Dueling Bandits with Team Comparisons

Lee Cohen ${ }^{1}$ Ulrike Schmidt-Kraepelin ${ }^{2}$ Yishay Mansour ${ }^{1,3}$

NeurIPS 2021
${ }^{1}$ Tel Aviv University ${ }^{2}$ TU Berlin ${ }^{3}$ Google Research

Dueling Bandits

A set of players (arms) $[n]=\{1, \ldots, n\}$.
A learner observes noisy comparisons of pairs of players from [n].
A winning probability matrix P that holds $P_{a, b}:=P(a>b)$.

Common assumptions:

- Total order \succ over players such that: For two players $a \succ b \Leftrightarrow P_{a, b}>0.5$.
- The matrix P satisfies strong stochastic transitivity (SST):

For $a \succ b \succ c$ it holds that $P_{a, c} \geq \max \left\{P_{a, b}, P_{b, c}\right\}$

$$
P=\begin{aligned}
& 1 \\
& 2 \\
& 3
\end{aligned}\left(\begin{array}{lll}
0.5 & 0.6 & 0.6 \\
0.4 & 0.5 & 0.6 \\
0.4 & 0.4 & 0.5
\end{array}\right)
$$

[Introduced by Yue et al. 2012]

Dueling Bandits

A set of players (arms) $[n]=\{1, \ldots, n\}$.
A learner observes noisy comparisons of pairs of players from [n].
A winning probability matrix P that holds $P_{a, b}:=P(a>b)$.

Common assumptions:

- Total order \succ over players such that: For two players $a \succ b \Leftrightarrow P_{a, b}>0.5$.
- The matrix P satisfies strong stochastic transitivity (SST): For $a \succ b \succ c$ it holds that $P_{a, c} \geq \max \left\{P_{a, b}, P_{b, c}\right\}$

Possible Goals

Perform pairwise comparisons to:

- minimize number of queries to learn the best player a^{*} with high probability
- given $k \geq 1$, minimize number of queries to learn the top $-k$ players with high probability, in dependence of a gap $\Delta=P_{k, k+1}-1 / 2$

Dueling Bandits with Team Comparisons

$a b$
$a c$
$c d$
$d e$
$\ldots$$\left(\begin{array}{ccccc}a b & a c & c d & d e & \ldots \\ x & x & 0.6 & 0.8 & \\ x & x & x & 0.7 & \\ 0.4 & x & x & x & \\ 0.3 & x & x & x & \end{array}\right)$

A learner observes the outcome of noisy comparisons of disjoint teams of size k.

Dueling Bandits with Team Comparisons

Serena Williams Plays Against Herself In Funny TikTok Video During Coronavirus Lockdown

Serena Williams posted a hilarious TikTok video where the 23 -time Grand Slam Champion can
be seen playing against herself amidst the coronavirus lockdown.
Whitlen By Sreehor Menon \mathbf{f}

$\mathrm{P}=$| |
| :---: |
| $a b$ |
| $a c$ |
| $c d$ |
| $d e$ |
| |
| \ldots |\(\left(\begin{array}{ccccc}a b \& a c \& c d \& d e \& ···

x \& x \& 0.6 \& 0.8 \&

x \& x \& x \& 0.7 \&

0.4 \& x \& x \& x \&

0.3 \& x \& x \& x \&

\& \& \& \& \end{array}\right)\)

A learner observes the outcome of noisy comparisons of disjoint teams of size k.

Our Model

- A set of players (arms) $[n]=\{1, \ldots, n\}$.
- A constant team size $k \in \mathbb{N},(k \leq n / 2)$.
- Every k-sized subset of players is called a team.
- There exists a winning probability matrix P on the set of all teams.

Our Model

- A set of players (arms) $[n]=\{1, \ldots, n\}$.
- A constant team size $k \in \mathbb{N},(k \leq n / 2)$.
- Every k-sized subset of players is called a team.
- There exists a winning probability matrix P on the set of all teams.

Assumptions:

- Total order over all teams \succ such that:

For every two teams $A, B \subset[n], A \succ B \Leftrightarrow P_{A, B}>0.5$.

- The total order is consistent with a total order over single players, \triangleright :

$$
\forall a, b \in[n] \forall S \subseteq[n] \backslash\{a, b\} \text { s.t. }|S|=k-1: a \triangleright b \Leftrightarrow S \cup\{a\} \succ S \cup\{b\}
$$

- The matrix P satisfies strong stochastic transitivity (SST):

For every triplet of teams such that $A \succ B \succ C, P_{A, C} \geq \max \left\{P_{A, B}, P_{B, C}\right\}$.

Our Model

- A set of players (arms) $[n]=\{1, \ldots, n\}$.
- A constant team size $k \in \mathbb{N},(k \leq n / 2)$.
- Every k-sized subset of players is called a team.
- There exists a winning probability matrix P on the set of all teams.

