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user data

ML System 

Cryptography approaches seek complete privacy
(e.g., secure multi party computation)

o Computational efficiency challenges 

o Some user data may need to be recorded 
due to regulatory auditing purposes.

Privacy in Data-driven Models
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Privacy notions that assume an adversary 
different from the data processing system

Privacy 
adversary

Privacy in Data-driven Models

user data

ML System 

o Differential privacy

o K-anonymity



5

Privacy 
adversary

Privacy in Data-driven Models

What if the prediction system itself is a privacy adversary?

user data

ML System 
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Privacy in Data-driven Models

user data

ML System 

What if the prediction system itself is a privacy adversary?

An alternative privacy notion

Restrict prediction systems to use the 
minimum necessary data.



Data Minimization as a privacy notion
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Data Minimization (GDPR, article 5.1.c)

“Personal data shall be adequate, relevant and limited to what is 

necessary in relation to the purposes for which they are processed.”
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Data Minimization (GDPR, article 5.1.c)

“Personal data shall be adequate, relevant and limited to what is 

necessary in relation to the purposes for which they are processed.”

How to operationalize this principle for a particular prediction system? 



Previous Proposals
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“Personal data shall be adequate, relevant and limited to what is 

necessary in relation to the purposes for which they are processed.”

Tie the purpose of data processing to 
some performance metric (e.g., accuracy)

[Biega et al.  SIGIR 2020]
[Rastegarpanah et al.  UMAP 2020 ]

Assuming full knowledge of the prediction algorithm and the training data,
study whether input data can be reduced while achieving similar performance.
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A black-box prediction model with a fixed 
set of input features at deployment time.

!𝑌! (𝒙)

𝑥!

𝑥"

𝑥# !𝑌!⋮

Auditing Black-Box Prediction Models
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A black-box prediction model with a fixed 
set of input features at deployment time.

!𝑌! (𝒙)

𝑥!

𝑥"

𝑥# !𝑌!⋮
system query

Auditing for data minimization 
compliance

Auditing Black-Box Prediction Models
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A black-box prediction model with a fixed 
set of input features at deployment time.

!𝑌! (𝒙)

𝑥!

𝑥"

𝑥# !𝑌!⋮
system query

We propose a criterion that can be used for 
operationalizing data minimization in this setting.

Auditing for data minimization 
compliance

Auditing Black-Box Prediction Models
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𝒫𝒳,𝒴

𝐷%&'()()* ~𝒫𝒳,𝒴

!𝑌! (𝒙)

𝑥!

𝑥"

𝑥# !𝑌!⋮

!𝑌!: prediction model with 
the set of input features 𝐹. 
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𝒫𝒳,𝒴

𝐷%&'()()* ~𝒫𝒳,𝒴

!𝑌! (𝒙)
𝒙

Auditor with limited 
query budget

𝑥!

𝑥"

𝑥# !𝑌!⋮

𝐷+,-(% ~𝒫𝒳

query sample

!𝑌!: prediction model with 
the set of input features 𝐹. 

Auditor can query the system 
using prediction instances that 
that specify all feature values.
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𝒫𝒳,𝒴

𝐷%&'()()* ~𝒫𝒳,𝒴

!𝑌! (𝒙)
𝒙

Auditor with limited 
query budget

To what extent Data Minimization is satisfied by !𝒀𝑭?

𝑥!

𝑥"

𝑥# !𝑌!⋮

𝐷+,-(% ~𝒫𝒳

query sample

!𝑌!: prediction model with 
the set of input features 𝐹. 

Auditor can query the system 
using prediction instances that 
that specify all feature values.
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16

!𝑌! (𝒙)

𝑥"

𝑥# !𝑌!⋮
𝒙

𝑏
𝑓$

Simple imputations as a tool for limiting data inputs at test time.

