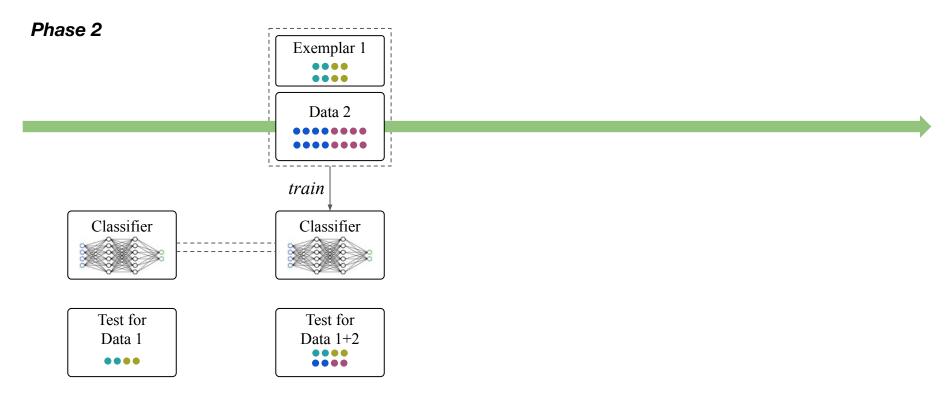


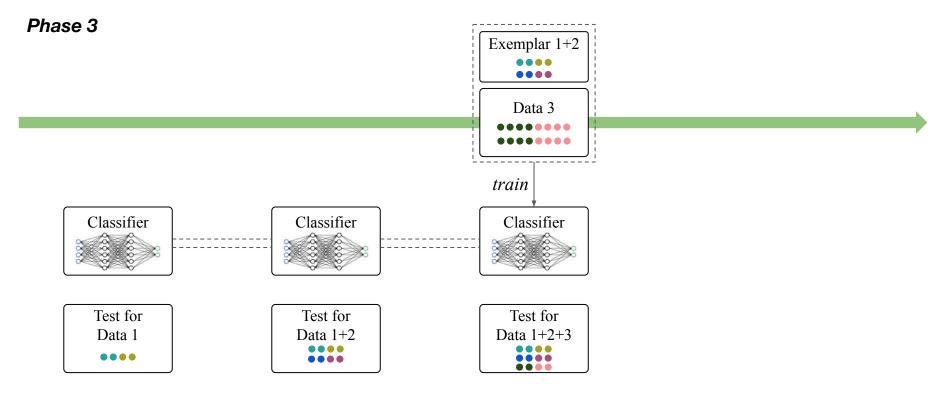
RMM: Reinforced Memory Management for Class-Incremental Learning

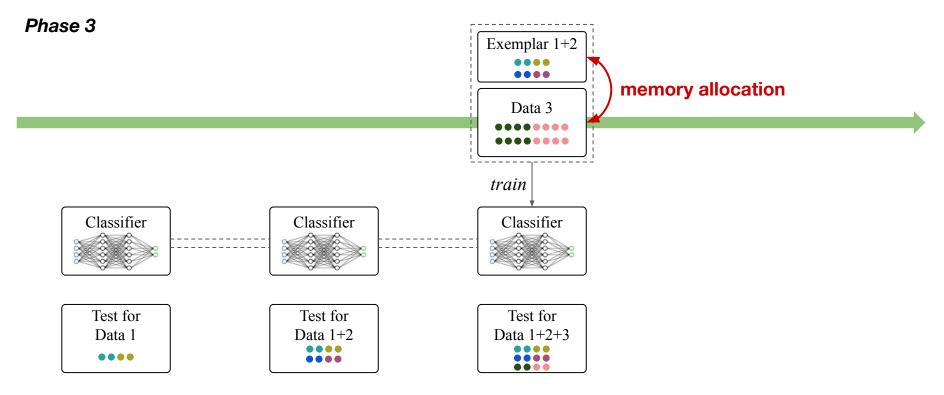
Yaoyao Liu,¹ Bernt Schiele,¹ Qianru Sun²

¹Max Planck Institute for Informatics ²Singapore Management University

Phase 1

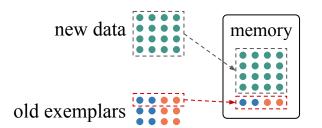






How to allocate the memory between old and new data?

