Learning Causal Semantic Representation for out-of-Distribution Prediction

Chang Liu¹, Xinwei Sun¹, Jindong Wang¹, Haoyue Tang², Tao Li³, Tao Qin¹, Wei Chen¹, Tie-Yan Liu¹.

¹ Microsoft Research Asia

² Tsinghua University

³ Peking University

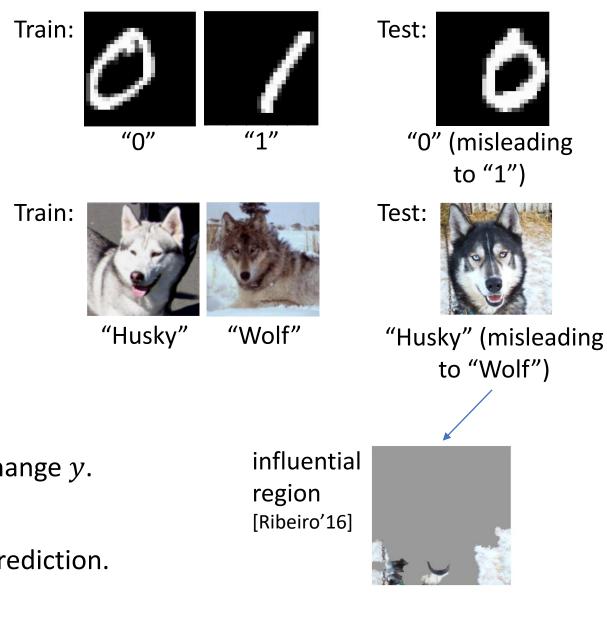
Introduction

The problem:

• Deep supervised learning lacks robustness to out-of-distribution (OOD) samples.

Reason behind:

- The learned representation mixes both semantic factor s (e.g., shape) and variation factor v (e.g., position, background), since both are correlated to y.
- But only s causes y: intervening v does not change y.
 Goal:
- Learning the **causal** representation for OOD prediction.



Introduction

In this work,

- Causal Semantic Generative model (CSG): describes latent causal structure.
- Methods for OOD prediction (OOD generalization and domain adaptation).
- Theory for identifying the semantic factor and the subsequent benefits for OOD prediction.

Related Work

- Domain adaptation/generalization.
 - Observation-level causality: not suitable for general data like images.
 - Domain-invariant representation: inference invariance; insufficient to identify latent factors.
 - Latent generative models: inference invariance; semantic-variation independence; lack of identifiability guarantee.
- Learning disentangled representation.
 - Impossible in unsupervised learning, despite some empirical success.
 - With an auxiliary variable [Khemakhem'20a,b]: require sufficiently many different values of the variable (thus unsuitable for y); no description for domain change.

Related Work

- Generative supervised learning.
 - Few utilized the causal implications of the model.
 - Some aim at estimating causal/treatment effect: not suitable for OOD prediction.
- Causality with latent variables.
 - Most works still focus on the consequence on observation-level causality.
 - Works that identify latent variables do not have semantic-variation split.
- Causal discriminative learning.
 - Lack of identifiability guarantee and structure to capture causal relations.

• Formal definition of causality:

"two variables have a causal relation, if intervening the cause (by changing external variables out of the considered system) may change the effect, but not vice versa" [Pearl'09; Peters'17].

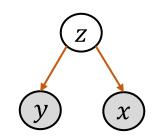
- Causal Semantic Generative (CSG) Model
 - The need of latent variable *z*:
 - $x \nleftrightarrow y$ (breaking a camera sensor unit $x \nleftrightarrow$ label y), $y \nleftrightarrow x$ (labeling noise $y \nleftrightarrow$ image x). (For labeling process from image x: labelers are doing inference; preference may change from person to person.)

 $\boldsymbol{\chi}$

• Formal definition of causality:

"two variables have a causal relation, if intervening the cause (by changing external variables out of the considered system) may change the effect, but not vice versa" [Pearl'09; Peters'17].

