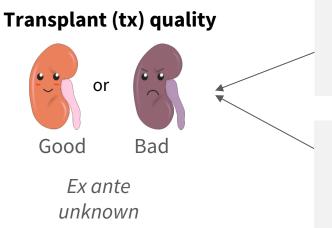
Counterbalancing Learning and Strategic Incentives in Allocation Markets

Jamie Kang¹, Faidra Monachou¹, Moran Koren², Itai Ashlagi¹

¹ Stanford University ² Harvard University

NeurIPS 2021

MOTIVATION: KIDNEY ALLOCATION WAITLIST



Information about quality

1. Organ score

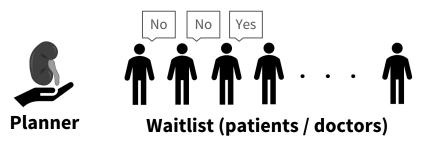
P {successful tx} based on organ features Public (e.g., size, donor age)

2. Doctors' private opinions

Private

Based on their own experience / knowledge

MOTIVATION: KIDNEY ALLOCATION WAITLIST



- Patients waiting for an organ offer
- Upon receiving offer, each patient decides to accept or decline
- Or in most cases, his or her doctor makes decision
- Social planner decides whether / how to make the offers

Planner's Goal: Optimize overall tx quality Patient / Doctor's Goal: Optimize <u>my</u> tx quality

i.e. Utilize good organs and discard bad organs

BASELINE: FIRST-COME-FIRST-SERVE MECHANISM

- Commonly used -- aka Sequential Offering
- Object offered to each agent sequentially one-by-one

What could go wrong?

X To k-th agent:

availability of object implies previous (k-1) agents have declined it

- X Induces **herding** behavior → **incorrect discard** of objects
- X In kidney allocation: > 20% discard rate, while ~3.6yr wait time
 (De Mel et al. (2020), Mohan et al. (2018), Zhang (2010) for empirical evidence)

MAIN PROBLEM AND RESULTS

Q: Given a single indivisible object of unknown quality, whether and how to allocate it to a queue of privately informed and strategic and agents?

I.e., How to balance planner's learning and agents' strategic incentives?

MAIN PROBLEM AND RESULTS

A:

- 1. FCFS can cause welfare loss due to herding
- Propose a new class of mechanisms involving dynamic batched voting to crowdsource private information, and show existence of such mechanisms that improve welfare
- 3. Simple greedy algorithm to achieve this improvement

RELATED LITERATURE

Social Learning

- Banerjee (1992), Bikhchandani et al. (1992)
- In kidney markets: De Mel et al. (2020), Mohan et al. (2018), Zhang (2010)

Voting

• Austen-Smith and Banks (1996), Condorcet (1785)

Information Design / Bayesian Exploration

- Arieli et al. (2018), Kamenica and Gentzkow (2011), Papanastasiou et al. (2017)
- Glazer et al. (2021), Immorlica et al. (2019), Kremer et al. (2014), Mansour et al. (2016)

SET UP

Object

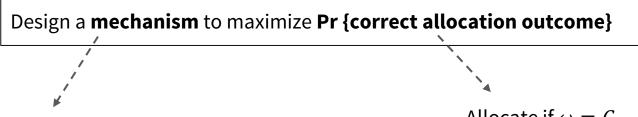
- Single indivisible object
- **Quality**: $\omega \in \{G, B\}$ fixed and ex-ante unknown
- **Prior**: $\mu = P(w=G)$ commonly known

Agents

For each agent in position *i*

- **Private signal:** $s_i \in \{q, b\}$
- **Precision** of signal: $q = P(s_i = g | w = G) = P(s_i = b | w = B) \in (1/2, 1)$ commonly known
- **Utility**:
 - $\begin{cases} 1 & \text{with object and } \omega = G \\ -1 & \text{with object and } \omega = B \\ 0 & \text{without object} \end{cases}$

Planner's goal



- 1. Asks (a batch of) agents to report private signals
- 2. Decides whether and how to allocate the object e.g., FCFS, Lottery...