Assumptions:

- Total order over all teams \succ.
- The total order is consistent with a total order over single players, \triangleright
- The matrix P satisfies SST: $A \succ B \succ C \Leftarrow P_{A, C} \geq \max \left\{P_{A, B}, P_{B, C}\right\}$.

Goal 1

Return the team of the top- k (best team) players with high probability.

Results

Stochastic Setting

- Characterization of the deducible pairwise relations between players
- Reduction to any top-k identification dueling bandits setting
- After $\mathcal{O}\left((n+k \log k) \Delta^{-2} \max (\log \log n, \log k)\right)$ duels in expectation, return the top- k team with high probability, where Δ is a gap parameter.

Deterministic Setting

We can reduce any instance from n players to $\mathcal{O}(k)$ within $\mathcal{O}(n k \log (k))$ duels.

- Identify a Condorcet winning team after $\mathcal{O}\left(n k \log (k)+k^{2} \log (k) 2^{5 k}\right)$ duels.
- For additive total orders, find a Condorcet winning team after $\mathcal{O}\left(n k \log (k)+k^{5}\right)$ duels.

Example

Consider $n=4, k=2$
Total order among teams $a b \succ a c \succ a d \succ b c \succ b d \succ c d$ (hence $a \triangleright b \triangleright c \triangleright d$)
For every two teams X and $Y, P_{X, Y}=1 \Leftrightarrow X \succ Y$
Only three feasible duels: $(a b, c d),(a c, b d)$, and ($a d, b c$)
In all of them, the team that has a wins.
Even if the learner knows that $\forall X \cap Y=\emptyset: P_{X, Y} \in\{0,1\}$, it is impossible to distinguish between b, c, and d

Question

When and how can a learner distinguish between two single players?

Witnesses

Subset-Subset Witness for $a \triangleright b$
Two disjoint subsets of players $S, S^{\prime} \subset[n] \backslash\{a, b\}$ of size $k-1$ that hold

$$
P_{S \cup\{a\}, S^{\prime} \cup\{b\}}>P_{S \cup\{b\}, S^{\prime} \cup\{a\}}
$$

Subset-Team Witness for $a \triangleright b$

Two disjoint subsets of players $S, T \subset[n] \backslash\{a, b\}$, where $|S|=k-1$ and $|T|=k$, such that:

$$
P_{S \cup\{a\}, T}>P_{S \cup\{b\}, T}
$$

Theorem

Player a is provably better than player b (written $a \triangleright^{*} b$) if and only if there exists a witness (subset-subset or subset-team) for $a \triangleright b$.

A reduction to any top- k algorithm for Dueling Bandits

To simulate a duel between any players a, b :

- Randomly draw a triplet $\left(S, S^{\prime}, T\right)$ such that $S, S^{\prime}, T \subset[n] \backslash\{a, b\}$ and $S \cap T=S \cap S^{\prime}=\emptyset$.
- Perform duels

$$
\left(S \cup\{a\}, S^{\prime} \cup\{b\}\right),\left(S \cup\{b\}, S^{\prime} \cup\{a\}\right),(S \cup\{a\}>T),(S \cup\{b\}>T)
$$

$$
\begin{gathered}
X_{a, b}\left(S, S^{\prime}, T\right) \leftarrow 1 / 4\left(\mathbb{1}\left[S \cup\{a\}>S^{\prime} \cup\{b\}\right]-\mathbb{1}\left[S \cup\{b\}>S^{\prime} \cup\{a\}\right]\right. \\
+\mathbb{1}[S \cup\{a\}>T]-\mathbb{1}[S \cup\{b\}>T])
\end{gathered}
$$

A reduction to any top $-k$ algorithm for Dueling Bandits

For a, b and any triplet $\left(S, S^{\prime}, T\right)$ (where $\left(S, S^{\prime}\right)$ and (S, T) are possible witnesses):

$$
\begin{aligned}
X_{a, b}\left(S, S^{\prime}, T\right)=1 / 4(& \mathbb{1}\left[S \cup\{a\}>S^{\prime} \cup\{b\}\right]-\mathbb{1}\left[S \cup\{b\}>S^{\prime} \cup\{a\}\right] \\
& +\mathbb{1}[S \cup\{a\}>T]-\mathbb{1}[S \cup\{b\}>T])
\end{aligned}
$$

For a, b let $X_{a, b}$ be the outcome of $X_{a, b}\left(S, S^{\prime}, T\right)$ for some randomly drawn triplet $\left(S, S^{\prime}, T\right)$.

Theorems

Let $P_{a, b}^{\prime}=\mathbb{E}\left[X_{a, b}\right]+1 / 2$.

