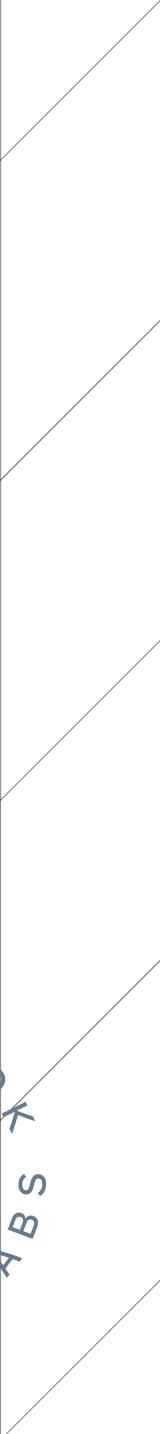

RESQA: essmen		
	Pranay Mano	
	Neural Informe	ation Proces

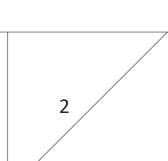

-k for Speech Quality -Matching References

/e Xu², Anurag Kumar²

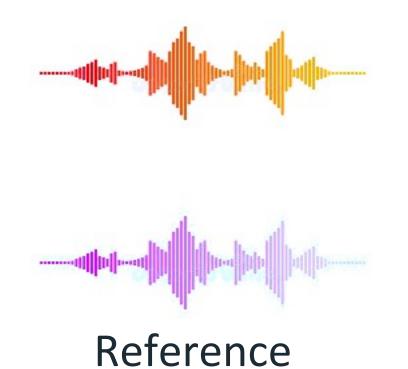
Facebook Reality Labs Research

essing Systems (NeurIPS) 2021

Task

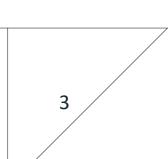

- Accurate and reliable assessment of speech quality
- Useful for telephony, VoIP, Hearing Aids etc.