- Causal Semantic Generative (CSG) Model
- The need of latent variable z: $x \rightarrow y$ (breaking a camera sensor unit $x \rightarrow a$
 - $x \nleftrightarrow y$ (breaking a camera sensor unit $x \nleftrightarrow$ label y), $y \nleftrightarrow x$ (labeling noise $y \nleftrightarrow$ image x). (For labeling process from image x: labelers are doing inference; preference may change from person to person.)
- $z \rightarrow (x, y)$: changing object shape z in the scene \rightarrow image x, label y; breaking sensor x or labeling noise $y \not\rightarrow$ object shape z in the scene. (Particularly, different from works with $y \rightarrow s$: our y may be a noisy observation.)
- No x-y edge: attribute all x-y relations to latent factors ("purely common cause", promotes identification) (breaking sensor x / labeling noise y while fixing all factors $z \nleftrightarrow$ label y / image x).
- •
- ٠



• Formal definition of causality:

"two variables have a causal relation, if intervening the cause (by changing external variables out of the considered system) may change the effect, but not vice versa" [Pearl'09; Peters'17].

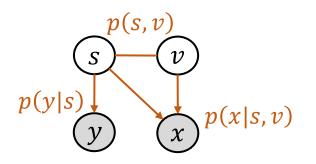
• Causal Semantic Generative (CSG) Model

- p(y|s) = y = p(x|s,v)
- The need of latent variable z:
 x → y (breaking a camera sensor unit x → label y), y → x (labeling noise y → image x).
 (For labeling process from image x: labelers are doing inference; preference may change from person to person.)
- $z \rightarrow (x, y)$: changing object shape z in the scene \rightarrow image x, label y; breaking sensor x or labeling noise $y \not\rightarrow$ object shape z in the scene. (Particularly, different from works with $y \rightarrow s$: our y may be a noisy observation.)
- No x-y edge: attribute all x-y relations to latent factors ("purely common cause", promotes identification) (breaking sensor x / labeling noise y while fixing all factors $z \nleftrightarrow$ label y / image x).
- z = (s, v): not all factors *cause* y (changing background $v \nleftrightarrow$ label y).
- s-v has a relation, which is often spurious (desk ~ workspace, bed ~ bedroom, but putting a desk in bedroom does not turn it into a bed).
- Denoted as $p \coloneqq \langle p_{s,v}, p_{x|s,v}, p_{y|s} \rangle$.

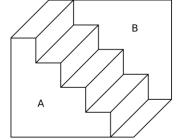
• The **causal invariance** principle:

Causal mechanisms p(x|s, v) and p(y|s) are domain-invariant, while the prior p(s, v) is the source of domain shift.

• Stems from the *Independent Causal Mechanisms* principle: intervening p(s, v) does not affect p(x|s, v), p(y|s).



- Comparison to inference invariance: p(s, v|x) is invariant.
 - Domain adapt./gen., invariant risk min.: use a *shared* encoder across domains.
 - Special case of causal invariance when generative mechanisms are almost deterministic and invertible (inferring object position from image, extracting F0 from audio).
 - When they are not, inference is ambiguous and rely on domain-specific prior.



domain-specific $p(s,v|x) \propto p(s,v)p(x|s,v)$

 \neq 0 for multiple (*s*, *v*)

Inference ambiguity in Noisy ("5" or "3"?) and Degenerate (A or B nearer?) generative mechanisms.

Chang Liu (MSRA)

Method true data distribution $\int = \int p(s, v)p(x|s, v)p(y|s) ds dv$ is hard to evaluate.

