AC-GC: LOSSY ACTIVATION COMPRESSION WITH GUARANTEED CONVERGENCE

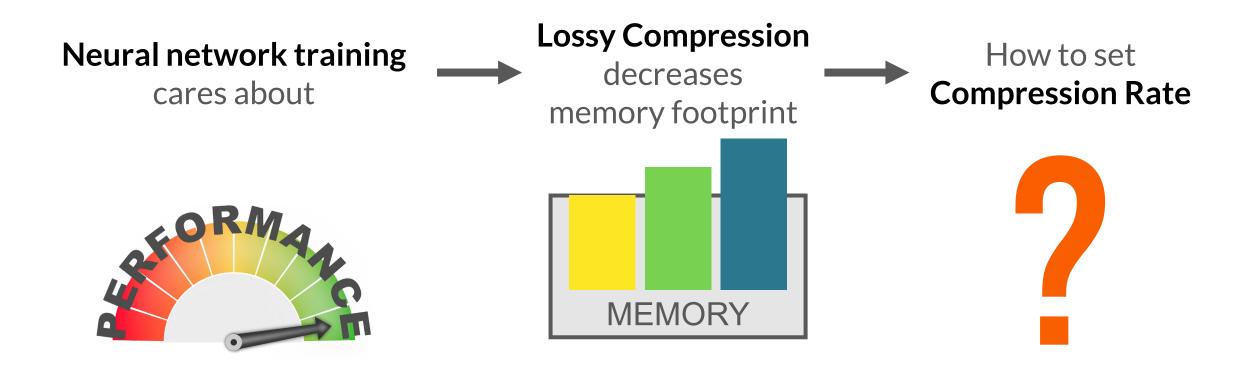
R. David Evans, Tor M. Aamodt

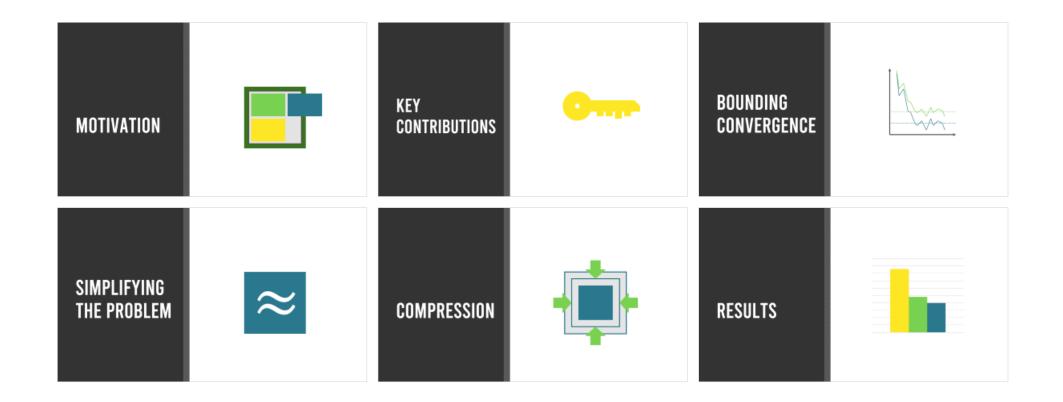
Neural Information Processing Systems (NeurIPS), December 7, 2021 Poster Spot A2, 1630 PST – 1800 PST