Gold Standard

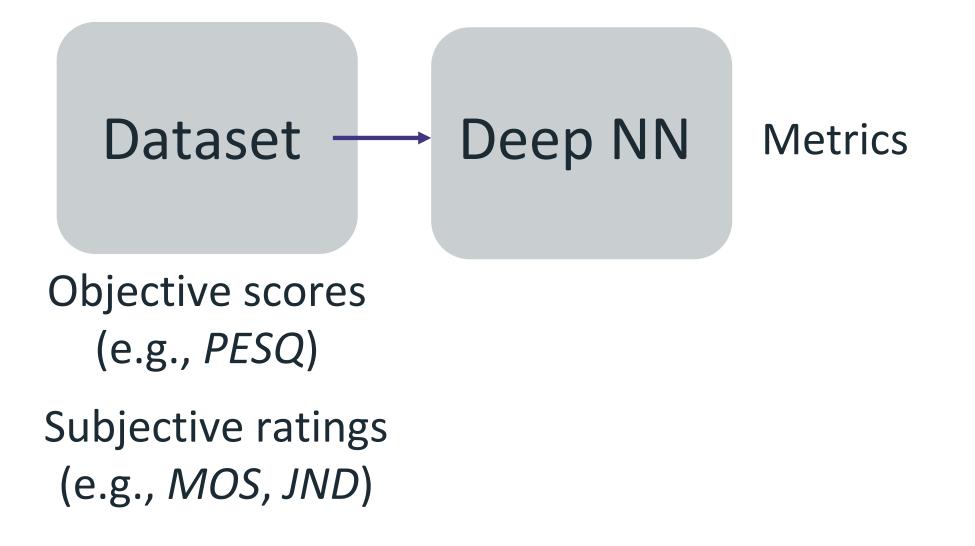

Not scalable; Costly and Time consuming (repeated many times per recording

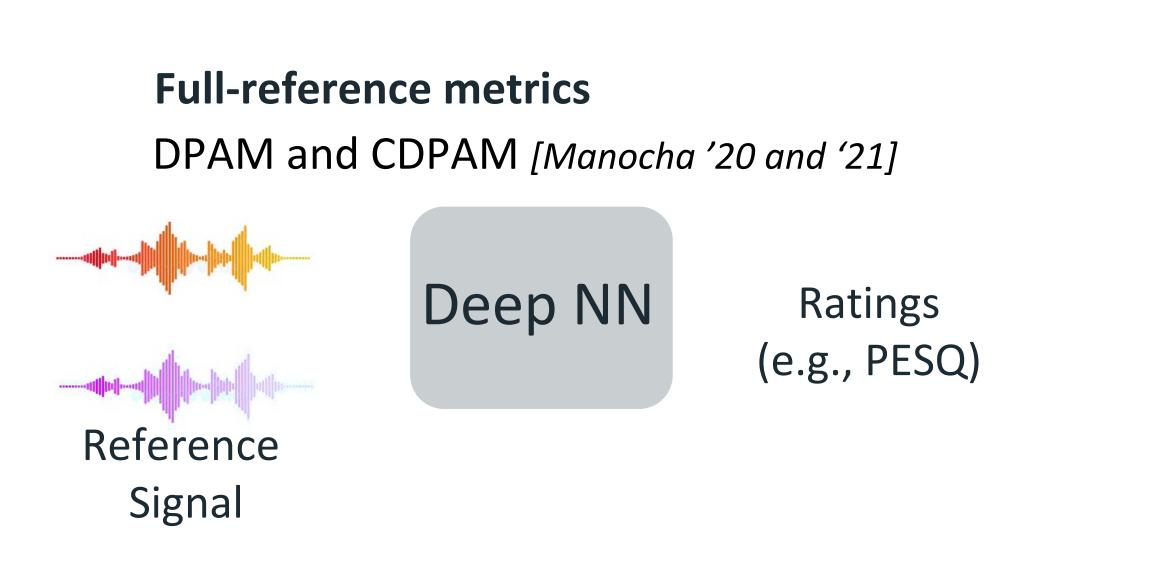
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	

Objective Metrics

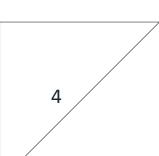


Signal




Complex hand-crafted; Sensitive to perceptual transformations; Need a matching clean reference; Non-differentiable

PESQ [*Rix '01*], VISQOL [Hines '15], HASQI [Kates '14]


ML based Objective Metrics

Correlate well with perception; differentiable but: Always require a paired clean signal for reference

		/

ML based Objective Metrics

No-reference metrics

Quality-Net [Fu '18], DNSMOS [Reddy '20]

Deep NN

Ratings (e.g., MOS)

Reference-free but:

Generalize poorly to unseen perturbations Collecting MOS dataset is difficult

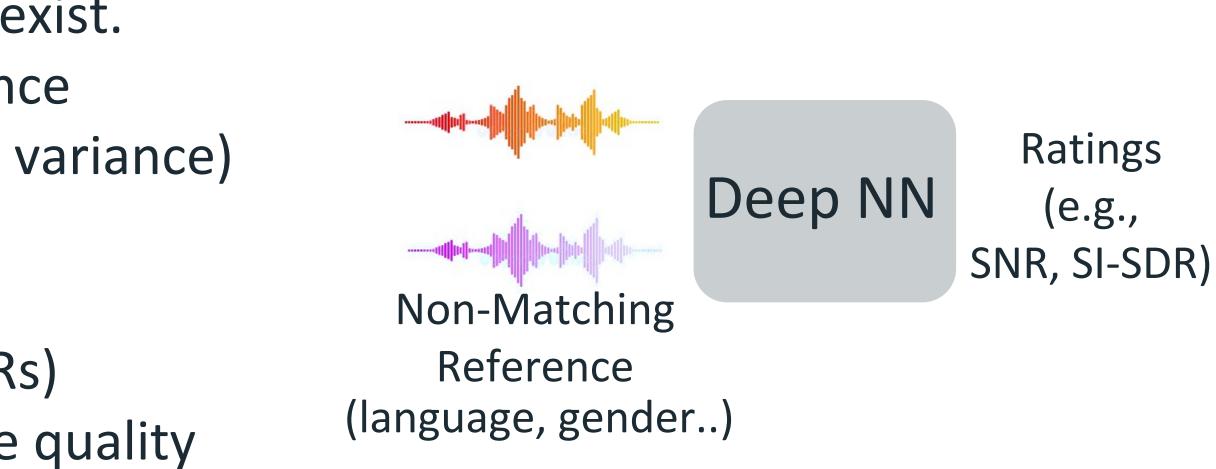
- Consistency in listening environments, equipment etc.
- Large variance (noisy labels) in MOS ratings