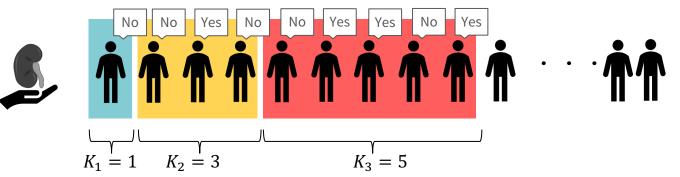
```
Allocate if \omega = G
Discard if \omega = B
```

We propose a new class of mechanisms

VOTING MECHANISMS

- Idea: **batch-by-batch dynamic voting** to crowdsource information
- For each batch *j*: 1. Offer to a **batch of** K_i agents
 - 2. Each agent simultaneously votes to opt in or opt out.
 - 3. If **majority** opts in: Allocate object uniformly at random. Otherwise: Move on to batch j+1.

Results from batch j become public.



Batch size K_j can be chosen dynamically

Kang, Monachou, Koren, Ashlagi (NeurIPS 2021)

VOTING MECHANISMS

- Idea: **batch-by-batch dynamic voting** to crowdsource information
- For each batch *j*: 1. Offer to a **batch of** *K*_{*i*} agents

Yes

 $K_2 = 3$

No

NO

No

2. Each agent simultaneously votes to opt in or opt out

 $K_{3}' = 5$

If majority opts in: Allocate object uniformly at random.
 Otherwise: Move on to batch j+1.

Results from batch j become public.

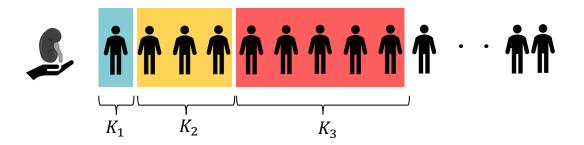
Batch size K_j can be chosen dynamically

Sequential \rightarrow Batch

VOTING MECHANISMS

FCFS is also a voting mechanism ($K_j = 1$ for all j)

We restrict our attention to the class of voting mechanisms



Main problem reduces to:

How to dynamically choose batch size K_i ?

FCFS: HAMPERED LEARNING W/ WRONG BATCH SIZE (K=1)

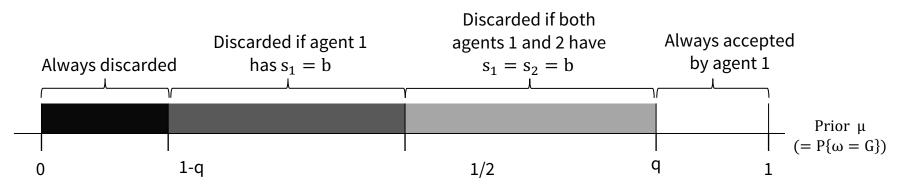


Figure 1. Allocation outcome of the sequential offer mechanism based on the value of prior $\mu \in (0, 1)$ with respect to signal precision q.

- In this extreme case, planner **can learn from only up to two** agents
- Restricted learning leads to poor correctness and welfare loss

BALANCING AGENTS' INCENTIVES vs PLANNER'S LEARNING

Small batch size		Large batch size	
~	Every vote is pivotal : in particular, incentivizes agents with $s_i = b$ signals to truthfully opt out	~	More data points : gives confidence that if object is allocated, then it is likely that quality is good
×	If too small, allocation depends on learning from insufficient sample size	×	If too large, everyone is incentivized to opt in

- Presence of incentives puts upper bound on # of private signals planner can learn from
- Optimal batch size is the **maximum batch size** that agents' **incentives allow** (i.e., IC is tight)

MAIN THEORETICAL RESULTS

Theorem 1.