THE UNIVERSITY OF BRITISH COLUMBIA

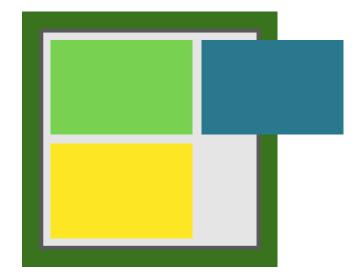
Electrical and Computer Engineering

AC-GC: IN A NUTSHELL



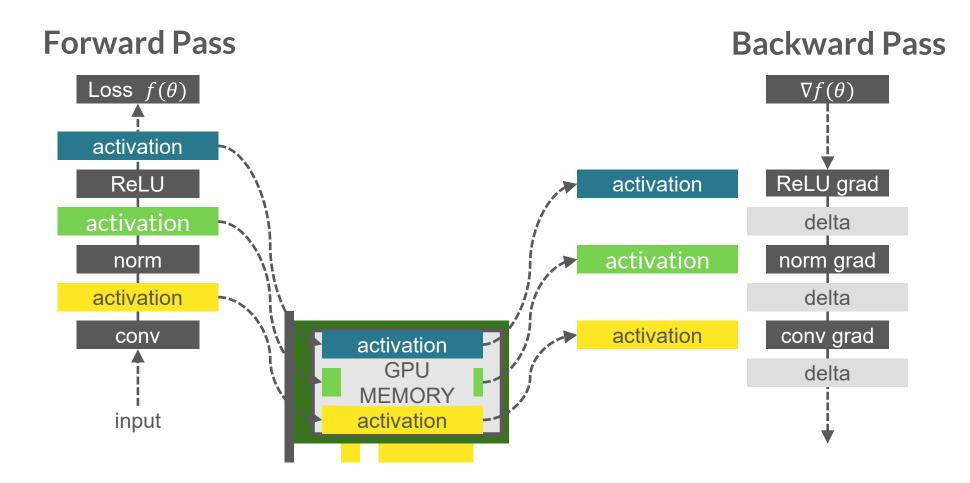


MOTIVATION



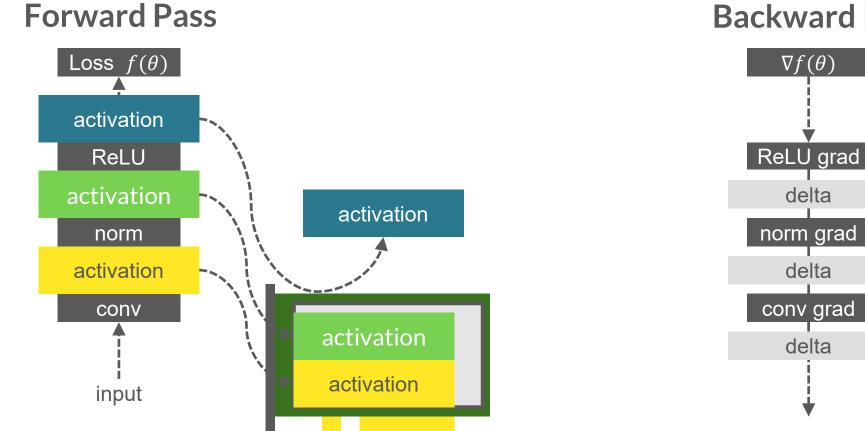
ACTIVATIONS DURING TRAINING

Activations are memoized layer outputs from the forward pass



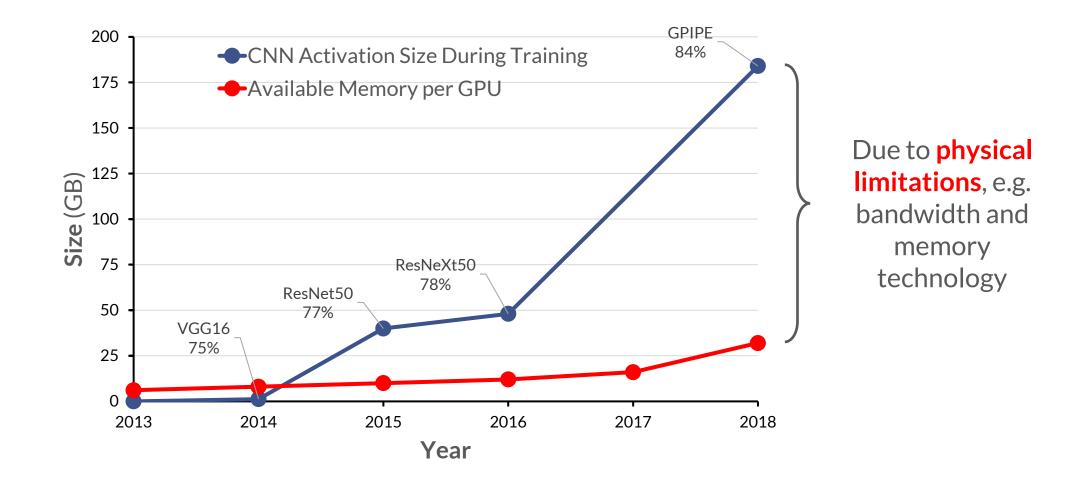
LOSSY ACTIVATION COMPRESSION

Larger networks and larger batch sizes mean more activations

