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Introduction
The problem:

• Deep supervised learning lacks robustness
to out-of-distribution (OOD) samples.

Reason behind:

• The learned representation mixes both
semantic factor 𝑠 (e.g., shape) and
variation factor 𝑣 (e.g., position, background),
since both are correlated to 𝑦.

• But only 𝑠 causes 𝑦: intervening 𝑣 does not change 𝑦.

Goal:

• Learning the causal representation for OOD prediction.
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Introduction
In this work,

• Causal Semantic Generative model (CSG): describes latent causal structure.

• Methods for OOD prediction (OOD generalization and domain adaptation).

• Theory for identifying the semantic factor and the subsequent benefits for OOD 
prediction.
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Related Work
• Domain adaptation/generalization.
• Observation-level causality: not suitable for general data like images.

• Domain-invariant representation: inference invariance; insufficient to identify latent factors.

• Latent generative models: inference invariance; semantic-variation independence; lack of 
identifiability guarantee.

• Learning disentangled representation.
• Impossible in unsupervised learning, despite some empirical success.

• With an auxiliary variable [Khemakhem’20a,b]: require sufficiently many different values of the 
variable (thus unsuitable for 𝑦); no description for domain change.
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Related Work
• Generative supervised learning.
• Few utilized the causal implications of the model.

• Some aim at estimating causal/treatment effect: not suitable for OOD prediction.

• Causality with latent variables.
• Most works still focus on the consequence on observation-level causality.

• Works that identify latent variables do not have semantic-variation split.

• Causal discriminative learning.
• Lack of identifiability guarantee and structure to capture causal relations.
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The Model
• Formal definition of causality:

“two variables have a causal relation, if intervening the cause
(by changing external variables out of the considered system) may

change the effect, but not vice versa” [Pearl’09; Peters’17].

• Causal Semantic Generative (CSG) Model
• The need of latent variable 𝑧:
𝑥 ↛ 𝑦 (breaking a camera sensor unit 𝑥 ↛ label 𝑦), 𝑦 ↛ 𝑥 (labeling noise 𝑦 ↛ image 𝑥).
(For labeling process from image 𝑥: labelers are doing inference; preference may change from person to person.)

•

•

•

•

•

𝑦 𝑥

𝑧
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The Model
• Formal definition of causality:

“two variables have a causal relation, if intervening the cause
(by changing external variables out of the considered system) may

change the effect, but not vice versa” [Pearl’09; Peters’17].

• Causal Semantic Generative (CSG) Model
• The need of latent variable 𝑧:
𝑥 ↛ 𝑦 (breaking a camera sensor unit 𝑥 ↛ label 𝑦), 𝑦 ↛ 𝑥 (labeling noise 𝑦 ↛ image 𝑥).
(For labeling process from image 𝑥: labelers are doing inference; preference may change from person to person.)

• 𝑧 → 𝑥, 𝑦 : changing object shape 𝑧 in the scene → image 𝑥, label 𝑦;
breaking sensor 𝑥 or labeling noise 𝑦 ↛ object shape 𝑧 in the scene.
(Particularly, different from works with 𝑦 → 𝑠: our 𝑦 may be a noisy observation.)

• No 𝑥-𝑦 edge: attribute all 𝑥-𝑦 relations to latent factors (“purely common cause”, promotes identification)
(breaking sensor 𝑥 / labeling noise 𝑦 while fixing all factors 𝑧 ↛ label 𝑦 / image 𝑥).

•

•

•

𝑦 𝑥

𝑧
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The Model
• Formal definition of causality:

“two variables have a causal relation, if intervening the cause
(by changing external variables out of the considered system) may

change the effect, but not vice versa” [Pearl’09; Peters’17].

• Causal Semantic Generative (CSG) Model
• The need of latent variable 𝑧:
𝑥 ↛ 𝑦 (breaking a camera sensor unit 𝑥 ↛ label 𝑦), 𝑦 ↛ 𝑥 (labeling noise 𝑦 ↛ image 𝑥).
(For labeling process from image 𝑥: labelers are doing inference; preference may change from person to person.)