Existing methods [1,2,3] Allocate as much memory as possible for the new-class data



Limitations:

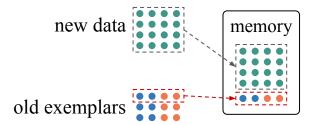
- Imbalance between old and new classes
- Catastrophic forgetting problem

References

[1] Rebuffi, Sylvestre-Alvise, et al. "icarl: Incremental classifier and representation learning." CVPR 2017;
[2] Hou, Saihui, et al. "Learning a unified classifier incrementally via rebalancing." CVPR 2019;
[3] Li, Zhizhong, and Derek Hoiem. "Learning without forgetting." TPAMI 2017.

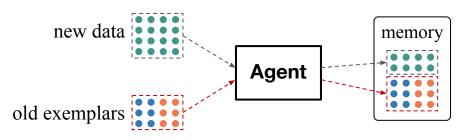
How to allocate the memory between old and new data?

Existing methods [1,2,3] Allocate as much memory as possible for the new-class data



Our method: Reinforced Memory Management (RMM) Learn an agent using reinforcement learning

to manage the memory allocation



Limitations:

- Imbalance between old and new classes
- Catastrophic forgetting problem

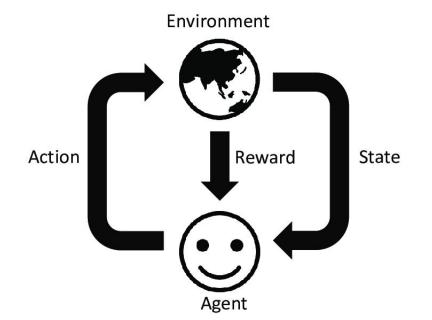
Benefits:

- + Balancing the old and new classes
- + Overcoming the forgetting problem

References

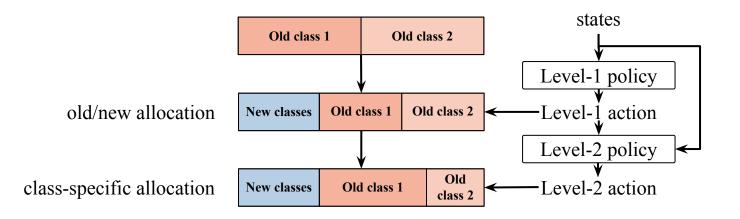
[1] Rebuffi, Sylvestre-Alvise, et al. "icarl: Incremental classifier and representation learning." CVPR 2017;
[2] Hou, Saihui, et al. "Learning a unified classifier incrementally via rebalancing." CVPR 2019;
[3] Li, Zhizhong, and Derek Hoiem. "Learning without forgetting." TPAMI 2017.

What is a reinforcement learning (RL) system?



• Actions

- Level-1: coarse (old/new) allocation
- Level-2: fine-grained (class-specific) allocation



• Actions

• States

- Distinct in each incremental phase
- Transferable between CIL tasks

$$S_i = \left(\frac{\# \text{ new classes}}{\# \text{ old classes}}, \frac{\text{memory for old exemplars}}{\text{total memory}}\right)$$

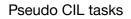
- Actions
- States
- Rewards: the validation accuracy