[Formuation]

Generalization problems due to lack of a reference

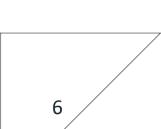
- Varied, experience /- mood dependent

		_ /

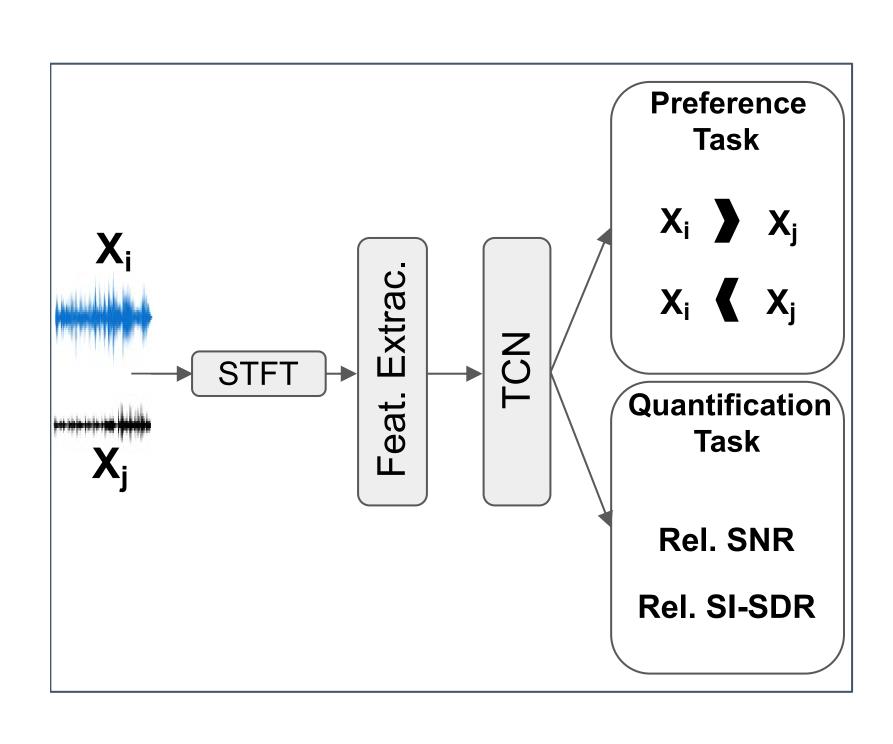


Features

- Usable in real world where no references exist.
- Addresses the problem of lack of a reference
- Does not require any labeled dataset (low variance)


- SQA using <u>non-matching references</u> (NMRs)
- Inspired by human behavior: can compare quality across diff. speakers, languages etc.
- Relative assessments are easier than absolute ratings

NORESQA



Broad Framework Overview

2 (non-matching) inputs

NORESQA processing pipeline

- Feature Extraction
- Temporal Aggregation
- Multi-task and multi-head learning head:

