s, v, x, y)}{q(S, v|x, y)}\right] \le \log p(x, y).$
  - $\max_{q} \mathcal{L}_{p,q}(x,y)$  makes  $q(s,v|x,y) \rightarrow p(s,v|x,y)$  and  $\mathcal{L}_{p,q}(x,y) \rightarrow \log p(x,y)$ .
  - Prediction is still hard: hard to leverage q(s, v|x, y).

p(x|s,v)

p(s,v)

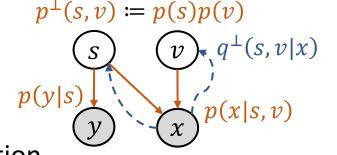
p(y|s)

p(s, v)• Use a q(s, v, y | x) model:  $v \rightarrow q(s, v|x)$  For prediction: ancestral sampling. p(y|s)• For learning:  $\mathbb{E}_{p^*(x,y)} \left[ \mathcal{L}_{p,q(S,v|x,y)=q(S,v,y|x)/\int q(s,v,y|x) \, ds dv}(x,y) \right]$ p(x|s,v) $= \mathbb{E}_{p^*(x)} \left[ \mathbb{E}_{p^*(y|x)} [\log q(y|x)] + \mathbb{E}_{q(s,v,y|x)} \left[ \frac{p^*(y|x)}{q(y|x)} \log \frac{p(s,v,x,y)}{q(s,v,y|x)} \right] \right].$  $= \mathcal{L}_{p,q(S,\mathcal{V},\mathcal{V}|\mathcal{X})}(x)$  when  $q(y|x) = p^*(y|x)$ : (negative) cross-entropy: makes  $q(y|x) \rightarrow p^*(y|x)$ makes  $q(s, v, y|x) \rightarrow p(s, v, y|x), \mathcal{L}_{p,q(s, v, y|x)}(x) \rightarrow p(x)$ Since p(s, v, y|x) = p(s, v|x)p(y|s), approximate the only unknown p(s, v|x). • Use a q(s, v|x) model: Substituting q(s, v, y|x) = q(s, v|x)p(y|s) yields:  $\mathcal{L}_{p,q(S,\mathcal{V}|X,\mathcal{Y})=[q(S,\mathcal{V}|X),p]}(x,y) = \log q(y|x) + \frac{1}{q(\mathcal{V}|X)} \mathbb{E}_{q(S,\mathcal{V}|X)} \left[ p(y|s) \log \frac{p(s,v)p(X|S,\mathcal{V})}{q(S,\mathcal{V}|X)} \right].$ 

**CSG-ind**: for prediction in an *unknown* test domain (OOD gen.)

- Use an independent prior  $p^{\perp}(s, v) \coloneqq p(s)p(v)$ :
  - Discard the spurious *s*-*v* correlation; *defensive* choice.
  - Larger entropy than p(s, v): reduce training-domain-specific information.
  - Randomized experiment by independently soft-intervening s or v.
- On the test domain:
  - Prediction:  $p^{\perp}(y|x) \approx \mathbb{E}_{q^{\perp}(s,v|x)}[p(y|s)]$ . Different from p(y|x) (inference invariance).
- On the training domain: avoid the q(s, v | x) model.

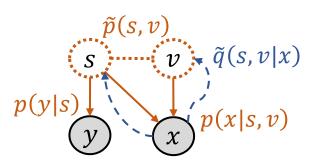
• Following the relation b/w their targets, let  $q(s, v|x) = \frac{p(s,v)}{p^{\perp}(s,v)} \frac{p^{\perp}(x)}{p(x)} q^{\perp}(s,v|x)$ :  $\mathcal{L}_{p,q(s,v|x,y)=[q^{\perp}(s,v|x),p]}(x,y) = \log \pi(y|x) + \frac{1}{\pi(y|x)} \mathbb{E}_{q^{\perp}(s,v|x)} \left[ \frac{p(s,v)}{p^{\perp}(s,v)} p(y|s) \log \frac{p^{\perp}(s,v)p(x|s,v)}{q^{\perp}(s,v|x)} \right],$ where  $\pi(y|x) \coloneqq \mathbb{E}_{q^{\perp}(S, v|x)} \left[ \frac{p(s,v)}{n^{\perp}(S,v)} p(y|s) \right].$ 



