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Dueling Bandits

A set of players (arms) [n] = {1, . . . ,n}.
A learner observes noisy comparisons of pairs of players from [n].
A winning probability matrix P that holds Pa,b := P(a > b).

Common assumptions:
• Total order ≻ over players such that: For two players a ≻ b⇔ Pa,b > 0.5.
• The matrix P satisfies strong stochastic transitivity (SST):
For a ≻ b ≻ c it holds that Pa,c ≥ max{Pa,b,Pb,c}

P =


1 2 3

1 0.5 0.6 0.6
2 0.4 0.5 0.6
3 0.4 0.4 0.5


[Introduced by Yue et al. 2012] 1



Dueling Bandits

A set of players (arms) [n] = {1, . . . ,n}.
A learner observes noisy comparisons of pairs of players from [n].
A winning probability matrix P that holds Pa,b := P(a > b).

Common assumptions:
• Total order ≻ over players such that: For two players a ≻ b⇔ Pa,b > 0.5.
• The matrix P satisfies strong stochastic transitivity (SST):
For a ≻ b ≻ c it holds that Pa,c ≥ max{Pa,b,Pb,c}

Possible Goals
Perform pairwise comparisons to:
• minimize number of queries to learn the best player a∗ with high probability
• given k ≥ 1, minimize number of queries to learn the top-k players with high
probability, in dependence of a gap ∆ = Pk,k+1 − 1/2 1



Dueling Bandits with Team Comparisons

P =



ab ac cd de ...

ab x x 0.6 0.8
ac x x x 0.7
cd 0.4 x x x
de 0.3 x x x
...


A learner observes the outcome of noisy comparisons of disjoint teams of size k.
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Our Model

• A set of players (arms) [n] = {1, . . . ,n}.
• A constant team size k ∈ N, (k ≤ n/2).
• Every k-sized subset of players is called a team.
• There exists a winning probability matrix P on the set of all teams.
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Our Model

• A set of players (arms) [n] = {1, . . . ,n}.
• A constant team size k ∈ N, (k ≤ n/2).
• Every k-sized subset of players is called a team.
• There exists a winning probability matrix P on the set of all teams.

Assumptions:
• Total order over all teams ≻ such that:
For every two teams A,B ⊂ [n], A ≻ B⇔ PA,B > 0.5.

• The total order is consistent with a total order over single players, ▷:

∀a,b ∈ [n] ∀S ⊆ [n] \ {a,b} s.t. |S| = k− 1 : a ▷ b⇔ S ∪ {a} ≻ S ∪ {b}

• The matrix P satisfies strong stochastic transitivity (SST):
For every triplet of teams such that A ≻ B ≻ C, PA,C ≥ max{PA,B,PB,C}. 3



Our Model

• A set of players (arms) [n] = {1, . . . ,n}.
• A constant team size k ∈ N, (k ≤ n/2).
• Every k-sized subset of players is called a team.
• There exists a winning probability matrix P on the set of all teams.

Assumptions:
• Total order over all teams ≻.
• The total order is consistent with a total order over single players, ▷
• The matrix P satisfies SST: A ≻ B ≻ C⇐ PA,C ≥ max{PA,B,PB,C}.

Goal 1
Return the team of the top-k (best team) players with high probability.
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Results

Stochastic Setting
• Characterization of the deducible pairwise relations between players
• Reduction to any top-k identification dueling bandits setting
• After O((n+ k log k)∆−2max(log log n, log k)) duels in expectation, return the
top-k team with high probability, where ∆ is a gap parameter.

Deterministic Setting
We can reduce any instance from n players to O(k) within O(nk log(k)) duels.

• Identify a Condorcet winning team after O(nk log(k) + k2 log(k)25k) duels.
• For additive total orders, find a Condorcet winning team after
O(nk log(k) + k5) duels.
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Example

Consider n = 4, k = 2
Total order among teams ab ≻ ac ≻ ad ≻ bc ≻ bd ≻ cd (hence a ▷ b ▷ c ▷ d)
For every two teams X and Y, PX,Y = 1⇔ X ≻ Y
Only three feasible duels: (ab, cd), (ac,bd), and (ad,bc)
In all of them, the team that has a wins.
Even if the learner knows that ∀ X ∩ Y = ∅ : PX,Y ∈ {0, 1}, it is impossible to
distinguish between b, c, and d

Question
When and how can a learner distinguish between two single players?
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Witnesses

Subset-Subset Witness for a ▷ b
Two disjoint subsets of players S, S′ ⊂ [n] \ {a,b} of
size k− 1 that hold

PS∪{a},S′∪{b} > PS∪{b},S′∪{a}

S ∪ {a} S ∪ {b}

S′ ∪ {a}S′ ∪ {b}

Subset-Team Witness for a ▷ b
Two disjoint subsets of players S, T ⊂ [n] \ {a,b},
where |S| = k− 1 and |T| = k, such that:

PS∪{a},T > PS∪{b},T

S∪ {a} S ∪ {b}

T

S ∪ {a}

Theorem
Player a is provably better than player b (written a ▷∗ b) if and only if there exists
a witness (subset-subset or subset-team) for a ▷ b. 6



A reduction to any top-k algorithm for Dueling Bandits

To simulate a duel between any players a,b:

• Randomly draw a triplet (S, S′, T) such that S, S′, T ⊂ [n] \ {a,b} and
S ∩ T = S ∩ S′ = ∅.