		/

NORESQA Framework

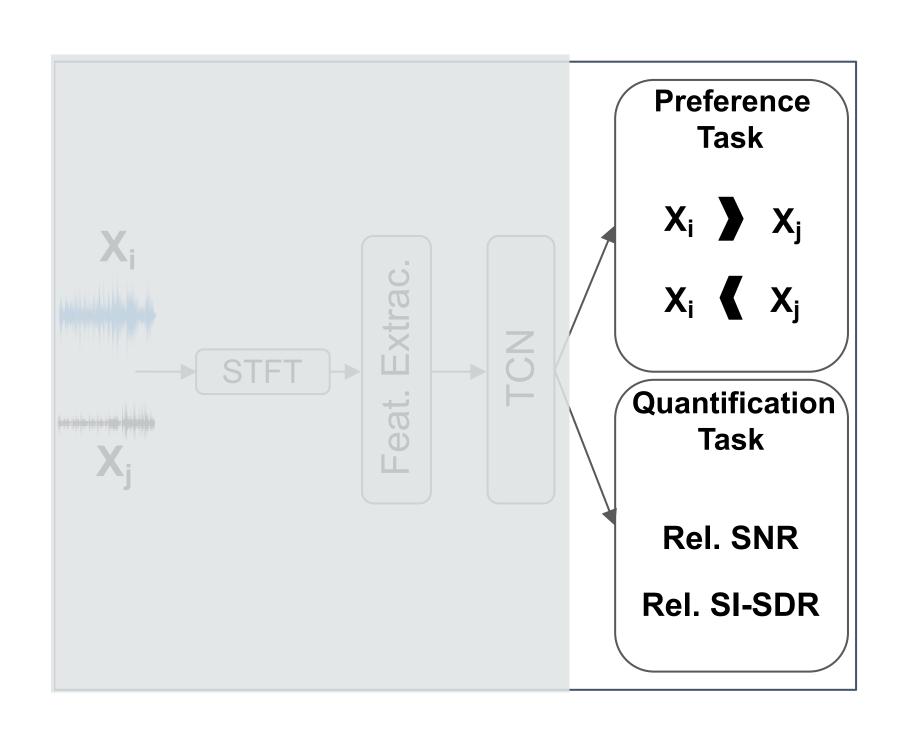
Multi-objective learning

Relative SNR and SI-SDR prediction:

- No labeled data; Most fundamental measures
- Desirable Properties (distn. metric; scale invariance)
- Works across realistic tasks

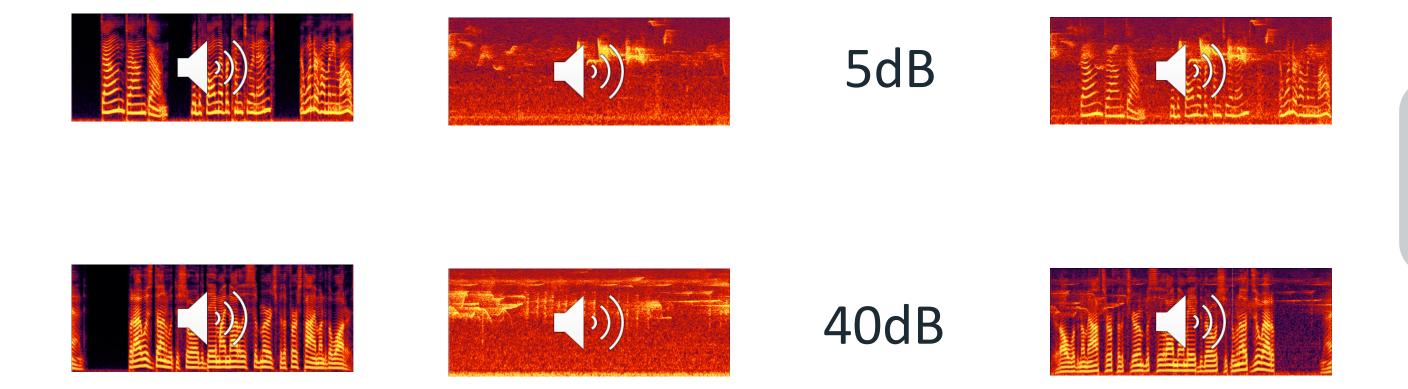
easures le invariance)

		i la	


NORESQA Framework

Multi-task learning

Preference task - which input audio is of better quality Quantification task - quality difference between the two audio inputs


Two tasks important because:

- Focus on quality attributes
- Easier to use adjust individual model
- Easy extension to > 2 inputs

Training Procedure

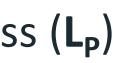
1. Clean	2. Noise	3. Noise	4
Recordings	Recording	levels	Re

Perturbations: Noise, EQ, Reverb...