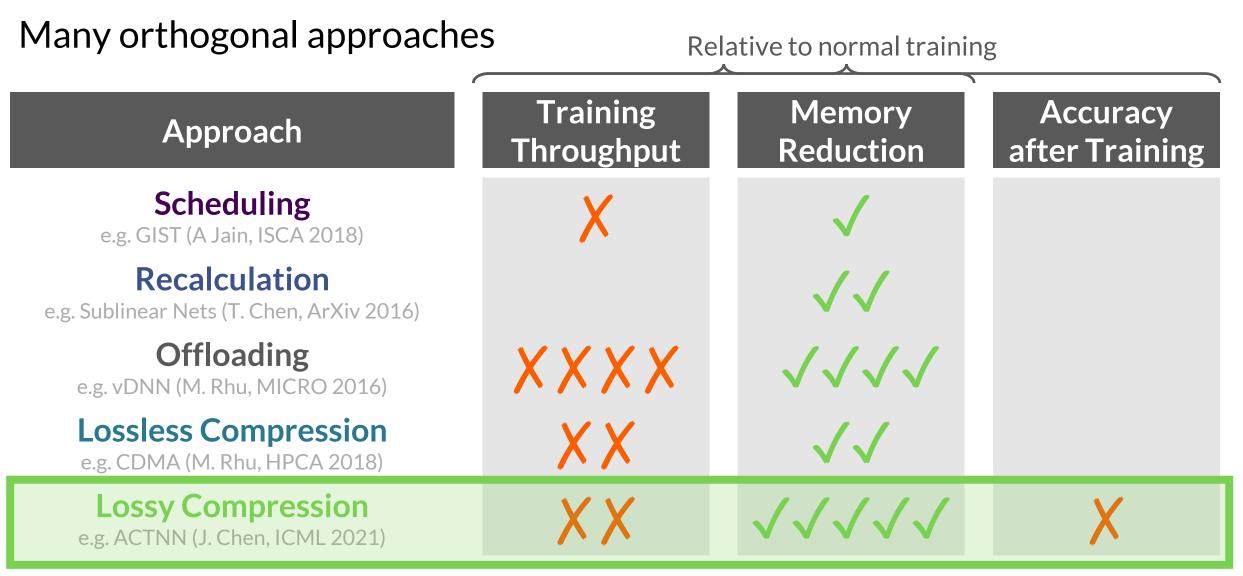


Backward Pass

THE ACCELERATOR MEMORY WALL



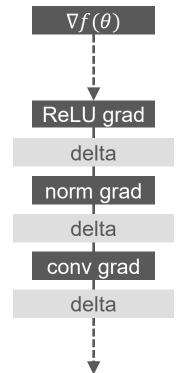
DECREASING ACTIVATION MEMORY



LOSSY ACTIVATION COMPRESSION

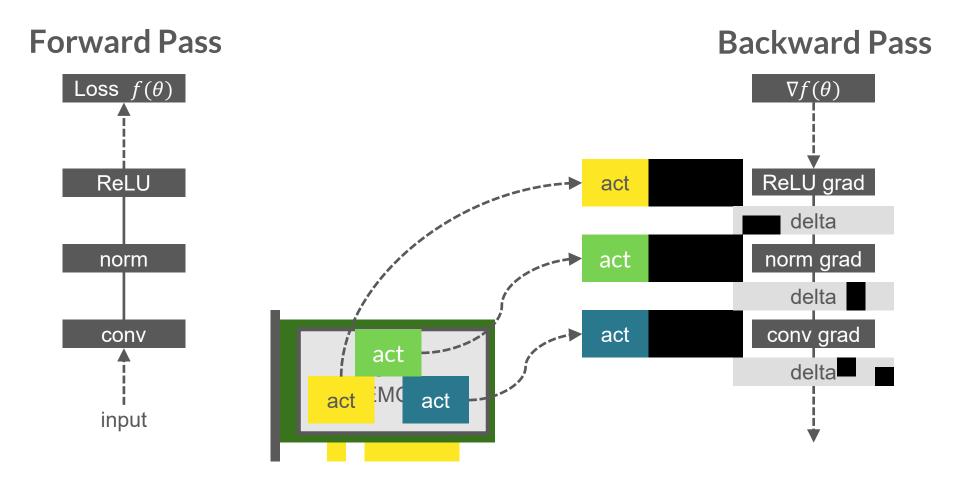
Discard some data, and compress





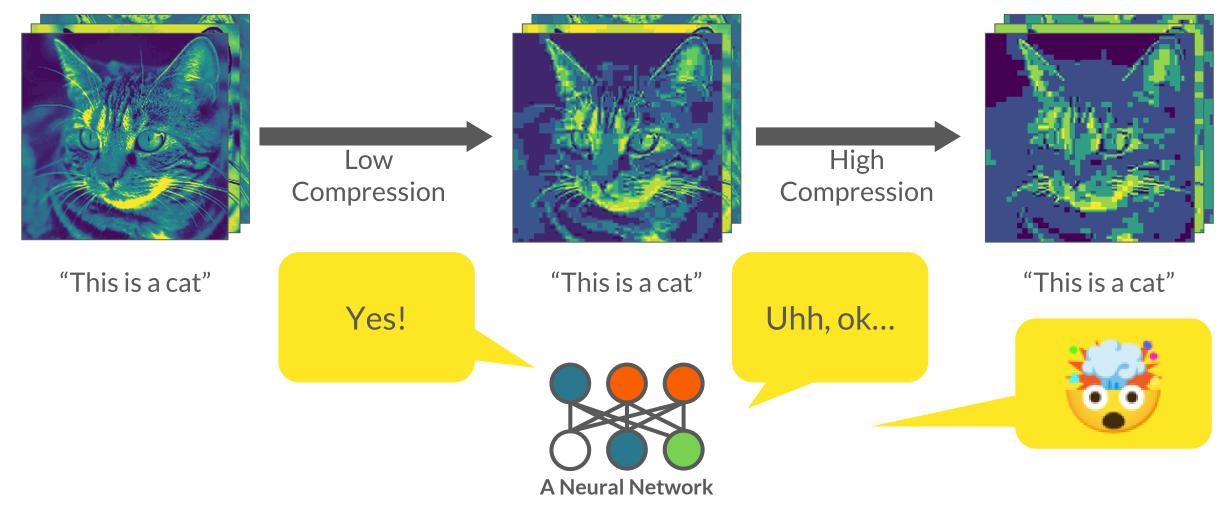
LOSSY ACTIVATION COMPRESSION

Discard some data, and compress

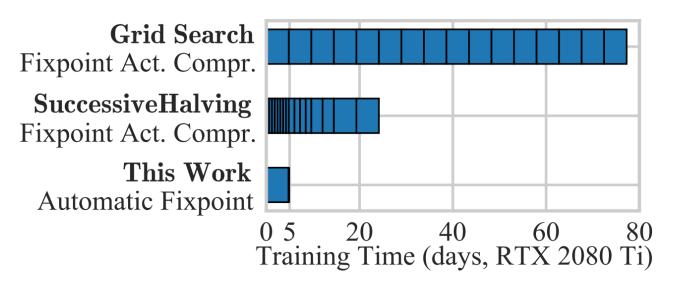


DRAWBACKS OF LOSSY COMPRESSION

How to avoid explosions during training?



