A Convergence Analysis of Gradient Descent on
Granh Neural Networks Graph Neural Networks

Pranjal Awasthi

Abhimanyu Das
Sreenivas Gollapudi

Google Research

Setting 1: ReLU GNNs

Setting 2: Deep Linear GNNs

```
- Let G = (V,E) be a graph with degree at most d and n vertices.
Let }\mp@subsup{x}{i}{}\in\mp@subsup{\mathbb{R}}{}{r}\mathrm{ be input to node i. Then,
    y(\mp@subsup{W}{}{*})=\mp@subsup{\sum}{i}{}\sigma(\mp@subsup{W}{}{*}\mp@subsup{\overline{x}}{i}{})\mathrm{ where,}
    \mp@subsup{\overline{x}}{i}{}=\mp@subsup{\sum}{j\inN(i)}{}\mp@subsup{x}{j}{}\mathrm{ and }\mp@subsup{x}{j}{}~N(0,I).
Optimized via GD on loss L(W)=\mathbb{E}[|y(W)-y(\mp@subsup{W}{}{*})|\mp@subsup{|}{}{2}].
```


Main Result for ReLU GNNs

Theorem. From random initialization $\left(N\left(0, \sigma^{2} I\right)\right)$ with an appropriate

 variance, after T steps of GD, with high probability,(Loss Bound) $\quad L\left(W_{T}\right) \leq \epsilon^{2}$
(Provided) $\quad d=\boldsymbol{o}(\sqrt{n})$ and $T=\Omega\left(\frac{n^{4} r^{2} d}{\epsilon^{2}}\right)$.

Proof Technique

Show that either W_{t} is already close to W^{*} or the PL-condition holds:
$\left\|\nabla L\left(W_{t}\right)\right\|^{2} \geq \mu L\left(W_{t}\right)$ where,

$$
\mu=\Omega\left(\frac{x}{\left(r^{2} n_{n}\right.}\right)
$$

Challenge: The PL condition may not hold initially. Need to separately argue about Phase I after which the iterates enter the PL-region.

Let $G=(V, E)$ be a graph with degree at most d and n vertices. Let $x_{i} \in \mathbb{R}^{r}$ be input to node i. Then,

$$
y\left(W_{1}^{*}, W_{2}^{*}\right)=\sum_{i} x_{i}^{L} \text { where, }
$$

$x_{i}^{L}=W_{1}^{*} x_{i}^{L-1}+W_{2}^{*} \sum_{j \in N(i)} x_{j}^{L-1}$ and $x_{j} \in N(0, I)$.
Optimized via GD on loss $L\left(W_{1}, W_{2}\right)=\mathbb{E}\left[\| y\left(W_{1}, W_{2},\right)-\right.$ $\left.y\left(W_{1}^{*}, W_{2}^{*}\right) \|^{2}\right]$.

Main Result for Deep Linear GNNs

```
Theorem. From identity initialization, after T steps of GD,
(Loss Bound) L}\quadL(\mp@subsup{W}{1,T}{},\mp@subsup{W}{2,T}{})\leq\mp@subsup{\epsilon}{}{2
(Provided) T T = \Omega(2L L}\mp@subsup{|}{}{2}\mp@subsup{n}{}{2}\mp@subsup{r}{}{2}\operatorname{log}(\frac{nr}{\epsilon}))
```


Proof Technique

- Analyze the evolution of the singular values of W_{1}, W_{2}.

Experiments

- Left: convergence for various depths for deep linear GNNs.
- Right: convergence for various degrees for ReLU GNNs.
- Polylogarithmic dependence on ϵ unlikely for ReLU GNNs.

Future Directions

Remove the dependence on small d for ReLU GNNs Seems to be an artifact of the analysis
Extend the result for deep linear GNNs to allow different weights per layer.
Extend the analysis to non-linear GNNs with multiple rounds and to other variants of GNNs.