- For any *q* > *μ*, there always exists a voting mechanism V ∈ V that is incentivecompatible and improves correctness compared to the sequential offering mechanism V_{SEQ}.
- For any $q \le \mu$, there is no incentive-compatible voting mechanism and any $V \in \mathcal{V}$ achieves the same correctness as V_{SEQ} .

Corollary 1.

• For any $q > \mu$, such a mechanism can be found using a **greedy algorithm**.

TIGHTER INCENTIVES FOR THE WELL-INFORMED (HIGH q) AND OPTIMISTIC (HIGH μ) (Formal proofs and results in the paper)

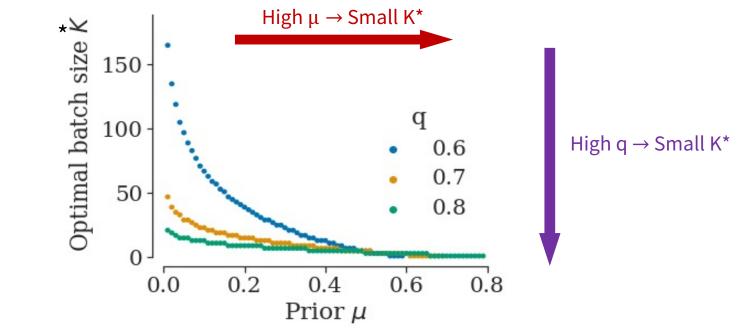


Figure 2. Optimal batch sizes for all possible priors μ for three information regimes $q \in \{0.6, 0.7, 0.8\}$

VOTING WORKS WELL, EVEN IN ITS SIMPLEST FORM

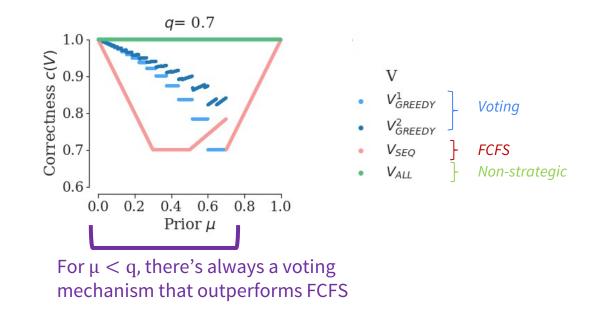


Figure 3. Comparison of correctness in different mechanisms simulated with 345 agents.

VOTING WORKS WELL, EVEN IN ITS SIMPLEST FORM

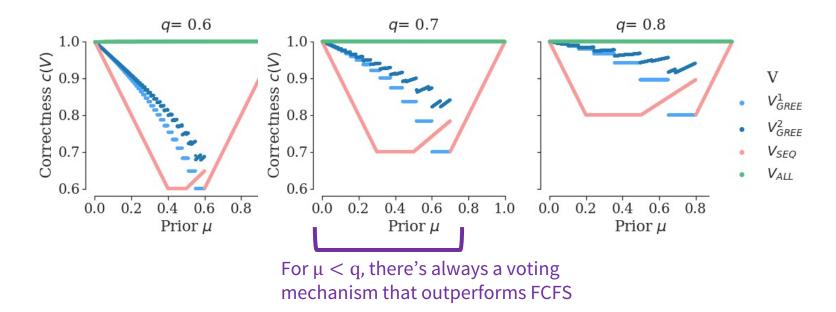


Figure 3. Comparison of correctness in different mechanisms simulated with 345 agents.

CONCLUSION

Main takeaways

- **Tension** between: Planner's learning goal vs Agents' strategic incentives
- How to **incorporate voting into mechanism design** to mitigate this tension
- In particular, by introducing **batching** and **randomness**

Implications

- Bayesian risk adjustment for organ allocation markets
- Analysis of learning problems with **strategic samples**
- Resembles exploitation vs exploration

Limitations

- This is a stylized model!
- Fairness? Voting mechanism (partly) breaks priority for better welfare