TUNING THE COMPRESSION RATE IS HARD



Compression rate search cost. Each box indicates a different compression rate (1- to 16-bit fixpoint)

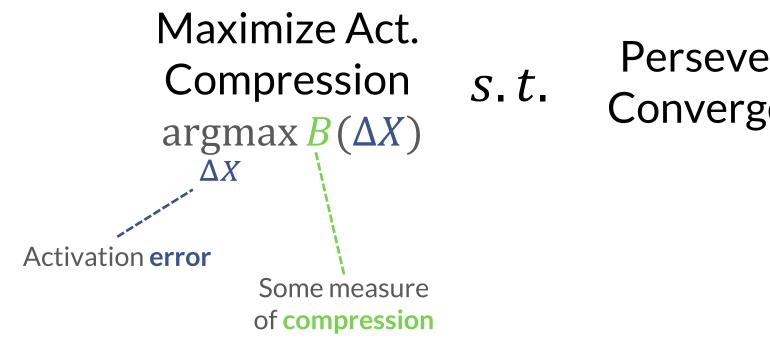
KEY Contributions

CONSTRAINED OPTIMIZATION FOR LOSSY ACTIVATIONS

Maximize Act. Compression s.t. $argmax B(\Delta X)$ ΔX Persevering Convergence

Goal: An efficient way to get compression rate from convergence

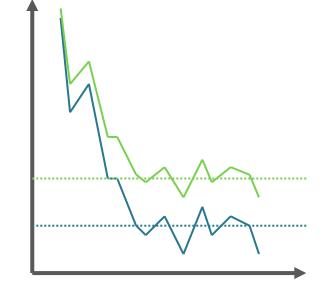
CONSTRAINED OPTIMIZATION FOR LOSSY ACTIVATIONS



