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How to allocate the memory between old and new data?
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Allocate as much memory as 
possible for the new-class data

Limitations:  
- Imbalance between old and new classes
- Catastrophic forgetting problem
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How to allocate the memory between old and new data?

new data

old exemplars

memory

Existing methods [1,2,3]

Allocate as much memory as 
possible for the new-class data

Our method: Reinforced Memory Management (RMM)
Learn an agent using reinforcement learning
to manage the memory allocation

Limitations:  
- Imbalance between old and new classes
- Catastrophic forgetting problem

Benefits:  
+ Balancing the old and new classes
+ Overcoming the forgetting problem 
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What is a reinforcement learning (RL) system?

Image from https://europepmc.org/article/PMC/6767655 

https://europepmc.org/article/PMC/6767655
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How to define the RL system for our CIL task?

● Actions 
○ Level-1: coarse (old/new) allocation
○ Level-2: fine-grained (class-specific) allocation

old/new allocation

class-specific allocation

states

Level-2 policy

Level-1 action

Level-1 policy

Level-2 action

Old class 1 Old class 2

Old class 2Old class 1New classes

Old 
class 2Old class 1New classes
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How to define the RL system for our CIL task?

● Actions

● States
○ Distinct in each incremental phase
○ Transferable between CIL tasks

si = (                   ,                                )# new classes

# old classes

memory for old exemplars 

total memory
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How to define the RL system for our CIL task?

● Actions

● States

● Rewards: the validation accuracy
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How to define the RL system for our CIL task?

● Actions

● States

● Rewards

● Training data points
Due to the CIL protocol, we’re not allowed to use the historical and future data

Our solution: create many pseudo CIL tasks, and train the RL system on them
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How to create the pseudo CIL tasks?

The data in the initial phase

Another dataset

Create
Agent

Train

Pseudo CIL tasks

OR
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How to define the RL system for our CIL task?

● Actions

● States

● Rewards

● Training data points

● Algorithm: the REINFORCE algorithm[4]

Reference
[4] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine learning, 8(3-4):229–256, 1992.
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How to learn the RL system using the REINFORCE algorithm?  
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How to learn the RL system using the REINFORCE algorithm?  
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Our RMM achieves SOTA performance
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Ablation results: two-level RL performs better than one-level RL 
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Ablation results: transferred policy achieves comparable performance 

“T.P.” denotes our results using the Policy functions Transferred from another dataset.
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Allocated memory: RMM achieves more balanced memory allocation



Thanks!

RMM: Reinforced Memory Management for Class-Incremental Learning

Webpage:   https://class-il.mpi-inf.mpg.de/rmm/ 

Code:          https://gitlab.mpi-klsb.mpg.de/yaoyaoliu/rmm/ 

https://class-il.mpi-inf.mpg.de/rmm/
https://gitlab.mpi-klsb.mpg.de/yaoyaoliu/rmm/