4. Final ecordings


5. Loss

Preference Task [0,1]


Binary Cross-Entropy loss (L_P)

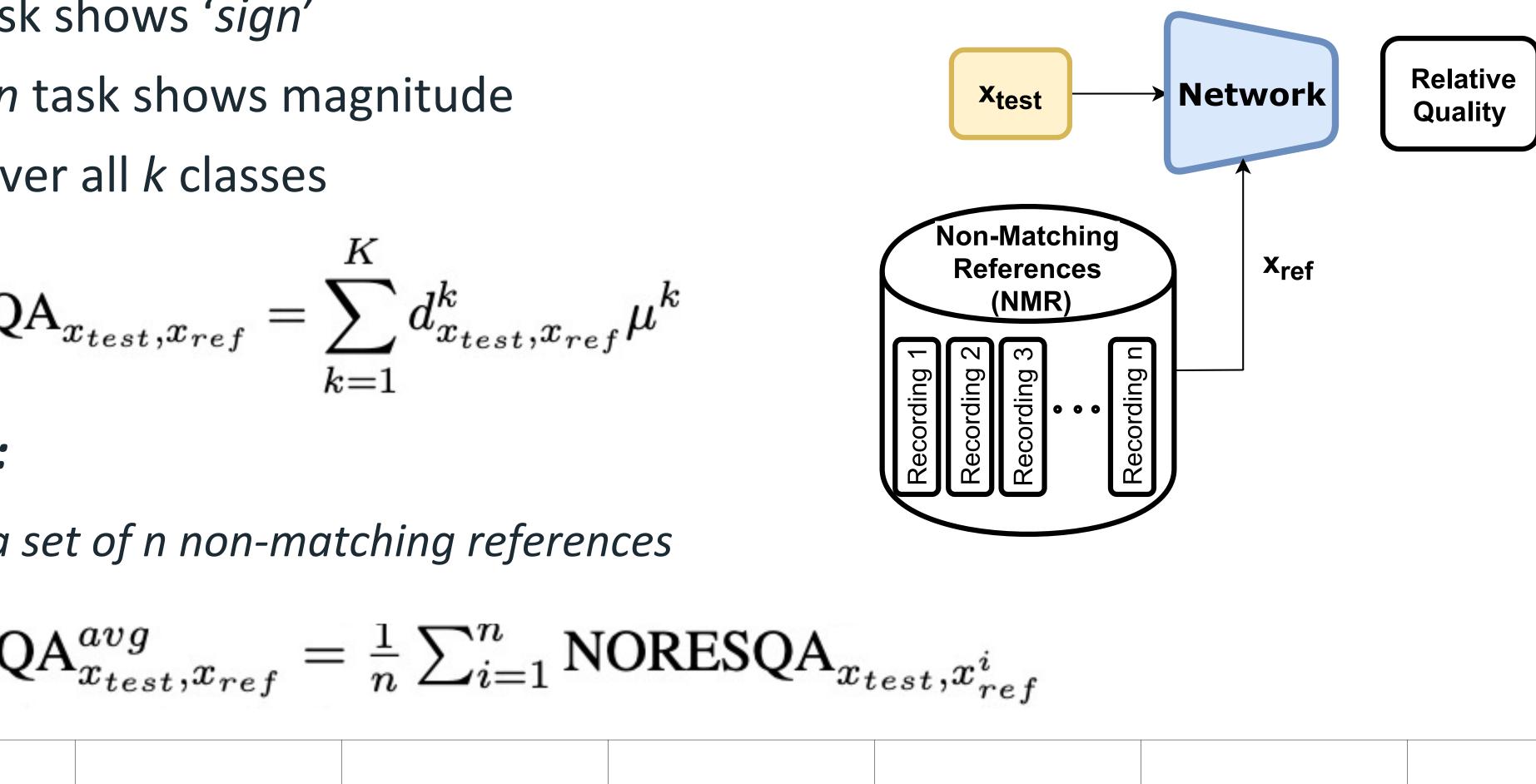
Quantification Task

- Pose as classification
- Inter-class relationships
- Gaussian smoothed-labels $L_Q = L_{SNR} + L_{SDR}$ Final loss $(L_P + L_O)$