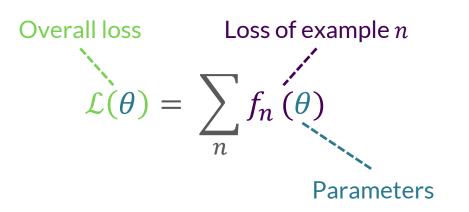
KEY INSIGHT: ALLOW LOSS TO INCREASE

Takes advantage of SGD convergence behaviour

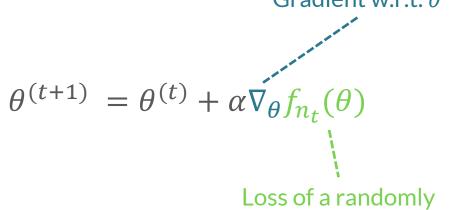
BOUNDING Convergence



STOCHASTIC GRADIENT DESCENT NOTATION



Loss is a finite sum



selected training example

SGD THEORETICAL CONVERGENCE RATES

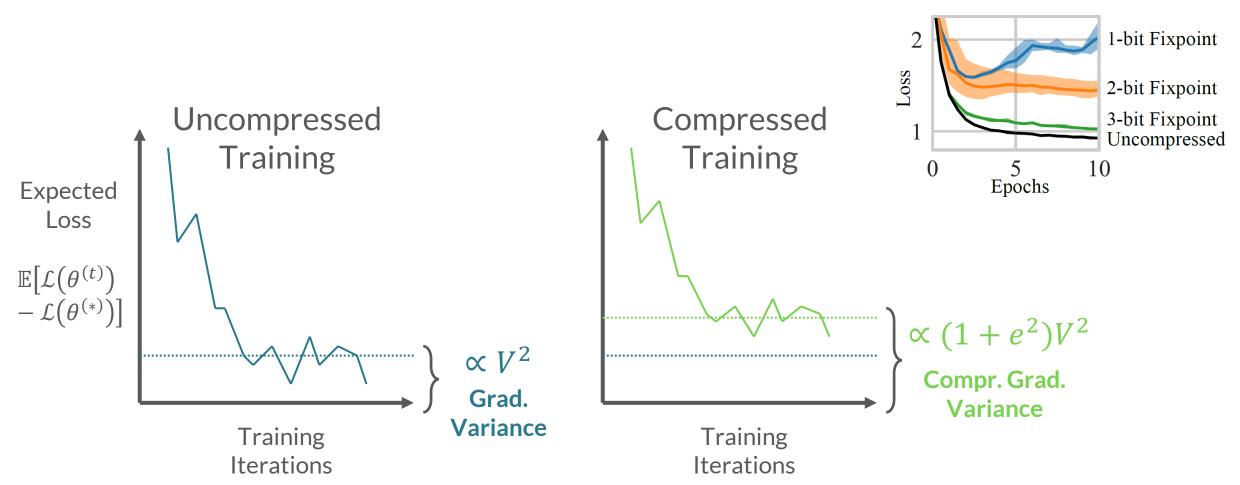
Many results on SGD convergence rates, we use:

$$\mathbb{E}\left[\mathcal{L}\left(\boldsymbol{\theta}^{(t)}\right) - \mathcal{L}\left(\boldsymbol{\theta}^{(*)}\right)\right] \leq \left(1 - C_1 \alpha\right)^t \left(\mathcal{L}\left(\boldsymbol{\theta}^{(0)}\right) - \mathcal{L}\left(\boldsymbol{\theta}^{(*)}\right)\right) + C_2 \alpha V^2$$

*C*₁, *C*₂: Constants *V*²: Gradient Variance

[1] H Karimi, J Nutini, M Schmidt, "Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition," ECML PKDD 2016

ALLOWING ERRORS FOR COMPRESSION



CIFAR10/ResNet50

GRADIENT VARIANCE

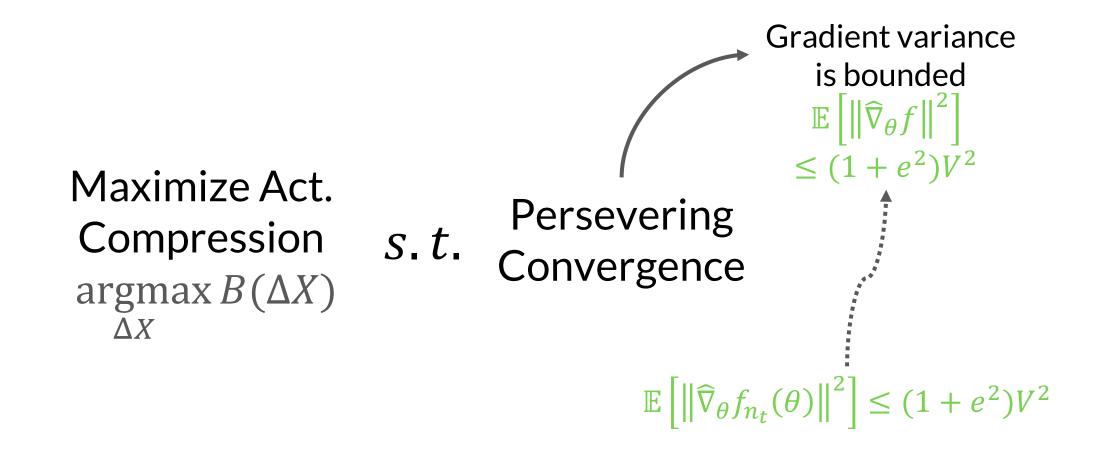
Compressed training can be viewed as SGD with increased variance