• 𝑧 → 𝑥, 𝑦 : changing object shape 𝑧 in the scene → image 𝑥, label 𝑦;
breaking sensor 𝑥 or labeling noise 𝑦 ↛ object shape 𝑧 in the scene.
(Particularly, different from works with 𝑦 → 𝑠: our 𝑦 may be a noisy observation.)

• No 𝑥-𝑦 edge: attribute all 𝑥-𝑦 relations to latent factors (“purely common cause”, promotes identification)
(breaking sensor 𝑥 / labeling noise 𝑦 while fixing all factors 𝑧 ↛ label 𝑦 / image 𝑥).

• 𝑧 = 𝑠, 𝑣 : not all factors cause 𝑦 (changing background 𝑣 ↛ label 𝑦).
• 𝑠-𝑣 has a relation, which is often spurious (desk ~ workspace, bed ~ bedroom, but putting a desk 

in bedroom does not turn it into a bed).

• Denoted as 𝑝 ≔ 𝑝𝑠,𝑣, 𝑝𝑥|𝑠,𝑣, 𝑝𝑦|𝑠 .

𝑦 𝑥

𝑣𝑠

𝑝 𝑠, 𝑣

𝑝 𝑦|𝑠
𝑝 𝑥|𝑠, 𝑣
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The Model
• The causal invariance principle:

Causal mechanisms 𝑝 𝑥 𝑠, 𝑣 and 𝑝 𝑦 𝑠 are domain-invariant,
while the prior 𝑝(𝑠, 𝑣) is the source of domain shift.

• Stems from the Independent Causal Mechanisms principle:
intervening 𝑝 𝑠, 𝑣 does not affect 𝑝 𝑥 𝑠, 𝑣 , 𝑝 𝑦 𝑠 .

• Comparison to inference invariance: 𝑝 𝑠, 𝑣 𝑥 is invariant.
• Domain adapt./gen., invariant risk min.: use a shared encoder across domains.

• Special case of causal invariance when generative mechanisms are almost deterministic 
and invertible (inferring object position from image, extracting F0 from audio).

• When they are not, inference is ambiguous and rely on domain-specific prior.

Inference ambiguity in Noisy (“5” or “3”?) and Degenerate (A or B nearer?) generative mechanisms.

𝑦 𝑥

𝑣𝑠

𝑝 𝑠, 𝑣

𝑝 𝑦|𝑠
𝑝 𝑥|𝑠, 𝑣

𝑝 𝑠, 𝑣 𝑥 ∝ 𝑝 𝑠, 𝑣 𝑝 𝑥 𝑠, 𝑣

domain-specific

≠ 0 for multiple 𝑠, 𝑣
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Method
• Direct MLE: max

𝑝
𝔼𝑝∗ 𝑥,𝑦 log 𝑝 𝑥, 𝑦 .

• Standard ELBO: using a tractable inference model 𝑞 𝑠, 𝑣 𝑥, 𝑦 ,

ℒ𝑝, 𝑞 𝑥, 𝑦 ≔ 𝔼𝑞 𝑠, 𝑣 𝑥, 𝑦 log
𝑝 𝑠,𝑣,𝑥,𝑦

𝑞 𝑠, 𝑣 𝑥, 𝑦
≤ log 𝑝 𝑥, 𝑦 .

•max
𝑞

ℒ𝑝, 𝑞 𝑥, 𝑦 makes 𝑞 𝑠, 𝑣 𝑥, 𝑦 → 𝑝 𝑠, 𝑣 𝑥, 𝑦 and ℒ𝑝, 𝑞 𝑥, 𝑦 → log 𝑝 𝑥, 𝑦 .

• Prediction is still hard: hard to leverage 𝑞 𝑠, 𝑣 𝑥, 𝑦 .
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= 𝑝 𝑠, 𝑣 𝑝 𝑥 𝑠, 𝑣 𝑝 𝑦 𝑠 d𝑠d𝑣 is hard to evaluate.true data distribution

𝑦 𝑥

𝑣𝑠

𝑝 𝑠, 𝑣

𝑝 𝑦|𝑠
𝑝 𝑥|𝑠, 𝑣



Method
• Use a 𝑞 𝑠, 𝑣, 𝑦 𝑥 model:
• For prediction: ancestral sampling.