NORESQA

Usage

NORESQA Score:


- Preference task shows 'sign'
- *Quantification* task shows magnitude
- Aggregated over all k classes

$$\mathbf{NORESQA}_{x_{test},x_{ref}} = \sum_{k=1}^{K} d_{x_{test},x_{ref}}^k$$

Absolute Quality:

Averaging over a set of n non-matching references

NORESQA^{avg}

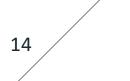
Baselines

Full reference metrics:

- *PESQ*: hand-crafted, complex
- CDPAM: learned metric on JND ratings

No-reference metric:

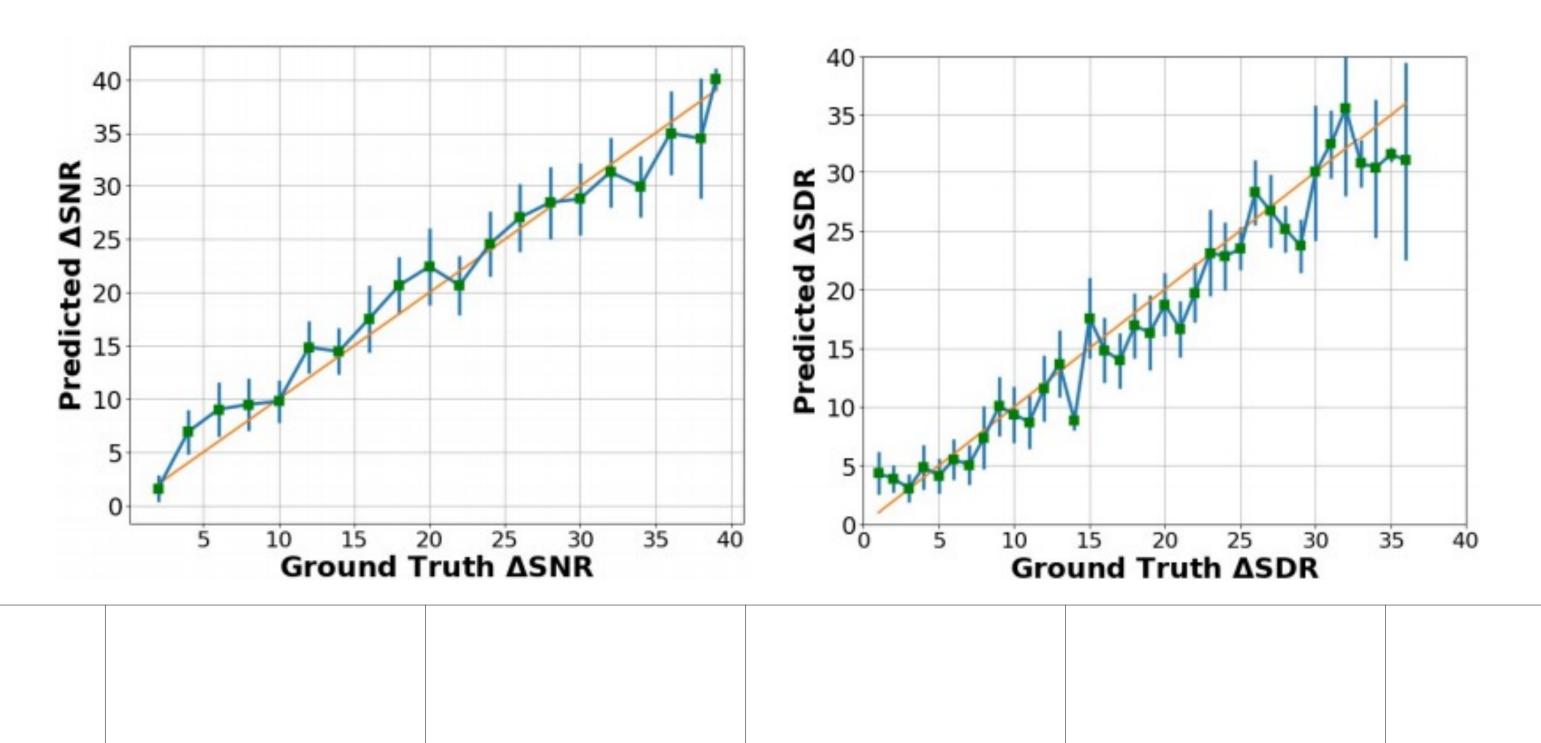
• DNSMOS: learned metric on *MOS* ratings