From Karimi et. al:

Gradient "variance" is bounded: $\mathbb{E}\left[\left\|\nabla_{\theta} f_{n_t}(\theta)\right\|^2\right] \leq V^2$

> Under compression: $\mathbb{E}\left[\left\|\widehat{\nabla}_{\theta}f_{n_{t}}(\theta)\right\|^{2}\right] \leq (1+e^{2})V^{2}$

CONSTRAINED OPTIMIZATION FOR LOSSY ACTIVATIONS



ERROR-VARIANCE RELATIONSHIP

Using an additive gradient error:

 $\widehat{\nabla}_{\theta} f \equiv \nabla_{\theta} f + \Delta \nabla_{\theta} f$

(some math with expectations and norms)

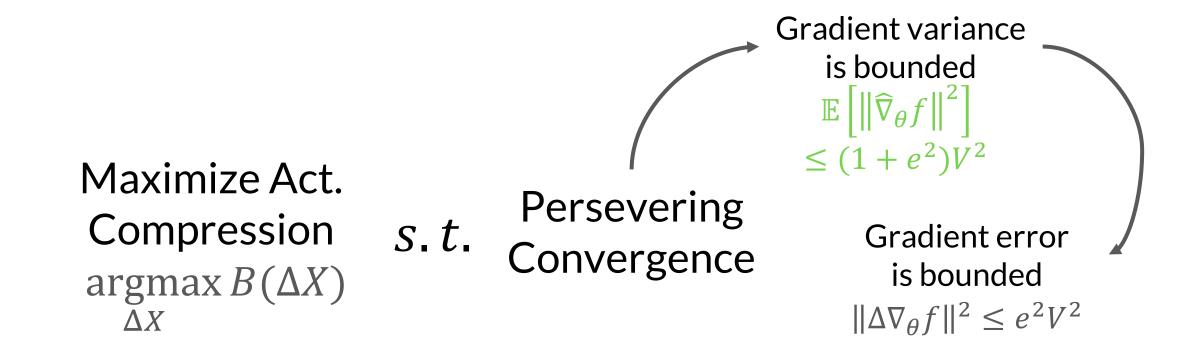
The constraint on variance:

 $\mathbb{E}[\|\nabla_{\theta}f + \Delta\nabla_{\theta}f\|^2] \le (1 + e^2)V^2$

Is satisfied by:

 $\|\Delta \nabla_{\theta} f\|^2 \le e^2 V^2$

CONSTRAINED OPTIMIZATION FOR LOSSY ACTIVATIONS



SIMPLIFYING The problem

BOUNDING FUNCTION

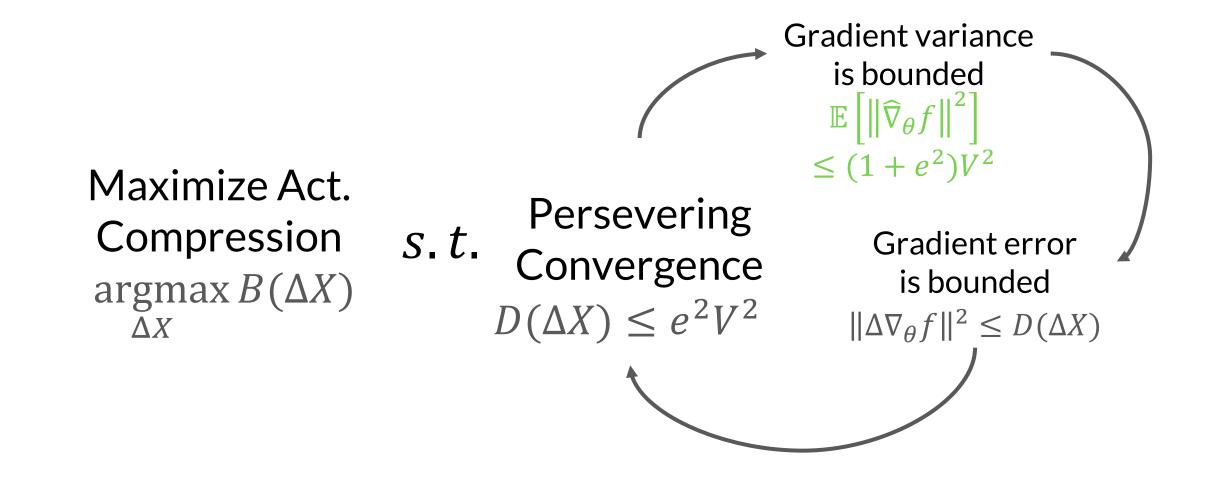
Gradient error is related to activation error Now we just need to calculate it for a layer, e.g., convolution...