- For every pair of players, if $a \triangleright b$ then $P_{a, b}^{\prime} \geq 1 / 2$.
- For every pair of players it holds that $a \triangleright^{*} b$ if and only if $P_{a, b}^{\prime}>1 / 2$.
- For every triplet of players $a \triangleright b \triangleright c$ it holds that $P_{a, c}^{\prime} \geq \max \left\{P_{a, b}^{\prime}, P_{b, c}^{\prime}\right\}$

A reduction to any top- k algorithm for Dueling Bandits

Let $\Delta=\mathbb{E}\left[X_{k, k+1}\right]$ (gap parameter).
Applying a dueling bandits algorithm by [e.g., Mohajer, Suh, and Elmahdy 2017]:

Corollary

There exists an algorithm that, with probability 0.99 , returns the top- k team and requires $\mathcal{O}\left((n+k \log k) \frac{\max (\log \log n, \log k)}{\Delta^{2}}\right)$ duels in expectation.

Deterministic Setting

Goal 2

Find a Condorcet winning team in the deterministic setting.

Deterministic Setting: $P_{A, B} \in\{0,1\}$, for all teams A, B.
A is a Condorcet Winning Team, if $A \succ B$ for all teams B that are disjoint to A.

Deterministic Setting

Goal 2

Find a Condorcet winning team in the deterministic setting.

Deterministic Setting: $P_{A, B} \in\{0,1\}$, for all teams A, B.
A is a Condorcet Winning Team, if $A \succ B$ for all teams B that are disjoint to A.

Example:

$a b \succ a c \succ a d \succ b c \succ b d \succ c d$
Condorcet winning teams are not unique!

The Uncover Subroutine

$$
\begin{gathered}
0000 \\
\bullet \\
-000
\end{gathered}
$$

The Uncover Subroutine

$\bullet \bullet \bullet \bullet$
$\bullet \downarrow$
$-\quad \bullet$

The Uncover Subroutine

$\bullet \bullet \bullet 0$

The Uncover Subroutine

$$
\begin{aligned}
& \bullet \bullet \bullet \bullet \\
& -\uparrow \bullet \bullet
\end{aligned}
$$

The Uncover Subroutine

The Uncover Subroutine

$S=\left\{b_{1}, b_{2}, a_{4}\right\}$ and $S^{\prime}=\left\{a_{1}, a_{2}, b_{4}\right\}$ forms a subset-subset witness for $a_{3} \triangleright b_{3}$.

The Uncover Subroutine

0000 -0000

$S=\left\{b_{1}, b_{2}, a_{4}\right\}$ and $S^{\prime}=\left\{a_{1}, a_{2}, b_{4}\right\}$ forms a subset-subset witness for $a_{3} \triangleright b_{3}$.

Theorem

Let $A=\left\{a_{1}, \ldots, a_{k}\right\}$ and $B=\left\{b_{1}, \ldots, b_{k}\right\}$ be two disjoint teams with $A \succ B$. After $\mathcal{O}(\log (k))$ duels, Uncover returns $\left(a_{i}, b_{i}\right)$ and a witness for $a_{i} \triangleright b_{i}$.

Reduction to $\mathcal{O}(k)$ players

- 웅 © 0

 - ○○○○ -
Reduction to $\mathcal{O}(k)$ players

Reduction to $\mathcal{O}(k)$ players

Reduction to $\mathcal{O}(k)$ players

Lemma

Let $R \subseteq[n]$ including the top- $2 k$ players. Let A^{*} be a team for which $A^{*} \succ B$ for all disjoint $B \subseteq R$. Then, A^{*} is Condorcet winning in the original instance.

Reduction to $\mathcal{O}(k)$ players

Theorem
After $\mathcal{O}(n k \log (k))$ duels ReducePlayers returns $R \subseteq[n]$ containing the top- $2 k$ players and guaranteeing that $|R|<6 k$.

Reduction to $\mathcal{O}(k)$ players

Theorem

After $\mathcal{O}(n k \log (k))$ duels ReducePlayers returns $R \subseteq[n]$ containing the top- $2 k$ players and guaranteeing that $|R|<6 k$.

Theorem

There exists an algorithm that identifies a Condorcet winning team within $\mathcal{O}\left(n k \log (k)+k^{2} \log (k) 2^{5 k}\right)$ duels.

The Case of Additive Linear Orders

A total order is additive linear, if there are values $v(a) \in \mathbb{R}$ for all $a \in[n]$, such that

$$
A \succ B \Leftrightarrow \sum_{a \in A} v(a)>\sum_{b \in B} v(b) \quad \text { for all teams } A \neq B .
$$

Theorem

For additive total orders, there exists an algorithm that finds a Condorcet winning team within $\mathcal{O}\left(n k \log (k)+k^{5}\right)$ duels.

Discussion and Open Questions

- Regret bound: By optimizing δ, we can easily derive a regret bound of $\mathcal{O}\left(n\left(\Delta^{-2}\left(\log (T)+\log \log \Delta^{-1}\right)\right)\right.$ based on the results in the stochastic setting, where T is the number of rounds.
- Lower Bounds: Any algorithm needs $n-2 k$ duels to identify a Condorcet winning team. Can we find better lower bounds?
- Relaxing the assumptions: Can we relax the total order or consistency assumptions and still get a tractable model?