Our proposed NORESQA:

Entirely trained using simulated data

Results

- 1. Objective evaluation
- 2. Subjective Evaluation
- 3. Use as a '*differentiable*' loss


Results: Objective evaluation

Invariance to language and gender;

• Given x_{test}, doesn't matter the language or gender of NMRs.

Preference Task

97.3%

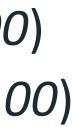
Quantification Task

Results: Subjective evaluation

Evaluation Datasets

- Synthesis tasks (*VoCo, FFTnet*)
- Speech Enhancement (Dereverberation, Noizeus, HiFi-GAN)
- Voice Conversion (*VCC-2018*)
- Speech Source Separation (*PEASS*)
- Telephony Degradations (TCD-VoIP)
- Bandwidth Expansion (BWE)
- General Degradations

- Correlate with *MOS* ratings using: • Pearson correlation (PC)
 - Spearman rank order correlation (SC)


• % accuracy

Metrics

NORESQA

```
Check 2AFC accuracy (Triplet) using:
```

- Paired (*n=1*)
- Unpaired (*n=100*)
- Unpaired-Local-Fixed (*n=100*)
- Unpaired-Global-Fixed (*n=100*)

Results: Subjective evaluation MOS correlations (*n*=100)

NORESQA: competitive to full-reference methods and DNSMOS in all cases.

Туре	Name	VoCo	o [65]	Dereve	erb [66]	HiFi-G	AN [67]	FFTn	et [68]
Type		PC	SC	PC	SC	PC	SC	PC	SC
Exall mof	PESQ	0.68	0.43	0.86	0.85	0.72	0.7	0.51	0.49
Full-ref.	CDPAM	-	0.73	-	0.93	-	0.68	-	0.68
Non-Int.	DNSMOS		0.48	0.7	0.73	0.93	0.88	0.59	$-\bar{0.53}$
	Paired	0.64	0.6		0.65	0.59		0.46	-0.47
NODESOA	Unpaired	$0.88{\pm}0.01$	$0.41 {\pm} 0.06$	$0.63 {\pm} 0.01$	0.75 ± 0.02	$0.63 {\pm} 0.01$	$0.71 {\pm} 0.01$	$0.46 {\pm} 0.01$	0.51 ± 0.0
NORESQA	+Local-Fixed	$0.89{\pm}0.01$	$0.44{\pm}0.06$	$0.63 {\pm} 0.01$	$0.75 {\pm} 0.01$	$0.61 {\pm} 0.01$	$0.73 {\pm} 0.01$	$0.46 {\pm} 0.01$	0.51 ± 0.0
	+Global-Fixed	$0.85 {\pm} 0.01$	$0.68 {\pm} 0.03$	$0.66 {\pm} 0.02$	$0.67 {\pm} 0.02$	$0.68 {\pm} 0.01$	$0.78 {\pm} 0.01$	$0.33 {\pm} 0.01$	$0.44 {\pm} 0.0$
	+GIUDAI-FIXCU								2004 - 2040-00 J 2040-2000
Туре	Name		SS [69]		018 [70]		us [71]		oIP [72]
Туре									2004 - 2000 U.S 66668260
		PEAS	SS [69]	VCC-2	018 [70]	Noize	us [71]	TCD-V	oIP [72]
Type Full-ref.	Name	PEAS PC	SS [69] SC	VCC-2 PC	018 [70] SC	Noize PC	us [71] SC	TCD-V PC	oIP [72] SC
	Name PESQ	PEAS PC 0.86	SS [69] SC 0.71	VCC-2 PC	018 [70] SC 0.56	Noize PC	us [71] SC 0.42	TCD-V PC	oIP [72] SC 0.90
Full-ref.	Name PESQ CDPAM	PEAS PC 0.86 -	SS [69] SC 0.71 0.74	VCC-2 PC 0.51 -	018 [70] SC 0.56 0.61	Noize PC 0.43 -	us [71] SC 0.42 0.71	TCD-V PC 0.89 -	oIP [72] SC 0.90 0.88 0.72
Full-ref. Non-Int.	Name PESQ CDPAM DNSMOS	PEAS PC 0.86 	SS [69] SC 0.71 0.74 	VCC-2 PC 0.51 	018 [70] SC 0.56 0.61 	Noize PC 0.43 - - 0.41	us [71] SC 0.42 	TCD-V PC 0.89	oIP [72] SC 0.90 0.88 0.72 0.44
Full-ref.	Name PESQ CDPAM DNSMOS Paired	PEAS PC 0.86 - - - - - - - - - - - - - - - - - - -	SS [69] SC 0.71 0.74 - 0.21 - 0.43	VCC-2 PC 0.51 - - - - - - - - - - - - - - - - - - -	018 [70] SC 0.56 0.61 - 0.42 - 0.39	Noize PC 0.43 - - - - - - - - - - - - - - - - - - -	us [71] SC 0.42 0.71 0.59 0.46	TCD-V PC 0.89 - - - - - - - - - - - - - - - - - - -	oIP [72] SC 0.90 0.88