• Perform duels
(S ∪ {a}, S′ ∪ {b}), (S ∪ {b}, S′ ∪ {a}), (S ∪ {a} > T), (S ∪ {b} > T).

Xa,b(S, S′, T)← 1/4
(
1[S ∪ {a} > S′ ∪ {b}]− 1[S ∪ {b} > S′ ∪ {a}]

+ 1[S ∪ {a} > T ]− 1[S ∪ {b} > T ]
)
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A reduction to any top-k algorithm for Dueling Bandits

For a,b and any triplet (S, S′, T) (where (S, S′) and (S, T) are possible witnesses):

Xa,b(S, S′, T) = 1/4
(
1[S ∪ {a} > S′ ∪ {b}]− 1[S ∪ {b} > S′ ∪ {a}]

+ 1[S ∪ {a} > T ]− 1[S ∪ {b} > T ]
)

For a,b let Xa,b be the outcome of Xa,b(S, S′, T) for some randomly drawn triplet (S, S′, T).

Theorems
Let P′a,b = E[Xa,b] + 1/2.

• For every pair of players, if a ▷ b then P′a,b ≥ 1/2.

• For every pair of players it holds that a ▷∗ b if and only if P′a,b > 1/2.

• For every triplet of players a ▷ b ▷ c it holds that P′a,c ≥ max{P′a,b,P′b,c}
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A reduction to any top-k algorithm for Dueling Bandits

Let ∆ = E[Xk,k+1] (gap parameter).

Applying a dueling bandits algorithm by [e.g., Mohajer, Suh, and Elmahdy 2017]:

Corollary
There exists an algorithm that, with probability 0.99, returns the top-k team and
requires O((n+ k log k)max (log log n,log k)

∆2 ) duels in expectation.
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Deterministic Setting

Goal 2
Find a Condorcet winning team in the deterministic setting.

Deterministic Setting: PA,B ∈ {0, 1}, for all teams A,B.

A is a Condorcet Winning Team, if A ≻ B for all teams B that are disjoint to A.

Example:
ab ≻ ac ≻ ad ≻ bc ≻ bd ≻ cd
Condorcet winning teams are not unique!
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The Uncover Subroutine
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a3

b4

b1 b2 a3 a4

a1 a2 b3 b4

S = {b1,b2,a4} and S′ = {a1,a2,b4} forms a subset-subset witness for a3 ▷ b3.

Theorem
Let A = {a1, . . . ,ak} and B = {b1, . . . ,bk} be two disjoint teams with A ≻ B. After
O(log(k)) duels, Uncover returns (ai,bi) and a witness for ai ▷ bi.
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Reduction to O(k) players

a b c d e f

g h i j m n

a b c d e f

g h i j m n
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Reduction to O(k) players

a b c d e f

g h i j m n

a b c d e f

g h i j m n

Lemma
Let R ⊆ [n] including the top-2k players. Let A∗ be a team for which A∗ ≻ B for all
disjoint B ⊆ R. Then, A∗ is Condorcet winning in the original instance.
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Reduction to O(k) players

a b c d e f

g h i j m n

a b c d e f

g h i j m n

Theorem
After O(nk log(k)) duels ReducePlayers returns R ⊆ [n] containing the top-2k
players and guaranteeing that |R| < 6k.

Theorem
There exists an algorithm that identifies a Condorcet winning team within
O(nk log(k) + k2 log(k)25k) duels.
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The Case of Additive Linear Orders

A total order is additive linear, if there are values v(a) ∈ R for all a ∈ [n], such that

A ≻ B⇔
∑
a∈A

v(a) >
∑
b∈B

v(b) for all teams A ̸= B.

Theorem
For additive total orders, there exists an algorithm that finds a Condorcet
winning team within O(nk log(k) + k5) duels.
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Discussion and Open Questions

• Regret bound: By optimizing δ, we can easily derive a regret bound of
O(n(∆−2(log(T) + log log∆−1)) based on the results in the stochastic setting,
where T is the number of rounds.

• Lower Bounds: Any algorithm needs n− 2k duels to identify a Condorcet
winning team. Can we find better lower bounds?

• Relaxing the assumptions: Can we relax the total order or consistency
assumptions and still get a tractable model?
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