- Direct MLE: $\max_{p} \mathbb{E}_{p^*(x,y)}[\log p(x,y)]$.
- Standard ELBO: using a tractable *inference model* q(s, v | x, y),
 - $\mathcal{L}_{p,q}(x,y) \coloneqq \mathbb{E}_{q(S, v|x, y)}\left[\log \frac{p(s, v, x, y)}{q(S, v|x, y)}\right] \le \log p(x, y).$
 - $\max_{q} \mathcal{L}_{p,q}(x,y)$ makes $q(s,v|x,y) \rightarrow p(s,v|x,y)$ and $\mathcal{L}_{p,q}(x,y) \rightarrow \log p(x,y)$.
 - Prediction is still hard: hard to leverage q(s, v|x, y).

p(x|s,v)

p(s,v)

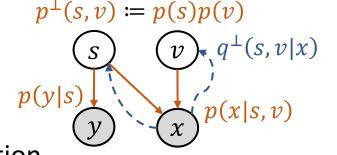
p(y|s)

p(s, v)• Use a q(s, v, y | x) model: $v \rightarrow q(s, v|x)$ For prediction: ancestral sampling. p(y|s)• For learning: $\mathbb{E}_{p^*(x,y)} \left[\mathcal{L}_{p,q(S,v|x,y)=q(S,v,y|x)/\int q(s,v,y|x) \, ds dv}(x,y) \right]$ p(x|s,v) $= \mathbb{E}_{p^*(x)} \left[\mathbb{E}_{p^*(y|x)} [\log q(y|x)] + \mathbb{E}_{q(s,v,y|x)} \left[\frac{p^*(y|x)}{q(y|x)} \log \frac{p(s,v,x,y)}{q(s,v,y|x)} \right] \right].$ $= \mathcal{L}_{p,q(S,\mathcal{V},\mathcal{V}|\mathcal{X})}(x)$ when $q(y|x) = p^*(y|x)$: (negative) cross-entropy: makes $q(y|x) \rightarrow p^*(y|x)$ makes $q(s, v, y|x) \rightarrow p(s, v, y|x), \mathcal{L}_{p,q(s, v, y|x)}(x) \rightarrow p(x)$ Since p(s, v, y|x) = p(s, v|x)p(y|s), approximate the only unknown p(s, v|x). • Use a q(s, v|x) model: Substituting q(s, v, y|x) = q(s, v|x)p(y|s) yields: $\mathcal{L}_{p,q(S,\mathcal{V}|X,\mathcal{Y})=[q(S,\mathcal{V}|X),p]}(x,y) = \log q(y|x) + \frac{1}{q(\mathcal{V}|X)} \mathbb{E}_{q(S,\mathcal{V}|X)} \left[p(y|s) \log \frac{p(s,v)p(X|S,\mathcal{V})}{q(S,\mathcal{V}|X)} \right].$

CSG-ind: for prediction in an *unknown* test domain (OOD gen.)

- Use an independent prior $p^{\perp}(s, v) \coloneqq p(s)p(v)$:
 - Discard the spurious *s*-*v* correlation; *defensive* choice.
 - Larger entropy than p(s, v): reduce training-domain-specific information.
 - Randomized experiment by independently soft-intervening s or v.
- On the test domain:
 - Prediction: $p^{\perp}(y|x) \approx \mathbb{E}_{q^{\perp}(s,v|x)}[p(y|s)]$. Different from p(y|x) (inference invariance).
- On the training domain: avoid the q(s, v | x) model.

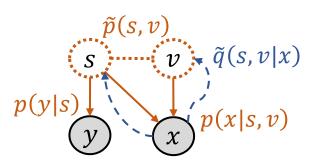
• Following the relation b/w their targets, let $q(s, v|x) = \frac{p(s,v)}{p^{\perp}(s,v)} \frac{p^{\perp}(x)}{p(x)} q^{\perp}(s,v|x)$: $\mathcal{L}_{p,q(s,v|x,y)=[q^{\perp}(s,v|x),p]}(x,y) = \log \pi(y|x) + \frac{1}{\pi(y|x)} \mathbb{E}_{q^{\perp}(s,v|x)} \left[\frac{p(s,v)}{p^{\perp}(s,v)} p(y|s) \log \frac{p^{\perp}(s,v)p(x|s,v)}{q^{\perp}(s,v|x)} \right],$ where $\pi(y|x) \coloneqq \mathbb{E}_{q^{\perp}(S, v|x)} \left[\frac{p(s,v)}{n^{\perp}(S,v)} p(y|s) \right].$