Impute 𝑓! with constant 𝑏 in all prediction instances.
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!𝑌! (𝒙)

𝑥"

𝑥# !𝑌!⋮
𝒙

𝑏
𝑓!

Simple imputations as a tool for limiting data inputs at test time.

Impute 𝑓! with constant 𝑏 in all prediction instances.

If applying this imputation across all prediction instances has no or small 
effect on the model outputs, the information about the actual value of the 
corresponding feature is not needed by the model.



Model Instability under Simple Imputations 
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!𝑌! (𝒙)

𝑥"

𝑥# !𝑌!⋮
𝒙

𝑏
𝑓!

𝜏.!,/(𝒙): imputation function that replaces the value of 𝑓0 with 𝑏.

𝑋: random variable that takes values 𝒙 ∈ 𝒳 according to 𝒫𝒳

𝛽#$ = 𝔼%~𝒫𝒳[𝐼 ()1(𝑋, 𝑓# , 𝑏)]

Model instability under imputation 𝝉𝒇𝒋,𝒃:



Instability-based Data Minimization
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!𝑌! (𝒙)!𝑌!⋮
𝑓!

𝑓"

𝑓#
0 1

×
𝛽0/2

0 1
×
𝛽0/3

0 1
×
𝛽0/4



Instability-based Data Minimization

20

The imputation value that induces the minimum instability for each feature 𝑓$, 
determines how necessary 𝑓$ is for generating the model outcomes.

!𝑌! (𝒙)!𝑌!⋮
𝑓!

𝑓"

𝑓#
0 1

×
𝛽0/2

0 1
×
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×
𝛽0/4

𝛽%&'
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The imputation value that induces the minimum instability for each feature 𝑓$, 
determines how necessary 𝑓$ is for generating the model outcomes.

!𝑌! (𝒙)!𝑌!⋮
𝑓!

𝑓"

𝑓#
0 1

×
𝛽0/2

0 1
×
𝛽0/3

0 1
×
𝛽0/4

Limiting the class of imputations to simple imputations, 
for at least 𝛽%&' fraction of prediction instances the value 
of 𝑓$ is necessary to reach the model predictions.

𝛽%&'



A Data Minimization Guarantee
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$𝑌( satisfies data minimization at level 𝛽 if there does not exist any 
feature 𝑓$ ∈ 𝐹 and any imputation value 𝑏 ∈ 𝒳$ such that 𝛽$) < 𝛽.
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!𝑌! (𝒙)!𝑌!⋮
𝑓!

𝑓"

𝑓#

0 1
×
𝛽"%"

×
𝛽"%#

0 1

0 1
×
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×
𝛽#%'

0 1

𝛽
A level 𝛽 guarantee ensures that every input feature 
used by the model is necessary to reach the predictions 
made for at least a fraction (𝛽) of prediction instances.

$𝑌( satisfies data minimization at level 𝛽 if there does not exist any 
feature 𝑓$ ∈ 𝐹 and any imputation value 𝑏 ∈ 𝒳$ such that 𝛽$) < 𝛽.



A Data Minimization Guarantee

24

!𝑌! (𝒙)!𝑌!⋮
𝑓!

𝑓"

𝑓#

0 1
×
𝛽"%"

×
𝛽"%#

0 1

0 1
×
𝛽#%&

×
𝛽#%'

0 1

𝛽
A level 𝛽 guarantee ensures that every input feature 
used by the model is necessary to reach the predictions 
made for at least a fraction (𝛽) of prediction instances.

Best data minimization guarantee
The greatest lower bound of all 𝛽0/’s.

$𝑌( satisfies data minimization at level 𝛽 if there does not exist any 
feature 𝑓$ ∈ 𝐹 and any imputation value 𝑏 ∈ 𝒳$ such that 𝛽$) < 𝛽.
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$𝑌( satisfies data minimization at level 𝛽 if there does not exist any 
feature 𝑓$ ∈ 𝐹 and any imputation value 𝑏 ∈ 𝒳$ such that 𝛽$) < 𝛽.