**CSG-DA**: for prediction in a test domain with unsupervised data (domain adaptation)

• Learn the test-domain prior  $\tilde{p}(s, v)$  by fitting  $\tilde{p}^*(x)$  using ELBO:

• On the test domain:



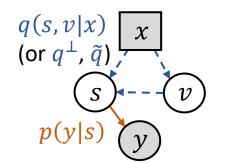
- $\mathcal{L}_{\tilde{p},\tilde{q}}(x) \coloneqq \mathbb{E}_{\tilde{q}(S,\mathcal{V}|X)} \left[ \log \frac{\tilde{p}(s,\mathcal{V})p(X|S,\mathcal{V})}{\tilde{q}(S,\mathcal{V}|X)} \right] \le \log \tilde{p}(x).$ • Prediction:  $\tilde{p}(y|x) \approx \mathbb{E}_{\tilde{q}(s,\mathcal{V}|X)} [p(y|s)]$ . Different from p(y|x) (inference invariance).
- On the training domain: avoid the q(s, v|x) model.
  - Following the relation b/w their targets, let  $q(s, v|x) = \frac{\tilde{p}(x)}{n(x)} \frac{p(s,v)}{\tilde{p}(s,v)} \tilde{q}(s, v|x)$ :

$$\mathcal{L}_{p,q(s,v|x,y)=[\tilde{q}(s,v|x),p]}(x,y) = \log \pi(y|x) + \frac{1}{\pi(y|x)} \mathbb{E}_{\tilde{q}(s,v|x)} \left[ \frac{p(s,v)}{\tilde{p}(s,v)} p(y|s) \log \frac{\tilde{p}(s,v)p(x|s,v)}{\tilde{q}(s,v|x)} \right]$$
  
where  $\pi(y|x) = \mathbb{E}_{\tilde{q}(s,v|x)} \left[ \frac{p(s,v)}{\tilde{p}(s,v)} p(y|s) \right]$ .

Implementation details.

- Instantiating the model by parsing a general discriminative model:
  - In CSG,  $y \perp (x, v) | s$ , so no  $v \rightarrow y$ . We then have p(y|s).
  - In CSG,  $s \downarrow v \mid x$ , so let  $v \rightarrow s$ . We then have  $q(s, v \mid x)$ .
  - Use an additional model for p(x|s, v).
- Implementing the prior.
- Multivariate Gaussian:  $p(s, v) = \mathcal{N}\begin{pmatrix} s \\ v \end{pmatrix} \begin{vmatrix} \mu s \\ \mu_v \end{pmatrix}, \Sigma = \begin{pmatrix} \Sigma_{ss} & \Sigma_{sv} \\ \Sigma_{vs} & \Sigma_{vv} \end{pmatrix}$  (no causal direction). Parameterize  $\Sigma = LL^{\mathsf{T}}, L = \begin{pmatrix} L_{ss} & 0 \\ M_{vs} & L_{vv} \end{pmatrix}$  ( $L_{ss}, L_{vv}$  are lower-triangular with positive diagonals).  $p(v|s) = \mathcal{N}(v|\mu_{v|s}, \Sigma_{v|s})$ , where  $\mu_{v|s} = \mu_v + M_{vs}L_{ss}^{-1}(s \mu_s), \Sigma_{v|s} = L_{vv}L_{vv}^{\mathsf{T}}$ .

- Model selection.
  - Use a validation set from the **training domain**.
  - For CSG-ind/DA, use  $p(y|x) \propto \pi(y|x)$  ( $\neq p^{\perp}(y|x)$  or  $\tilde{p}(y|x)$ ) to evaluate validation accuracy.



(computation direction)

Identifiability on the training domain.

- **Definition** (semantic-identification). A CSG p is said *semantic-identified*, if there exists a homeomorphism  $\Phi$  on  $S \times V$ , s.t.: (i)  $\Phi^{S}(s^{*}, v^{*})$  is constant of  $v^{*}$ , and (ii)  $\Phi$  is a *reparameterization* of the ground-truth CSG  $p^{*}$ :  $\Phi_{\#}[p_{s,v}^{*}] = p_{s,v}, p^{*}(x|s^{*}, v^{*}) = p(x|\Phi(s^{*}, v^{*})), p^{*}(y|s^{*}) = p(y|\Phi^{S}(s^{*})).$ 
  - Reparameterization: describes the degree of freedom given  $p(x, y) = p^*(x, y)$ .
  - *v*-constancy:  $\Phi$  is *semantic-preserving* (the learned *s* does not mix the ground-truth  $v^*$  into it).
  - **Proposition**: equivalent relation if  $\mathcal{V}$  is connected and is either open or closed in  $\mathbb{R}^{d_{\mathcal{V}}}$ .
- Related concepts:
  - Neither sufficient nor necessary to statistical independence.
  - Weaker than **disentanglement**: the learned v can be entangled with ground-truth  $s^*$ .