CSG-DA: for prediction in a test domain with unsupervised data (domain adaptation)

• Learn the test-domain prior $\tilde{p}(s, v)$ by fitting $\tilde{p}^*(x)$ using ELBO:

• On the test domain:



- $\mathcal{L}_{\tilde{p},\tilde{q}}(x) \coloneqq \mathbb{E}_{\tilde{q}(S,\mathcal{V}|X)} \left[\log \frac{\tilde{p}(s,\mathcal{V})p(X|S,\mathcal{V})}{\tilde{q}(S,\mathcal{V}|X)} \right] \le \log \tilde{p}(x).$ • Prediction: $\tilde{p}(y|x) \approx \mathbb{E}_{\tilde{q}(s,\mathcal{V}|X)} [p(y|s)]$. Different from p(y|x) (inference invariance).
- On the training domain: avoid the q(s, v|x) model.
 - Following the relation b/w their targets, let $q(s, v|x) = \frac{\tilde{p}(x)}{n(x)} \frac{p(s,v)}{\tilde{p}(s,v)} \tilde{q}(s, v|x)$:

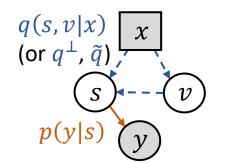
$$\mathcal{L}_{p,q(s,v|x,y)=[\tilde{q}(s,v|x),p]}(x,y) = \log \pi(y|x) + \frac{1}{\pi(y|x)} \mathbb{E}_{\tilde{q}(s,v|x)} \left[\frac{p(s,v)}{\tilde{p}(s,v)} p(y|s) \log \frac{\tilde{p}(s,v)p(x|s,v)}{\tilde{q}(s,v|x)} \right]$$

where $\pi(y|x) = \mathbb{E}_{\tilde{q}(s,v|x)} \left[\frac{p(s,v)}{\tilde{p}(s,v)} p(y|s) \right]$.

Implementation details.

- Instantiating the model by parsing a general discriminative model:
 - In CSG, $y \perp (x, v) | s$, so no $v \rightarrow y$. We then have p(y|s).
 - In CSG, $s \downarrow v \mid x$, so let $v \rightarrow s$. We then have $q(s, v \mid x)$.
 - Use an additional model for p(x|s, v).
- Implementing the prior.
- Multivariate Gaussian: $p(s, v) = \mathcal{N}\begin{pmatrix} s \\ v \end{pmatrix} \begin{vmatrix} \mu s \\ \mu_v \end{pmatrix}, \Sigma = \begin{pmatrix} \Sigma_{ss} & \Sigma_{sv} \\ \Sigma_{vs} & \Sigma_{vv} \end{pmatrix}$ (no causal direction). Parameterize $\Sigma = LL^{\mathsf{T}}, L = \begin{pmatrix} L_{ss} & 0 \\ M_{vs} & L_{vv} \end{pmatrix}$ (L_{ss}, L_{vv} are lower-triangular with positive diagonals). $p(v|s) = \mathcal{N}(v|\mu_{v|s}, \Sigma_{v|s})$, where $\mu_{v|s} = \mu_v + M_{vs}L_{ss}^{-1}(s \mu_s), \Sigma_{v|s} = L_{vv}L_{vv}^{\mathsf{T}}$.

- Model selection.
 - Use a validation set from the **training domain**.
 - For CSG-ind/DA, use $p(y|x) \propto \pi(y|x)$ ($\neq p^{\perp}(y|x)$ or $\tilde{p}(y|x)$) to evaluate validation accuracy.



(computation direction)

Identifiability on the training domain.