• For learning: 𝔼𝑝∗ 𝑥,𝑦 ℒ𝑝, 𝑞 𝑠, 𝑣 𝑥, 𝑦 =𝑞 𝑠, 𝑣, 𝑦 𝑥 /  𝑞 𝑠,𝑣,𝑦|𝑥 d𝑠d𝑣 𝑥, 𝑦

= 𝔼𝑝∗ 𝑥 𝔼𝑝∗ 𝑦 𝑥 log 𝑞 𝑦 𝑥 + 𝔼𝑞 𝑠, 𝑣, 𝑦 𝑥
𝑝∗ 𝑦 𝑥
𝑞 𝑦 𝑥

log
𝑝 𝑠,𝑣,𝑥,𝑦

𝑞 𝑠, 𝑣, 𝑦 𝑥
.

• Use a 𝑞 𝑠, 𝑣 𝑥 model:

Substituting 𝑞 𝑠, 𝑣, 𝑦 𝑥 = 𝑞 𝑠, 𝑣 𝑥 𝑝 𝑦 𝑠 yields:

ℒ𝑝, 𝑞 𝑠, 𝑣 𝑥, 𝑦 = 𝑞 𝑠, 𝑣 𝑥 ,𝑝 𝑥, 𝑦 = log 𝑞 𝑦 𝑥 +
1

𝑞 𝑦 𝑥
𝔼𝑞 𝑠, 𝑣 𝑥 𝑝 𝑦 𝑠 log

𝑝 𝑠,𝑣 𝑝 𝑥 𝑠, 𝑣
𝑞 𝑠, 𝑣 𝑥

.
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(negative) cross-entropy:
makes 𝑞 𝑦 𝑥 → 𝑝∗ 𝑦 𝑥

= ℒ𝑝, 𝑞 𝑠, 𝑣, 𝑦 𝑥 𝑥 when 𝑞 𝑦 𝑥 = 𝑝∗ 𝑦 𝑥 :

makes 𝑞 𝑠, 𝑣, 𝑦 𝑥 → 𝑝 𝑠, 𝑣, 𝑦 𝑥 , ℒ𝑝, 𝑞 𝑠, 𝑣, 𝑦 𝑥 𝑥 → 𝑝 𝑥

Since 𝑝 𝑠, 𝑣, 𝑦 𝑥 = 𝑝 𝑠, 𝑣 𝑥 𝑝 𝑦 𝑠 ,
approximate the only unknown 𝑝 𝑠, 𝑣 𝑥 .

𝑦 𝑥

𝑣𝑠

𝑝 𝑠, 𝑣

𝑝 𝑦|𝑠
𝑝 𝑥|𝑠, 𝑣

𝑞 𝑠, 𝑣|𝑥



Method
CSG-ind: for prediction in an unknown test domain (OOD gen.)

• Use an independent prior 𝑝⊥ 𝑠, 𝑣 ≔ 𝑝 𝑠 𝑝 𝑣 :
• Discard the spurious 𝑠-𝑣 correlation; defensive choice.

• Larger entropy than 𝑝 𝑠, 𝑣 : reduce training-domain-specific information.

• Randomized experiment by independently soft-intervening 𝑠 or 𝑣.

• On the test domain:

• Prediction: 𝑝⊥ 𝑦 𝑥 ≈ 𝔼𝑞⊥ 𝑠,𝑣|𝑥 𝑝 𝑦 𝑠 . Different from 𝑝 𝑦 𝑥 (inference invariance).

• On the training domain: avoid the 𝑞 𝑠, 𝑣 𝑥 model.

• Following the relation b/w their targets, let 𝑞 𝑠, 𝑣 𝑥 =
𝑝 𝑠,𝑣

𝑝⊥ 𝑠,𝑣

𝑝⊥ 𝑥

𝑝 𝑥
𝑞⊥ 𝑠, 𝑣 𝑥 :

ℒ𝑝, 𝑞 𝑠, 𝑣 𝑥, 𝑦 = 𝑞⊥ 𝑠, 𝑣 𝑥 ,𝑝 𝑥, 𝑦 = log 𝜋 𝑦 𝑥 +
1

𝜋 𝑦 𝑥
𝔼𝑞⊥ 𝑠, 𝑣 𝑥

𝑝 𝑠, 𝑣

𝑝⊥ 𝑠, 𝑣
𝑝 𝑦 𝑠 log

𝑝⊥ 𝑠, 𝑣 𝑝 𝑥 𝑠, 𝑣

𝑞⊥ 𝑠, 𝑣 𝑥
,

where 𝜋 𝑦 𝑥 ≔ 𝔼𝑞⊥ 𝑠, 𝑣 𝑥
𝑝 𝑠,𝑣

𝑝⊥ 𝑠,𝑣
𝑝 𝑦 𝑠 .