$$\|\Delta \nabla_{\theta} f\|^{2} = \frac{\sum_{k,c,r,s}^{K,C,R,S} \left(\sum_{n,h,w}^{N,H,W} \Delta x_{n,c,h+r,w+s} \frac{\partial f}{\partial y_{nkhw}}\right)^{2}}{\sum_{k,c,r,s}^{K,C,R,S} \left(\sum_{n,h,w}^{N,H,W} \Delta x_{n,c,h+r,w+s} \frac{\partial f}{\partial y_{nkhw}}\right)^{2}} \le e^{2}V^{2}$$

which is not very useful... the solution is not closed-form. Instead use:

$$\|\Delta \nabla_{\theta} f\|^2 \le D(\Delta X) \le e^2 V^2 \longrightarrow$$
 Where we find $D(\Delta X)$ that is as close as possible to the error norm.

CONSTRAINED OPTIMIZATION FOR LOSSY ACTIVATIONS

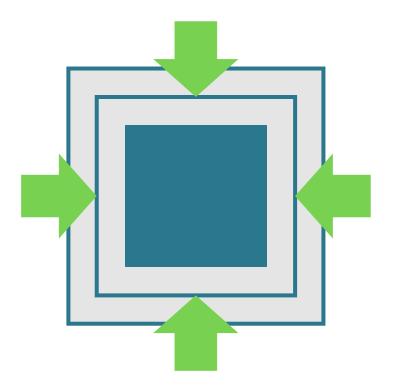


APPROXIMATING NORMS

Two Issues with calculating activation errors this way:



COMPRESSION



COMPRESSION METRIC

Choose B given that most methods use precision reduction

 $B(\Delta X) \propto Number of bits removed$

$$B(\Delta X) \equiv \sum_{i} \log |\Delta x_i|$$

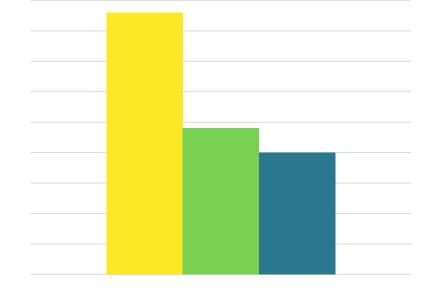
COMPRESSION METHODS

Case studies on activation error-bounded compression methods

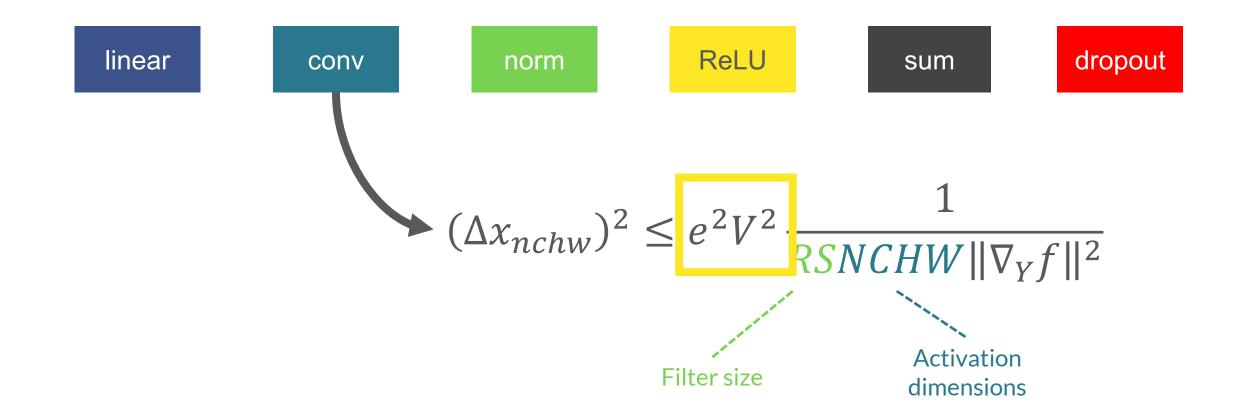


[2] S. Jin, G. Li, S. L. Song, D. Tao, "A Novel Memory-Efficient Deep Learning Training Framework via Error-Bounded Lossy Compression", in ArXiv 2020