- **Definition** (semantic-identification). A CSG p is said *semantic-identified*, if there exists a homeomorphism Φ on $S \times V$, s.t.: (i) $\Phi^{S}(s^{*}, v^{*})$ is constant of v^{*} , and (ii) Φ is a *reparameterization* of the ground-truth CSG p^{*} : $\Phi_{\#}[p_{s,v}^{*}] = p_{s,v}, p^{*}(x|s^{*}, v^{*}) = p(x|\Phi(s^{*}, v^{*})), p^{*}(y|s^{*}) = p(y|\Phi^{S}(s^{*})).$
 - Reparameterization: describes the degree of freedom given $p(x, y) = p^*(x, y)$.
 - *v*-constancy: Φ is *semantic-preserving* (the learned *s* does not mix the ground-truth v^* into it).
 - **Proposition**: equivalent relation if \mathcal{V} is connected and is either open or closed in $\mathbb{R}^{d_{\mathcal{V}}}$.
- Related concepts:
 - Neither sufficient nor necessary to statistical independence.
 - Weaker than **disentanglement**: the learned v can be entangled with ground-truth s^* .

Identifiability on the training domain.

- Assumptions.
 - (A1)[*additive noise*] There exist functions f and g with bounded derivatives up to 3rd-order, and indep. r.v.s μ and ν , s.t.:

 $p(x|s, v) = p_{\mu}(x - f(s, v))$, and

- $p(y|s) = p_{\nu}(y g(s))$ for continuous y or Cat(y|g(s)) for categorical y.
- Required to disable the anti-causal direction.
- Excludes GAN, flow-based models.
- (A2)[*bijectivity*] *f* is bijective and *g* is injective.
 - A common sufficient condition for the fundamental requirement of causal minimality.
 - Otherwise, s and v are allowed to have dummy dimensions.
 - The manifold hypothesis relaxes f to be injective, and allows $d_{\mathcal{S}} + d_{\mathcal{V}} < d_{\mathcal{X}}$.

Identifiability on the training domain.

• **Theorem** (semantic-identifiability). Assume **A1**,**A2**, bounded log $p_{s,v}^*$ up to 2nd-order, and: (i) $\frac{1}{\sigma_{\mu}^2} \to \infty$, where $\sigma_{\mu}^2 \coloneqq \mathbb{E}[\mu^{\mathsf{T}}\mu]$, or

(ii) \dot{p}_{μ} has an a.e. non-zero characteristic function (e.g., a Gaussian distribution).

Then a well-learned CSG (s.t. $p(x, y) = p^*(x, y)$) is *semantic-identified*.

- (Appropriate condition) One cannot identify s in *extreme cases* (all "0"'s are on the left and all "1"'s are on the right): excluded by the condition on $\log p_{s,v}^*$.
- (Intuition) In other cases, v for each s is noisy, so mixing s with v worsens training accuracy.
- Condition (i) requires a *strong* causal mechanism: nearly deterministic and invertible. Condition (ii) covers more than inference invariance.
- Does not contradict the impossibility result of disentanglement [Locatello'19]: only identify s as a whole; asymmetry from missing $v \rightarrow y$.

Benefit for OOD prediction.