Identifiability on the training domain.

- Assumptions.
  - (A1)[*additive noise*] There exist functions f and g with bounded derivatives up to 3rd-order, and indep. r.v.s  $\mu$  and  $\nu$ , s.t.:

 $p(x|s, v) = p_{\mu}(x - f(s, v))$ , and

- $p(y|s) = p_{\nu}(y g(s))$  for continuous y or Cat(y|g(s)) for categorical y.
- Required to disable the anti-causal direction.
- Excludes GAN, flow-based models.
- (A2)[*bijectivity*] *f* is bijective and *g* is injective.
  - A common sufficient condition for the fundamental requirement of causal minimality.
  - Otherwise, s and v are allowed to have dummy dimensions.
  - The manifold hypothesis relaxes f to be injective, and allows  $d_{\mathcal{S}} + d_{\mathcal{V}} < d_{\mathcal{X}}$ .

Identifiability on the training domain.

• **Theorem** (semantic-identifiability). Assume **A1**,**A2**, bounded log  $p_{s,v}^*$  up to 2nd-order, and: (i)  $\frac{1}{\sigma_{\mu}^2} \to \infty$ , where  $\sigma_{\mu}^2 \coloneqq \mathbb{E}[\mu^{\mathsf{T}}\mu]$ , or

(ii)  $\dot{p}_{\mu}$  has an a.e. non-zero characteristic function (e.g., a Gaussian distribution).

Then a well-learned CSG (s.t.  $p(x, y) = p^*(x, y)$ ) is *semantic-identified*.

- (Appropriate condition) One cannot identify s in *extreme cases* (all "0"'s are on the left and all "1"'s are on the right): excluded by the condition on  $\log p_{s,v}^*$ .
- (Intuition) In other cases, v for each s is noisy, so mixing s with v worsens training accuracy.
- Condition (i) requires a *strong* causal mechanism: nearly deterministic and invertible. Condition (ii) covers more than inference invariance.
- Does not contradict the impossibility result of disentanglement [Locatello'19]: only identify s as a whole; asymmetry from missing  $v \rightarrow y$ .

Benefit for OOD prediction.

- The test-domain ground-truth CSG  $\tilde{p}^* = \langle \tilde{p}^*_{s,v}, p^*_{x|s,v}, p^*_{y|s} \rangle$  (due to causal invariance).
- Theorem (OOD gen. error) With A1,A2, the test-domain prediction error of a semanticidentified CSG p is bounded  $(B'_{f^{-1}}, B'_g$  bounds the Jacobian 2-norms of  $f^{-1}, g$ , and  $\tilde{p}_{s,v} \coloneqq \Phi_{\#}[\tilde{p}^*_{s,v}]$ ):  $\mathbb{E}_{\tilde{p}^*(x)} \|\mathbb{E}[y|x] - \widetilde{\mathbb{E}}^*[y|x]\|_2^2 \leq \sigma_{\mu}^4 B'^4_{f^{-1}} B'^2_g \mathbb{E}_{\tilde{p}_{s,v}} \|\nabla \log(\tilde{p}_{s,v}/p_{s,v})\|_2^2$ . (up to  $O(\sigma_{\mu}^4)$ )
  - For a *strong* causal mechanism p(x|s, v), the bound is small.
  - $\mathbb{E}_{\tilde{p}_{s,v}} \| \nabla \log(\tilde{p}_{s,v}/p_{s,v}) \|_2^2$ : FisherDiv $(\tilde{p}_{s,v} \| p_{s,v})$ , "OODness" for prediction.
  - CSG-ind tends to have a smaller error bound: smaller FisherDiv $(\tilde{p}_{s,v} \| \cdot) \Rightarrow$  distr. with a larger support, and  $p_{s,v}^{\perp}$  has a larger support than  $p_{s,v}$ .
- Theorem (domain adaptation error) Assume the same for identifiability and the learned CSG p is semantic-identified. Then a well-learned (s.t. p̃(x) = p̃\*(x)) new prior
  (i) p̃<sub>s,v</sub> = Φ<sub>#</sub>[p̃\*<sub>s,v</sub>] is a reparametrized ground-truth p̃\*<sub>s,v</sub>, and
  (ii) it leads to an accurate prediction: Ẽ[y|x] = Ẽ\*[y|x], ∀x ∈ supp(p̃\*<sub>x</sub>).