!𝑌! (𝒙)!𝑌!⋮
𝑓!

𝑓"

𝑓#

0 1
×
𝛽"%"

×
𝛽"%#

0 1

0 1
×
𝛽#%&

×
𝛽#%'

0 1

How can an auditor provide such a data minimization guarantee?
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𝛽$) = 𝔼*~𝒫𝒳[𝐼 -.)(𝑋, 𝑓$, 𝑏)]The auditor requires knowledge of model instabilities 
under different imputations
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In practice, this expected value can only be estimated 
using system queries for different data samples 𝒙~ 𝒫𝒳

𝐼 -.)(𝒙, 𝑓$, 𝑏) (A system query)

𝛽$) = 𝔼*~𝒫𝒳[𝐼 -.)(𝑋, 𝑓$, 𝑏)]The auditor requires knowledge of model instabilities 
under different imputations
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Population Audit

Assuming a finite sample model given an audit dataset, 
instabilities can be estimated using the population mean.

6𝛽0/ =
1

𝐷+,-(% 8
5∈7"#$%&

[𝐼 89'(𝒙, 𝑓0 , 𝑏) ]

In practice, this expected value can only be estimated 
using system queries for different data samples 𝒙~ 𝒫𝒳

𝐼 -.)(𝒙, 𝑓$, 𝑏) (A system query)

𝛽$) = 𝔼*~𝒫𝒳[𝐼 -.)(𝑋, 𝑓$, 𝑏)]The auditor requires knowledge of model instabilities 
under different imputations
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Not practical!

o The number of system queries is 
limited in practice.

o We are often interested in a guarantee 
that is valid for unseen samples from 
the underlying data distribution.

In practice, this expected value can only be estimated 
using system queries for different data samples 𝒙~ 𝒫𝒳

𝐼 -.)(𝒙, 𝑓$, 𝑏) (A system query)

𝛽$) = 𝔼*~𝒫𝒳[𝐼 -.)(𝑋, 𝑓$, 𝑏)]The auditor requires knowledge of model instabilities 
under different imputations

Population Audit

Assuming a finite sample model given an audit dataset, 
instabilities can be estimated using the population mean.

6𝛽0/ =
1

𝐷+,-(% 8
5∈7"#$%&

[𝐼 89'(𝒙, 𝑓0 , 𝑏) ]
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Use a limited number of system queries and provide a guarantee 
that is valid for the underlying data distribution.



Probabilistic Audit

31

Probabilistic Data Minimization Guarantee

$𝑌( satisfies data minimization at level 𝛽 with 𝛼 percent confidence if:

Pr ∃ 𝑓$ ∈ 𝐹, 𝑏 ∈ 𝒳$ 𝑠. 𝑡. 𝛽$) ≤ 𝛽 ≤ 1 − 𝛼

Use a limited number of system queries and provide a guarantee 
that is valid for the underlying data distribution.



Probabilistic Audit
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Satisfying this guarantee at a high confidence means that with high 
probability every input feature is necessary to reach the predictions 
made for at least 𝛽 fraction of samples drawn from 𝒫𝒳.

Probabilistic Data Minimization Guarantee

$𝑌( satisfies data minimization at level 𝛽 with 𝛼 percent confidence if:

Pr ∃ 𝑓$ ∈ 𝐹, 𝑏 ∈ 𝒳$ 𝑠. 𝑡. 𝛽$) ≤ 𝛽 ≤ 1 − 𝛼

Use a limited number of system queries and provide a guarantee 
that is valid for the underlying data distribution.
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Measure the uncertainty about the model instability under different imputations.

𝛽$) = 𝔼*~𝒫𝒳[𝐼 -.)(𝑋, 𝑓$, 𝑏)]



A Bayesian approach
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We model the success probability of 𝐼 -.)(𝑋, 𝑓$, 𝑏) using a Beta distribution.