- The test-domain ground-truth CSG $\tilde{p}^* = \langle \tilde{p}^*_{s,v}, p^*_{x|s,v}, p^*_{y|s} \rangle$ (due to causal invariance).
- Theorem (OOD gen. error) With A1,A2, the test-domain prediction error of a semanticidentified CSG p is bounded $(B'_{f^{-1}}, B'_g$ bounds the Jacobian 2-norms of f^{-1}, g , and $\tilde{p}_{s,v} \coloneqq \Phi_{\#}[\tilde{p}^*_{s,v}]$): $\mathbb{E}_{\tilde{p}^*(x)} \|\mathbb{E}[y|x] - \widetilde{\mathbb{E}}^*[y|x]\|_2^2 \leq \sigma_{\mu}^4 B'^4_{f^{-1}} B'^2_g \mathbb{E}_{\tilde{p}_{s,v}} \|\nabla \log(\tilde{p}_{s,v}/p_{s,v})\|_2^2$. (up to $O(\sigma_{\mu}^4)$)
 - For a *strong* causal mechanism p(x|s, v), the bound is small.
 - $\mathbb{E}_{\tilde{p}_{s,v}} \| \nabla \log(\tilde{p}_{s,v}/p_{s,v}) \|_2^2$: FisherDiv $(\tilde{p}_{s,v} \| p_{s,v})$, "OODness" for prediction.
 - CSG-ind tends to have a smaller error bound: smaller FisherDiv $(\tilde{p}_{s,v} \| \cdot) \Rightarrow$ distr. with a larger support, and $p_{s,v}^{\perp}$ has a larger support than $p_{s,v}$.
- Theorem (domain adaptation error) Assume the same for identifiability and the learned CSG p is semantic-identified. Then a well-learned (s.t. p̃(x) = p̃*(x)) new prior
 (i) p̃_{s,v} = Φ_#[p̃*_{s,v}] is a reparametrized ground-truth p̃*_{s,v}, and
 (ii) it leads to an accurate prediction: Ẽ[y|x] = Ẽ*[y|x], ∀x ∈ supp(p̃*_x).

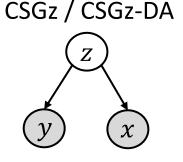
Experiments

Baselines:

- For OOD generalization,
 - CE (cross entropy): standard supervised learning.
 - CNBB (ConvNet with Batch Balancing): a discriminative causal method.
- For domain adaptation,
 - DANN, DAN, CDAN, MDD, BNM: classical domain adaptation methods.
- For an ablation study,
 - CSGz / CSGz-DA: generative methods without separating z as s and v.

Datasets:

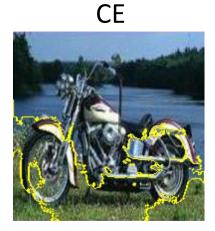
- Shifted MNIST.
 - Training dataset: "0"s are horiz. shifted by $\delta_0 \sim \mathcal{N}(-5,1^2)$ px, "1"s by $\delta_1 \sim \mathcal{N}(5,1^2)$ px.
 - Two test datasets: (1) $\delta_0 = \delta_1 = 0$; (2) δ_0 , $\delta_1 \sim \mathcal{N}(0, 2^2)$.
- ImageCLEF-DA.
- PACS, VLCS.