𝑦 𝑥

𝑣𝑠

𝑝⊥ 𝑠, 𝑣 ≔ 𝑝 𝑠 𝑝 𝑣

𝑝 𝑦|𝑠
𝑝 𝑥|𝑠, 𝑣

𝑞⊥ 𝑠, 𝑣|𝑥
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Method
CSG-DA: for prediction in a test domain with unsupervised

data (domain adaptation)

• On the test domain:
• Learn the test-domain prior 𝑝 𝑠, 𝑣 by fitting 𝑝∗ 𝑥 using ELBO:

ℒ 𝑝, 𝑞 𝑥 ≔ 𝔼 𝑞 𝑠, 𝑣 𝑥 log
𝑝 𝑠,𝑣 𝑝 𝑥 𝑠, 𝑣

𝑞 𝑠, 𝑣 𝑥
≤ log 𝑝 𝑥 .

• Prediction: 𝑝 𝑦 𝑥 ≈ 𝔼 𝑞 𝑠,𝑣|𝑥 𝑝 𝑦 𝑠 . Different from 𝑝 𝑦 𝑥 (inference invariance).

• On the training domain: avoid the 𝑞 𝑠, 𝑣 𝑥 model.

• Following the relation b/w their targets, let 𝑞 𝑠, 𝑣 𝑥 =
𝑝 𝑥

𝑝 𝑥

𝑝 𝑠,𝑣

𝑝 𝑠,𝑣
𝑞 𝑠, 𝑣 𝑥 :

ℒ𝑝, 𝑞 𝑠, 𝑣 𝑥, 𝑦 = 𝑞 𝑠, 𝑣 𝑥 ,𝑝 𝑥, 𝑦 = log 𝜋 𝑦 𝑥 +
1

𝜋 𝑦 𝑥
𝔼 𝑞 𝑠, 𝑣 𝑥

𝑝 𝑠, 𝑣

𝑝 𝑠, 𝑣
𝑝 𝑦 𝑠 log

𝑝 𝑠, 𝑣 𝑝 𝑥 𝑠, 𝑣

𝑞 𝑠, 𝑣 𝑥
,

where 𝜋 𝑦 𝑥 = 𝔼 𝑞 𝑠, 𝑣 𝑥
𝑝 𝑠,𝑣

𝑝 𝑠,𝑣
𝑝 𝑦 𝑠 .

𝑦 𝑥

𝑣𝑠

𝑝 𝑠, 𝑣

𝑝 𝑦|𝑠
𝑝 𝑥|𝑠, 𝑣

𝑞 𝑠, 𝑣|𝑥
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Method
Implementation details.

• Instantiating the model by parsing a general discriminative model:
• In CSG, 𝑦 ⊥ 𝑥, 𝑣 |𝑠, so no 𝑣 → 𝑦. We then have 𝑝 𝑦 𝑠 .
• In CSG, 𝑠 ! ⊥ 𝑣 | 𝑥, so let 𝑣 → 𝑠. We then have 𝑞 𝑠, 𝑣 𝑥 .
• Use an additional model for 𝑝 𝑥 𝑠, 𝑣 .

• Implementing the prior.

• Multivariate Gaussian: 𝑝 𝑠, 𝑣 = 𝒩
𝑠
𝑣

𝜇𝑠
𝜇𝑣

, Σ =
Σ𝑠𝑠 Σ𝑠𝑣
Σ𝑣𝑠 Σ𝑣𝑣

(no causal direction).

• Parameterize Σ = 𝐿𝐿⊤, 𝐿 =
𝐿𝑠𝑠 0
𝑀𝑣𝑠 𝐿𝑣𝑣

(𝐿𝑠𝑠, 𝐿𝑣𝑣 are lower-triangular with positive diagonals).