Measure the uncertainty about the model instability under different imputations.

𝛽$) = 𝔼*~𝒫𝒳[𝐼 -.)(𝑋, 𝑓$, 𝑏)]



A Bayesian approach

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

P
D

F

Beta(1, 1)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

P
D

F
Beta(8, 2)

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

P
D

F

Beta(80, 20)

Update rule: 𝛽$)~𝐵𝑒𝑡𝑎(𝑎, 𝑐) 𝛽$)~𝐵𝑒𝑡𝑎(𝑎 + 𝑆$), 𝑐 + 𝐹$))

success and failure counters 
prior belief

We model the success probability of 𝐼 -.)(𝑋, 𝑓$, 𝑏) using a Beta distribution.

Measure the uncertainty about the model instability under different imputations.

𝛽$) = 𝔼*~𝒫𝒳[𝐼 -.)(𝑋, 𝑓$, 𝑏)]
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How to infer a probabilistic data minimization 
guarantee using all the resulting posteriors?
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Verify whether with high probability all 𝛽0/’s are greater than some level 𝛽.
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Pr for at least one (𝑓0 , 𝑏); 𝛽0/ ≤ 𝛽
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Verify whether with high probability all 𝛽0/’s are greater than some level 𝛽.

Boole’s inequality

Pr for at least one (𝑓0 , 𝑏); 𝛽0/ ≤ 𝛽 ≤ 8
.!,/

Pr[𝛽0/ ≤ 𝛽]

CDF function of 𝛽!% ≔ 𝐿!%(𝛽)
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Verify whether with high probability all 𝛽0/’s are greater than some level 𝛽.

Boole’s inequality

Pr for at least one (𝑓0 , 𝑏); 𝛽0/ ≤ 𝛽 ≤ 8
.!,/

Pr[𝛽0/ ≤ 𝛽]
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Data minimization is satisfied at level 𝛽



Inferring a probabilistic guarantee using posterior distributions 

40

Verify whether with high probability all 𝛽0/’s are greater than some level 𝛽.

max
.!,/

Pr[𝛽0/ ≤ 𝛽] ≤ Pr for at least one (𝑓0 , 𝑏); 𝛽0/ ≤ 𝛽

𝛼 ≤

Data minimization is not satisfied at level 𝛽

0.0 0.2 0.4 0.6 0.8 1.0
0

2

P
D

F

Beta(10, 5)

0.0 0.2 0.4 0.6 0.8 1.0
0

5

P
D

F

Beta(80, 30)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

2.5

5.0

P
D

F

Beta(15, 40)

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

P
D

F

Beta(15, 9)

𝛽



Inferring a probabilistic guarantee using posterior distributions 

41

Measure the best data minimization level 
that can be guaranteed with confidence 𝜶:

Pr for at least one (𝑓0 , 𝑏); 𝛽0/ ≤ 𝛽

Apply a binary search to find 𝜷
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Auditing with a Limited Query Budget
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Updating certain posteriors are more helpful in finding a 
data minimization guarantee with high confidence.
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Auditing with a Limited Query Budget
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Given a limited query budget, what is the best 
strategy to allocate system queries for measuring 
model instability under different imputations?

Updating certain posteriors are more helpful in finding a 
data minimization guarantee with high confidence.
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Auditing with a Limited Query Budget
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Given a limited query budget, what is the best 
strategy to allocate system queries for measuring 
model instability under different imputations?