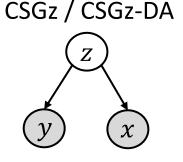
#### Experiments

**Baselines:** 

- For OOD generalization,
  - CE (cross entropy): standard supervised learning.
  - CNBB (ConvNet with Batch Balancing): a discriminative causal method.
- For domain adaptation,
  - DANN, DAN, CDAN, MDD, BNM: classical domain adaptation methods.
- For an ablation study,
  - CSGz / CSGz-DA: generative methods without separating z as s and v.

Datasets:

- Shifted MNIST.
  - Training dataset: "0"s are horiz. shifted by  $\delta_0 \sim \mathcal{N}(-5,1^2)$  px, "1"s by  $\delta_1 \sim \mathcal{N}(5,1^2)$  px.
  - Two test datasets: (1)  $\delta_0 = \delta_1 = 0$ ; (2)  $\delta_0$ ,  $\delta_1 \sim \mathcal{N}(0, 2^2)$ .
- ImageCLEF-DA.
- PACS, VLCS.



| Evnoriments                                                                                                                               | OOD            |                            |          |                                                                                                                                          |                                                                                   |                                                                                   |                                                                                                               |                                                                                 |                             |                                                                      |                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Experiments                                                                                                                               |                |                            | task     |                                                                                                                                          |                                                                                   | CE                                                                                | CNBB                                                                                                          | CSGz                                                                            | CSG                         | CSG-ind                                                              |                                                                                                                                         |
| <ul> <li>OOD prediction</li> </ul>                                                                                                        | generalizatior |                            | ion -    | Shifted-<br>MNIST                                                                                                                        | -                                                                                 | $ \begin{split} &\tilde{b}_1 = 0 \\ &\mathcal{N}(0,\!2^2) \end{split} $           | 42.9±3.1<br>   47.8±1.5                                                                                       |                                                                                 |                             |                                                                      | 82.6±4.0<br>62.3±2.2                                                                                                                    |
| performance                                                                                                                               |                |                            |          | Image<br>CLEF-<br>DA                                                                                                                     | C-<br>P-<br>I-<br>P-                                                              | $\mathbf{P} \to \mathbf{C}$                                                       | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                        | 91.7±0.2<br>75.4±0.6                                                            | 91.6±0.9<br>77.0±0.2        | 92.3 $\pm$ 0.4<br>76.9 $\pm$ 0.3                                     | $\begin{array}{c} 74.0{\scriptstyle\pm1.3}\\ 92.7{\scriptstyle\pm0.2}\\ 77.2{\scriptstyle\pm0.2}\\ 90.9{\scriptstyle\pm0.2}\end{array}$ |
|                                                                                                                                           |                |                            | PACS     | others $\rightarrow \mathbf{P}$<br>others $\rightarrow \mathbf{A}$<br>others $\rightarrow \mathbf{C}$<br>others $\rightarrow \mathbf{S}$ |                                                                                   | <b>97.8±0.0</b><br>88.1±0.1<br>77.9±1.3<br>79.1±0.9                               | 73.1±0.3<br>50.2±1.2                                                                                          | 87.3±0.8<br>84.3±0.9                                                            | <b>88.5±0.6</b><br>84.4±0.9 | 97.8±0.2<br>88.6±0.6<br>84.6±0.8<br>81.1±1.2                         |                                                                                                                                         |
| Domain<br>adaptation                                                                                                                      |                | task                       |          |                                                                                                                                          | DANN                                                                              | DAN                                                                               | CDAN                                                                                                          | MDD                                                                             | BNM                         | CSGz-DA                                                              | CSG-DA                                                                                                                                  |
|                                                                                                                                           |                | Shifted-<br>MNIST $\delta$ | -        | $\delta_1 = 0$ $\mathcal{N}(0, 2^2)$                                                                                                     |                                                                                   |                                                                                   | 41.0±0.5<br>46.3±0.6                                                                                          |                                                                                 |                             | $78.0{\scriptstyle\pm27.2}\\68.1{\scriptstyle\pm17.4}$               | 97.6±4.0<br>72.0±9.2                                                                                                                    |
| More suitable scenarios:<br>Solve the spurious correlation<br>problem in cases with diverse<br>v for each $s$ (easier<br>identification). |                | Image<br>CLEF-<br>DA       | P-<br>I- | $ \begin{array}{c} \rightarrow \mathbf{P} \\ \rightarrow \mathbf{C} \\ \rightarrow \mathbf{P} \\ \rightarrow \mathbf{I} \end{array} $    | $\begin{array}{c}91.5{\scriptstyle\pm0.6}\\75.0{\scriptstyle\pm0.6}\end{array}$   | $\begin{array}{c} 89.8{\scriptstyle\pm0.4}\\ 74.5{\scriptstyle\pm0.4}\end{array}$ | $\begin{array}{c} 74.5 \pm 0.3 \\ \textbf{93.5} \pm \textbf{0.4} \\ 76.7 \pm 0.3 \\ 90.6 \pm 0.3 \end{array}$ | $\begin{array}{c}92.1{\scriptstyle\pm0.6}\\76.8{\scriptstyle\pm0.4}\end{array}$ | <b>93.5±2.8</b><br>76.7±1.4 | 74.3±0.3<br>92.7±0.4<br>77.0±0.3<br>90.6±0.4                         | 75.1±0.5<br>93.4±0.3<br>77.4±0.3<br>91.1±0.5                                                                                            |
|                                                                                                                                           |                | PACS                       |          |                                                                                                                                          | $\begin{array}{c} 85.9{\scriptstyle\pm0.5}\\ 79.9{\scriptstyle\pm1.4}\end{array}$ | $\substack{84.5{\scriptstyle\pm1.2}\\81.9{\scriptstyle\pm1.9}}$                   | $\begin{array}{c} 97.0 \pm 0.4 \\ 84.0 \pm 0.9 \\ 78.5 \pm 1.5 \\ 71.8 \pm 3.9 \end{array}$                   | 88.1±0.8<br>83.2±1.1                                                            | 86.4±0.4<br>83.6±1.7        | $97.6 \pm 0.4$<br>$88.0 \pm 0.8$<br>$84.6 \pm 0.9$<br>$80.9 \pm 1.2$ | 97.9±0.2<br>88.8±0.7<br>84.7±0.8<br>81.4±0.8                                                                                            |