MOS Correlations; higher is better

Results: Subjective evaluation

2AFC accuracy


best only on MOS tasks.

Name	Simulated [6]	FFTnet [68]	BWE [73]	HiFi-GAN [67]
PESQ	86.0	67.0	38.0	88.5
CDPAM	87.7	88.5	75.9	96.5
DNSMOS	49.2	58.8	45.0	62.3
NORESQA	68.7	73.3	53.3	81.6

2AFC Accuracy; higher is better

NORESQA generalizes to other perceptual tests (like MOS and 2AFC) whereas DNSMOS works

Results: Ablations

Relative VS Absolute predictions:

- Predicting relative quality performs better than absolute rating
- Utility of providing a reference (even NMR) helps

Multi-objective learning (SNR and SI-SDR):

• Using either head performs worse than using both together

Number of NMRs (*n*):

- Increasing *n*:1 to 100 improves correlations by 15%.
- No significant diff. in unpaired local and global -> works for any random set of references.

		/

Results: Speech Enhancement

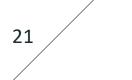
- Consistently improves scores (esp. STOI)

Туре	Data %	PESQ	STOI	SNRseg	CSIG	CBAK	COVL
Noisy		1.97	91.50	1.72	3.35	2.44	2.63
	-33%	2.22	91.7	- <u>-</u> 8.18 -	$\bar{3.26}^{-}$	$\bar{2.98}^{-}$	- 2.72 -
Baseline	66%	2.30	92.23	8.54	3.45	3.04	2.85
	100%	2.39	91.89	8.71	3.55	3.10	2.95
	-33%	2.28	<u>92.30</u>	<u>8</u> .33 -	$\bar{3.43}$	$\bar{3.03}^{-}$	2.83
Pre-trained	66%	2.35	92.90	8.77	3.53	3.1	2.92
	100%	2.46	93.53	8.81	3.59	3.17	2.99

Speech enhancement; higher is better

			í
			1
			(
			1
			(
			í.
			(
			1
			(
			(
			1

As a Pre-training strategy (large un-labeled corpus) + small labeled fine-tuning



Summary

- 1. Speech Quality assessments using non-matching references (NMRs)
- 2. Addresses a key limitation of no-reference metrics
- 3. Competitive against existing metrics, w/o any training on subjective ratings
- 4. Differentiable metric; good pretraining strategy for Speech Enhancement

Future Work

1. All new models under NORESQA framework that correlate better with human perception