Updating certain posteriors are more helpful in finding a 
data minimization guarantee with high confidence.
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A multi-armed bandit framework

Sequential decision problems under uncertainty 

o Actions (choices) are defined by a set of arms.

o A player sequentially chooses arms to play and observes noisy 
signals of their quality (reward).

o The goal is to optimize some utility while acquiring new 
knowledge about the arms.
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A multi-armed bandit framework

Stochastic Bernoulli bandit

0 1
×
𝛽"%"

×
𝛽"%#

0 1

0 1
×
𝛽#%&

×
𝛽#%'

0 1

(𝑓2, 𝑏1)

(𝑓2, 𝑏2)

(𝑓3, 𝑏3)

(𝑓3, 𝑏4)

Feature 𝑓2

Feature 𝑓3

We consider an arm for each feasible imputation (𝑓0 , 𝑏).

Success probabilities (instabilities) are unknown.

Playing arm (𝒇𝒋, 𝒃):
observe a binary reward using a random data sample and 
a system query.
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Two bandit problems
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Decision Problem

Given a confidence and a data minimization level,
iteratively select and explore arms such that a decision 
can be made using the minimum number of observations.
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Two bandit problems

Decision Problem

Given a confidence and a data minimization level,
iteratively select and explore arms such that a decision 
can be made using the minimum number of observations.
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𝛽

Measurement Problem

Given a confidence and a fixed query budget,
iteratively select and explore arms such that after using all the 
budget the guaranteed data minimization level is maximized.
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Two bandit problems

Decision Problem

Given a confidence and a data minimization level,
iteratively select and explore arms such that a decision 
can be made using the minimum number of observations.

Measurement Problem

Both require an exploration strategy for 
selecting the next arm to investigate.

Given a confidence and a fixed query budget,
iteratively select and explore arms such that after using all the 
budget the guaranteed data minimization level is maximized.
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Strategies based on Thompson Sampling 



Exploration Strategies
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Strategies based on Thompson Sampling 

Choose imputations that reducing the uncertainty about their success 
probability would better help finding a lower bound on all instabilities. 

Choose arms according to their probability of having the minimum mean reward.

Thompson Sampling (TS):  a heuristic that combines Bayesian modeling with probability matching.
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Strategies based on Thompson Sampling 

Choose arms according to their probability of having the minimum mean reward.

Thompson Sampling (TS):  a heuristic that combines Bayesian modeling with probability matching.

Top-Two Thompson Sampling (TTTS): 

A modification to TS for sampling less explored arms more frequently. 

Idea: randomly choose between two of the best alternatives.

Choose imputations that reducing the uncertainty about their success 
probability would better help finding a lower bound on all instabilities. 



Exploration Strategies

53

Our data minimization guarantee depends on the 
probability mass that is below some threshold in all arms.

We introduce two exploration strategies designed 
specifically for obtaining a data minimization guarantee.
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Our data minimization guarantee depends on the 
probability mass that is below some threshold in all arms.

Greedy
Select the arm whose posterior beta distribution has 
the maximum probability mass below a threshold 𝛽.

We introduce two exploration strategies designed 
specifically for obtaining a data minimization guarantee.
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Probability Matching Using CDFs (PM)
Select arms in proportion to the amount of probability 
mass that is below 𝛽 in each posterior distribution. 

Our data minimization guarantee depends on the 
probability mass that is below some threshold in all arms.

We introduce two exploration strategies designed 
specifically for obtaining a data minimization guarantee.
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Census/Decision Tree 

o A decision tree is built to predict whether a person makes over $50𝐾 a year
using the US Census database.

o After applying standard model validation and feature selection procedures 
we get a black-box prediction model with 5 input features.
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Measurement Task with 95% confidence
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Measurement Task with 95% confidence
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A system that collects excessive information
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Decision Task at 1% Data Minimization LevelA system that collects excessive information
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o Propose an operationalization of data minimization for auditing black-box prediction 
models. 

o Define a guarantee that is based on a metric of model instability under simple 
imputations. 

o Extend the applicability of our metric from a finite sample model to a distributional 
setting by introducing a probabilistic guarantee and a Bayesian approach. 

o Formulate the problem of auditing data minimization with a limited query budget as a 
multi-armed bandit framework for which we design efficient exploration strategies.

In summary, we