Evnoriments	OOD										
Experiments			task			CE	CNBB	CSGz	CSG	CSG-ind	
 OOD prediction 	generalizatior		ion -	Shifted- MNIST	-	$ \begin{split} &\tilde{b}_1 = 0 \\ &\mathcal{N}(0,\!2^2) \end{split} $	42.9±3.1 47.8±1.5				82.6±4.0 62.3±2.2
performance				Image CLEF- DA	C- P- I- P-	$\mathbf{P} \to \mathbf{C}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	91.7±0.2 75.4±0.6	91.6±0.9 77.0±0.2	92.3 \pm 0.4 76.9 \pm 0.3	$\begin{array}{c} 74.0{\scriptstyle\pm1.3}\\ 92.7{\scriptstyle\pm0.2}\\ 77.2{\scriptstyle\pm0.2}\\ 90.9{\scriptstyle\pm0.2}\end{array}$
			PACS	others $\rightarrow \mathbf{P}$ others $\rightarrow \mathbf{A}$ others $\rightarrow \mathbf{C}$ others $\rightarrow \mathbf{S}$		97.8±0.0 88.1±0.1 77.9±1.3 79.1±0.9	73.1±0.3 50.2±1.2	87.3±0.8 84.3±0.9	88.5±0.6 84.4±0.9	97.8±0.2 88.6±0.6 84.6±0.8 81.1±1.2	
Domain adaptation		task			DANN	DAN	CDAN	MDD	BNM	CSGz-DA	CSG-DA
		Shifted- MNIST δ	-	$\delta_1 = 0$ $\mathcal{N}(0, 2^2)$			41.0±0.5 46.3±0.6			$78.0{\scriptstyle\pm27.2}\\68.1{\scriptstyle\pm17.4}$	97.6±4.0 72.0±9.2
More suitable scenarios: Solve the spurious correlation problem in cases with diverse v for each s (easier identification).		Image CLEF- DA	P- I-	$ \begin{array}{c} \rightarrow \mathbf{P} \\ \rightarrow \mathbf{C} \\ \rightarrow \mathbf{P} \\ \rightarrow \mathbf{I} \end{array} $	$\begin{array}{c}91.5{\scriptstyle\pm0.6}\\75.0{\scriptstyle\pm0.6}\end{array}$	$\begin{array}{c} 89.8{\scriptstyle\pm0.4}\\ 74.5{\scriptstyle\pm0.4}\end{array}$	$\begin{array}{c} 74.5 \pm 0.3 \\ \textbf{93.5} \pm \textbf{0.4} \\ 76.7 \pm 0.3 \\ 90.6 \pm 0.3 \end{array}$	$\begin{array}{c}92.1{\scriptstyle\pm0.6}\\76.8{\scriptstyle\pm0.4}\end{array}$	93.5±2.8 76.7±1.4	74.3±0.3 92.7±0.4 77.0±0.3 90.6±0.4	75.1±0.5 93.4±0.3 77.4±0.3 91.1±0.5
		PACS			$\begin{array}{c} 85.9{\scriptstyle\pm0.5}\\ 79.9{\scriptstyle\pm1.4}\end{array}$	$\substack{84.5{\scriptstyle\pm1.2}\\81.9{\scriptstyle\pm1.9}}$	$\begin{array}{c} 97.0 \pm 0.4 \\ 84.0 \pm 0.9 \\ 78.5 \pm 1.5 \\ 71.8 \pm 3.9 \end{array}$	88.1±0.8 83.2±1.1	86.4±0.4 83.6±1.7	97.6 ± 0.4 88.0 ± 0.8 84.6 ± 0.9 80.9 ± 1.2	97.9±0.2 88.8±0.7 84.7±0.8 81.4±0.8

Experiments

• Visualization (using LIME [Ribeiro'16]) OOD generalization



CSG-ind

Domain adaptation

MDD

CSG-DA

Thanks!

https://arxiv.org/abs/2011.01681

References

- [Ribeiro'16] M. T. Ribeiro, S. Singh, and C. Guestrin. "Why should I trust you?": Explaining the
 predictions of any classifier. In *Proceedings of the 22nd ACM SIGKDD International Conference on
 Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016*, pages 1135
 –
 1144, 2016.
- [Khemakhem'20a] I. Khemakhem, D. P. Kingma, R. P. Monti, and A. Hyvärinen. Variational autoencoders and nonlinear ICA: A unifying framework. In the 23rd International Conference on Artificial Intelligence and Statistics, 26-28 August 2020, Online [Palermo, Sicily, Italy], volume 108 of Proceedings of Machine Learning Research, pages 2207–2217, 2020.
- [Khemakhem'20b] I. Khemakhem, R. P. Monti, D. P. Kingma, and A. Hyvärinen. ICE-BeeM: Identifiable conditional energy-based deep models. *arXiv preprint arXiv:2002.11537*, 2020.
- [Pearl'09] J. Pearl. *Causality*. Cambridge university press, 2009.
- [Peters'17] J. Peters, D. Janzing, and B. Schölkopf. *Elements of causal inference: foundations and learning algorithms*. MIT press, 2017.
- [Locatello'19] F. Locatello, S. Bauer, M. Lucic, G. Raetsch, S. Gelly, B. Schölkopf, and O. Bachem. Challenging common assumptions in the unsupervised learning of disentangled representations. In *Proceedings of the 36th International Conference on Machine Learning*, volume 97 of *Proceedings of Machine Learning Research*, pages 4114–4124, Long Beach, California, USA, 09–15 Jun 2019. PMLR.