#### Experiments

• Visualization (using LIME [Ribeiro'16]) OOD generalization





**CSG-ind** 







#### **Domain adaptation**

MDD



CSG-DA







# Thanks!

https://arxiv.org/abs/2011.01681

#### References

- [Ribeiro'16] M. T. Ribeiro, S. Singh, and C. Guestrin. "Why should I trust you?": Explaining the
  predictions of any classifier. In *Proceedings of the 22nd ACM SIGKDD International Conference on
  Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016*, pages 1135
  –
  1144, 2016.
- [Khemakhem'20a] I. Khemakhem, D. P. Kingma, R. P. Monti, and A. Hyvärinen. Variational autoencoders and nonlinear ICA: A unifying framework. In the 23rd International Conference on Artificial Intelligence and Statistics, 26-28 August 2020, Online [Palermo, Sicily, Italy], volume 108 of Proceedings of Machine Learning Research, pages 2207–2217, 2020.
- [Khemakhem'20b] I. Khemakhem, R. P. Monti, D. P. Kingma, and A. Hyvärinen. ICE-BeeM: Identifiable conditional energy-based deep models. *arXiv preprint arXiv:2002.11537*, 2020.
- [Pearl'09] J. Pearl. *Causality*. Cambridge university press, 2009.
- [Peters'17] J. Peters, D. Janzing, and B. Schölkopf. *Elements of causal inference: foundations and learning algorithms*. MIT press, 2017.
- [Locatello'19] F. Locatello, S. Bauer, M. Lucic, G. Raetsch, S. Gelly, B. Schölkopf, and O. Bachem. Challenging common assumptions in the unsupervised learning of disentangled representations. In *Proceedings of the 36th International Conference on Machine Learning*, volume 97 of *Proceedings of Machine Learning Research*, pages 4114–4124, Long Beach, California, USA, 09–15 Jun 2019. PMLR.