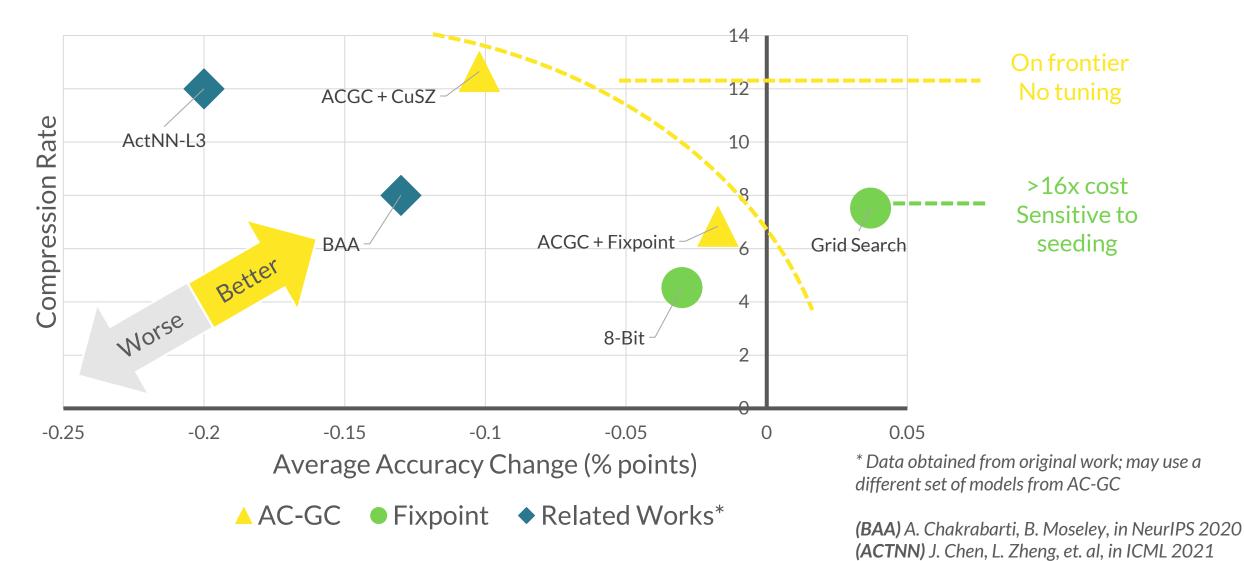
RESULTS



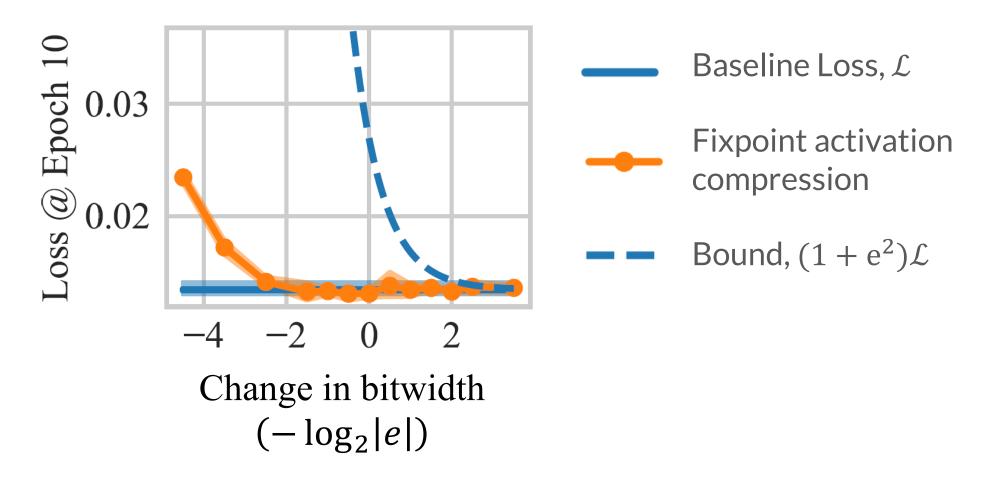
ERROR BOUNDS ARE DERIVED PER-LAYER



ACCURACY AND COMPRESSION



THEORETICAL VERSUS EMPIRICAL (MNIST)



Bounds are empirically satisfied

For more information, come to our poster!

AC-GC: Lossy Activation Compression with Guaranteed Convergence R. David Evans, Tor M. Aamodt

Neural Information Processing Systems (NeurIPS), Dec 7, 2021 **Poster Spot A2, 1630 PST – 1800 PST**

Aamodt cessing Systems

THE UNIVERSITY OF BRITISH COLUMBIA

Electrical and Computer Engineering

THANK YOU