• 𝑝 𝑣 𝑠 = 𝒩 𝑣|𝜇𝑣|𝑠, Σ𝑣|𝑠 , where 𝜇𝑣|𝑠 = 𝜇𝑣 +𝑀𝑣𝑠𝐿𝑠𝑠
−1 𝑠 − 𝜇𝑠 , Σ𝑣|𝑠 = 𝐿𝑣𝑣𝐿𝑣𝑣

⊤ .

• Model selection.
• Use a validation set from the training domain.
• For CSG-ind/DA, use 𝑝 𝑦 𝑥 ∝ 𝜋 𝑦 𝑥 (≠ 𝑝⊥ 𝑦 𝑥 or 𝑝 𝑦 𝑥 ) to evaluate validation accuracy.

𝑦

𝑣𝑠

𝑥𝑞 𝑠, 𝑣|𝑥
(or 𝑞⊥, 𝑞)

𝑝 𝑦|𝑠
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Theory
Identifiability on the training domain.

• Definition (semantic-identification). A CSG 𝑝 is said semantic-identified, if there exists a 
homeomorphism Φ on 𝒮 × 𝒱, s.t.: (i) Φ𝒮 𝑠∗, 𝑣∗ is constant of 𝑣∗, and
(ii) Φ is a reparameterization of the ground-truth CSG 𝑝∗:
Φ# 𝑝𝑠,𝑣

∗ = 𝑝𝑠,𝑣, 𝑝∗ 𝑥 𝑠∗, 𝑣∗ = 𝑝 𝑥 Φ 𝑠∗, 𝑣∗ , 𝑝∗ 𝑦 𝑠∗ = 𝑝 𝑦 Φ𝒮 𝑠∗ .
• Reparameterization: describes the degree of freedom given 𝑝 𝑥, 𝑦 = 𝑝∗ 𝑥, 𝑦 .

• 𝑣-constancy: Φ is semantic-preserving (the learned 𝑠 does not mix the ground-truth 𝑣∗ into it).

• Proposition: equivalent relation if 𝒱 is connected and is either open or closed in ℝ𝑑𝒱 .

• Related concepts:
• Neither sufficient nor necessary to statistical independence.

• Weaker than disentanglement: the learned 𝑣 can be entangled with ground-truth 𝑠∗.
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Theory
Identifiability on the training domain.

• Assumptions.
• (A1)[additive noise] There exist functions 𝑓 and 𝑔 with bounded derivatives up to 3rd-

order, and indep. r.v.s 𝜇 and 𝜈, s.t.:
𝑝 𝑥 𝑠, 𝑣 = 𝑝𝜇 𝑥 − 𝑓 𝑠, 𝑣 , and
𝑝 𝑦 𝑠 = 𝑝𝜈 𝑦 − 𝑔 𝑠 for continuous 𝑦 or Cat 𝑦|𝑔 𝑠 for categorical 𝑦.

• Required to disable the anti-causal direction.

• Excludes GAN, flow-based models.

• (A2)[bijectivity] 𝑓 is bijective and 𝑔 is injective.

• A common sufficient condition for the fundamental requirement of causal minimality.

• Otherwise, 𝑠 and 𝑣 are allowed to have dummy dimensions.

• The manifold hypothesis relaxes 𝑓 to be injective, and allows 𝑑𝒮 + 𝑑𝒱 < 𝑑𝒳 .
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Theory
Identifiability on the training domain.

• Theorem (semantic-identifiability). Assume A1,A2, bounded log 𝑝𝑠,𝑣
∗ up to 2nd-order, and:

(i) 
1

𝜎𝜇
2 → ∞, where 𝜎𝜇

2 ≔ 𝔼 𝜇⊤𝜇 , or

(ii) 𝑝𝜇 has an a.e. non-zero characteristic function (e.g., a Gaussian distribution).

Then a well-learned CSG (s.t. 𝑝 𝑥, 𝑦 = 𝑝∗ 𝑥, 𝑦 ) is semantic-identified.
• (Appropriate condition) One cannot identify 𝑠 in extreme cases (all “0”’s are on the left and all 

“1”’s are on the right): excluded by the condition on log 𝑝𝑠,𝑣
∗ .

• (Intuition) In other cases, 𝑣 for each 𝑠 is noisy, so mixing 𝑠 with 𝑣 worsens training accuracy.