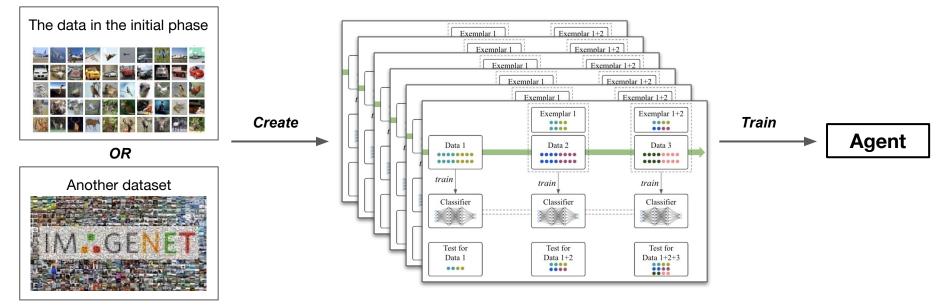
- Actions
- States
- Rewards
- Training data points

Due to the CIL protocol, we're not allowed to use the *historical* and *future* data

Our solution: create many *pseudo CIL tasks*, and train the RL system on them

How to create the pseudo CIL tasks?



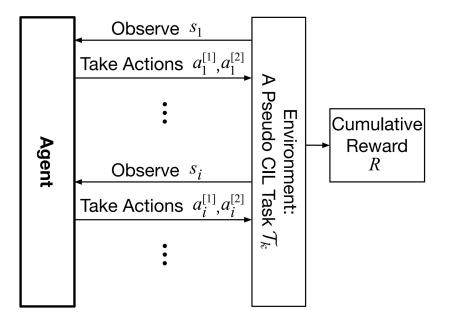


- Actions
- States
- Rewards
- Training data points
- Algorithm: the REINFORCE algorithm^[4]

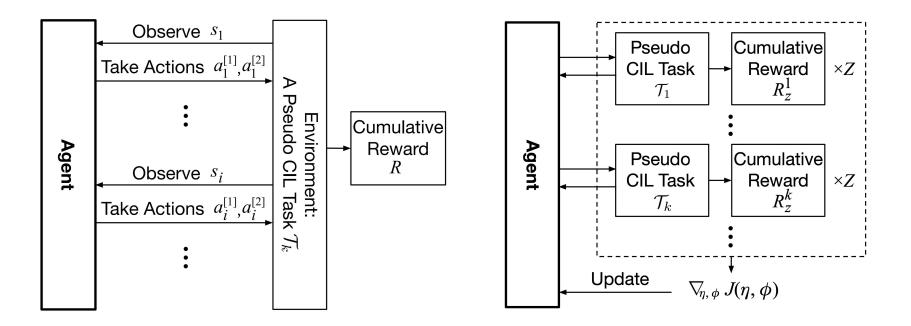
Reference

[4] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine learning, 8(3-4):229–256, 1992.

How to learn the RL system using the REINFORCE algorithm?



How to learn the RL system using the REINFORCE algorithm?



Our RMM achieves SOTA performance

Method	CIFAR-100				ImageNet-Subset					ImageNet-Full			
	N=5	10	25	4	5	10	25		5	10	25		
LwF iCaRL LUCIR Mnemonics PODNet	56.79 60.48 63.34 64.59 64.60	53.05 56.04 62.47 62.59 63.13	50.44 52.07 59.69 61.02 61.96	67 71 72	.83 .33 .21 .60 .45	53.60 62.42 68.21 71.66 74.66	50.16 57.04 64.15 70.52 70.15	5 6 6	2.00 0.57 5.16 5.40 6.80	47.87 48.27 62.34 64.02 64.89	47.49 49.44 57.37 62.05 60.28		
LUCIR-AANets w/ RMM (ours)	66.88 68.42	65.53 67.17	63.92 64.56		.80 .58	69.71 72.83	68.07 72.30	-	5.31 5.81	62.99 64.10	61.21 62.23		
POD-AANets w/ RMM (ours)	66.61 68.86	64.61 67.61	62.63 66.21		.36 .52	75.83 78.47	72.18 76.54		7.97 9.21	65.03 67.45	62.03 63.93		

References

[1] Rebuffi, Sylvestre-Alvise, et al. "icarl: Incremental classifier and representation learning." CVPR 2017;