• Condition (i) requires a strong causal mechanism: nearly deterministic and invertible.
Condition (ii) covers more than inference invariance.

• Does not contradict the impossibility result of disentanglement [Locatello’19]:
only identify 𝑠 as a whole; asymmetry from missing 𝑣 → 𝑦.
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Theory
Benefit for OOD prediction.

• The test-domain ground-truth CSG 𝑝∗ = 𝑝𝑠,𝑣
∗ , 𝑝𝑥|𝑠,𝑣

∗ , 𝑝𝑦|𝑠
∗ (due to causal invariance).

• Theorem (OOD gen. error) With A1,A2, the test-domain prediction error of a semantic-
identified CSG 𝑝 is bounded (𝐵𝑓−1

′ , 𝐵𝑔
′ bounds the Jacobian 2-norms of 𝑓−1, 𝑔, and 𝑝𝑠,𝑣 ≔ Φ# 𝑝𝑠,𝑣

∗ ):

𝔼 𝑝∗ 𝑥 𝔼 𝑦 𝑥 − ෩𝔼∗ 𝑦 𝑥
2

2
≤ 𝜎𝜇

4𝐵𝑓−1
′4 𝐵𝑔

′2𝔼 𝑝𝑠,𝑣 ∇ log 𝑝𝑠,𝑣/𝑝𝑠,𝑣 2

2
.       (up to 𝑂 𝜎𝜇

4 )

• For a strong causal mechanism 𝑝 𝑥 𝑠, 𝑣 , the bound is small.

• 𝔼 𝑝𝑠,𝑣 ∇ log 𝑝𝑠,𝑣/𝑝𝑠,𝑣 2

2
: FisherDiv 𝑝𝑠,𝑣‖𝑝𝑠,𝑣 , “OODness” for prediction.

• CSG-ind tends to have a smaller error bound:
smaller FisherDiv 𝑝𝑠,𝑣‖ ⋅ ⇒ distr. with a larger support, and 𝑝𝑠,𝑣

⊥ has a larger support than 𝑝𝑠,𝑣.

• Theorem (domain adaptation error) Assume the same for identifiability and the learned 
CSG 𝑝 is semantic-identified. Then a well-learned (s.t. 𝑝 𝑥 = 𝑝∗ 𝑥 ) new prior
(i) 𝑝𝑠,𝑣 = Φ# 𝑝𝑠,𝑣

∗ is a reparametrized ground-truth 𝑝𝑠,𝑣
∗ , and

(ii) it leads to an accurate prediction: ෩𝔼 𝑦|𝑥 = ෩𝔼∗ 𝑦|𝑥 , ∀𝑥 ∈ supp 𝑝𝑥
∗ .
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Experiments
Baselines:

• For OOD generalization,
• CE (cross entropy): standard supervised learning.
• CNBB (ConvNet with Batch Balancing): a discriminative causal method.

• For domain adaptation,
• DANN, DAN, CDAN, MDD, BNM: classical domain adaptation methods.

• For an ablation study,
• CSGz / CSGz-DA: generative methods without separating 𝑧 as 𝑠 and 𝑣.

Datasets:

• Shifted MNIST.
• Training dataset: “0”s are horiz. shifted by 𝛿0 ∼ 𝒩 −5,12 px, “1”s by 𝛿1 ∼ 𝒩 5,12 px.
• Two test datasets: (1) 𝛿0 = 𝛿1 = 0; (2) 𝛿0, 𝛿1 ∼ 𝒩 0,22 .

• ImageCLEF-DA.

• PACS, VLCS.
Chang Liu (MSRA) 19

𝑦 𝑥

𝑧

CSGz / CSGz-DA



Experiments
• OOD prediction

performance

Chang Liu (MSRA) 20

OOD 
generalization

Domain 
adaptation

More suitable scenarios:
Solve the spurious correlation 
problem in cases with diverse 
𝑣 for each 𝑠 (easier 
identification).



Experiments
• Visualization (using LIME [Ribeiro’16])

21

OOD generalization Domain adaptation

CE CSG-ind MDD CSG-DA
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Thanks!
https://arxiv.org/abs/2011.01681

22Chang Liu (MSRA)
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