[2] Hou, Saihui, et al. "Learning a unified classifier incrementally via rebalancing." CVPR 2019;

[3] Li, Zhizhong, and Derek Hoiem. "Learning without forgetting." TPAMI 2017;

[5] Liu, Yaoyao, et al. "Mnemonics training: Multi-class incremental learning without forgetting." CVPR 2020;

[6] Douillard, Arthur, et al. "Podnet: Pooled outputs distillation for small-tasks incremental learning." ECCV 2020;

[7] Liu, Yaoyao, Bernt Schiele, and Qianru Sun. "Adaptive aggregation networks for class-incremental learning." CVPR 2021.

Ablation results: two-level RL performs better than one-level RL

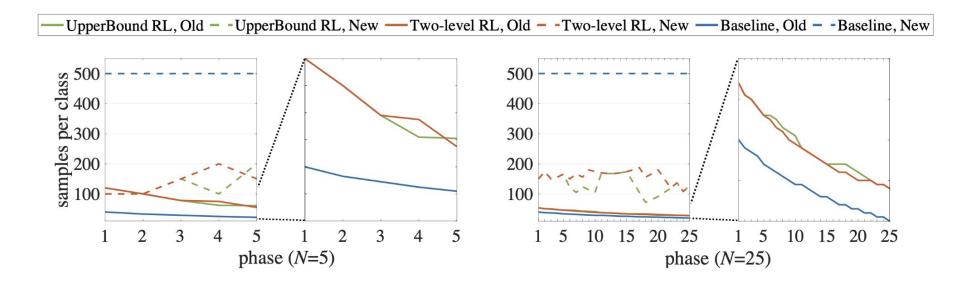
	CIFAR-100							ImagNet-Subset						
Ablation Setting	N=5		10		25		5		10		25			
	Avg	Last	Avg	Last	Avg	Last	Avg	Last	Avg	Last	Avg	Last		
1 BaseRow	66.61	57.81	64.61	55.70	62.63	52.53	77.36	70.02	75.83	68.97	72.18	63.89		
2 One-level RL 3 Two-level RL (Used) <i>margin</i>	67.92 68.86 +2.3	59.00	66.94 67.61 +3		66.21	56.44 56.50 +4		73.80	78.47			67.47 68.84 +5		
4 Two-level RL (T.P.) margin	68.62 +2	59.40 +1.6		58.20 +2.5	65.82 +3.2		78.81 +1.5	72.42 +2.4	77.68 +1.9	70.77 +1.8	75.29 +3.1			
5 UpperBound RL 6 CrossVal Fixed		61.12 58.48	68.36 66.69	60.00 57.19	66.56 65.73	56.74 55.51	80.01 77.96			71.97 69.08	76.99 74.18			

Ablation results: transferred policy achieves comparable performance

	CIFAR-100							ImagNet-Subset						
Ablation Setting	N=5		10		25		5		10		25			
	Avg	Last	Avg	Last	Avg	Last	Avg	Last	Avg	Last	Avg	Last		
1 BaseRow	66.61	57.81	64.61	55.70	62.63	52.53	77.36	70.02	75.83	68.97	72.18	63.89		
2 One-level RL 3 Two-level RL (Used) margin			66.94 67.61 +3	58.31 59.03 +3.3	66.21		78.50 79.52 +2.1	73.80	78.47	71.00 71.40 +2.4	75.47 76.54 +4.4			
4 Two-level RL (T.P.) margin	68.62 +2	59.40 +1.6		58.20 +2.5			78.81 +1.5					68.81 +4.9		
5 UpperBound RL6 CrossVal Fixed		61.12 58.48		60.00 57.19	66.56 65.73	56.74 55.51	80.01 77.96	74.31 70.31	78.95 76.70		76.99 74.18			

"T.P." denotes our results using the Policy functions Transferred from another dataset.

Allocated memory: RMM achieves more balanced memory allocation



Thanks!

