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PAC model [Valiant’84] :- Given a training samples (x, f(x)) ~ distn. D, efficiently 
output h s.t. PrD[h(x) = f(x)] ≥ 1 -  δ  , ∀ δ > 0.  (f, h : ℝd, {0,1}d→ {0,1})

● If so, class of { f } can be learnt by class of { h }. 
● linear threshold functions (LTFs) a.k.a. halfspaces can be learnt by LTFs
● 2-term DNFs can be learnt by degree-2 polynomial threshold fns. (PTFs)

 OR of two ANDs 

E.g. (x1 ∧¬x2) ∨(x2 ∧ ¬x3 ∧ x4)

Degree-t PTF : pos(p(x)) where p(x) is deg.-t polynomial

E.g. deg.-2 PTF: pos( x2
1+ x2 - 4x3 + 7 )
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Motivation and Problem Definition

PAC model [Valiant’84] :- Given a training samples (x, f(x)) ~ distn. D, efficiently 
output h s.t. PrD[h(x) = f(x)] ≥ 1 -  δ  , ∀ δ > 0.  (f, h : ℝd, {0,1}d→ {0,1})

● If so, class of { f } can be learnt by class of { h }. 

What if only aggregate training labels for collections (bags) of feature vecs.?

● Privacy [Wojtusiak et al.’11] [Rueping’10] constraints
● Labeling Cost [Chen et al.’04],  lack of instrumentation [Dery et al.’17]
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● Feature-vector space 𝒳  =   ℝd, {0,1}d    Bags ℬ = 2𝒳. 
● f : 𝒳→ {0,1}  , define σ(B,f) ≔ Avg{f(x) : x ∈ B}   for B ∈ ℬ
● Training examples (B, σ(B,f)), goal is to train h consistent with f.
● h : 𝒳→ {0,1} satisfies B if σ(B,h) = σ(B,f)

Goal: Given (Bk, σ(Bk,f)) sampled from some distribution,  (k=1,...,m)
         

find hypothesis h : 𝒳 →{0,1} maximizing # satisfied bags Bk.

● Weaker notions of bag consistency [Yu et al.’14]
● Strict consistency makes sense for small bags.
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Question: In the noiseless LLP setting, what is the complexity of learning LTF?

Our Answer: Drastically harder, even if only bags of size ≤ 2 are allowed.

● Linear programming doesn’t work (don’t know feature-vector labels)

Our Algorithmic Results: 

Given instance ({(Bk , σ(Bk,f))} : k = 1,...,m) s.t. |Bk| ≤ 2, f is unknown LTF:

● Efficient algorithm that finds an LTF h satisfying ⅖ fraction of all the bags.
● If all bags are non-monochromatic then h satisfies ½ frac.
● (Trivial) easy to find an LTF satisfying all monochromatic bags.

Question: Can we do better?
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Our (Main) Hardness Result: 

Given an instance of LLP-LTF over 𝒳  =  {0,1}d

● consisting only of non-monochromatic bags, 
● each bag of size 2, s.t. 
● there is a monotone OR that satisfies all bags, 

it is NP-hard to find any boolean function of q LTFs that

 satisfies (1/2 + δ)-fraction of the bags, for any constants q ∈ ℤ+, δ > 0.

LLP-LTF is provably hard to approximate even for a very special case.
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LLP Learnability of Linear Thresholds (LLP-LTF)

Proof idea: Start with Label-Cover ℒ: NP-hard 2-variable CSP 

Replace each variable of ℒ with a group of coordinates. 

Transform each “edge” of ℒ into a sub-instance of LLP-LTF. 

Use a bespoke dictatorship test : 

● any satisfying labeling to the edge corresponds to solution of sub-instance
● any good enough solution to sub-instance can be independently decoded to a 

satisfying labeling to the edge (with significant probability).

Final instance : union of all sub-instances.

Tools: anti-concentration, multi-dim. Berry-Esseen
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Algorithm (Bags of size ≤ 2)

m : # bags, s : # non-monochromatic bags 

(Trivial Algorithm) Given instance of LLP-LTF easy to find (using LP) an LTF which 
satisfies all the (m-s) monochromatic bags

Main Algorithm 𝒜 :  Given LLP-LTF instance computes in poly-time an LTF that 
satisfies in expectation (s/2 + (m-s)/4) bags

⅖ -approximation: If (m-s) ≥ (⅖)m use Trivial Algo., else use 𝒜.
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Append 1 to each feature vector x so that the satisfying LTF is pos(〈r*, x〉)

Assume that training points are classified with non-zero margin by pos(〈r*, x〉)

Suppose xi and xj are in a bag B. Then,

〈r*, xi 〉〈r*, xj〉< 0 if B is non-monochromatic and 〈r*, xi 〉〈r*, xj〉 > 0 o/w

i.e. the following SDP over symmetric psd R :

(xi)TR xj < 0 for all non-mon. bags {xi, xj}

(xi)TR xj > 0 for all mon. bags {xi, xj}

is feasible with at least one solution R = r* r*T 
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Main Algorithm 𝒜

Solve the SDP for symmetric psd R and factor it as R = ATA

Thus, 

〈Axi, Axj〉< 0 for all non-mon. bags {xi, xj}

〈Axi, Axj〉> 0 for all mon. bags {xi, xj}

Sample g as a random standard Gaussian vector.

Prg[pos(〈Axi, g〉) ≠ pos(〈Axj, g〉)] > ½  for all non-mon. bags {xi, xj}

Prg[pos(〈Axi, g〉) = pos(〈Axj, g〉)] > ½  for all mon. bags {xi, xj}
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h and h’ both satisfy the special non-monochromatic bags.



Main Algorithm 𝒜

Define LTFs h(x)  = pos(〈Ax, g〉), h’(x) = pos( -〈Ax, g〉)

h and h’ both satisfy the special non-monochromatic bags.

One of h and h’ satisfies at least ½ of the special monochromatic bags. 

Taking the best out of h and h’ gives the desired random LTF.



Future Directions

Bridge the gap b/w ⅖ (algo) and ½ (hardness) for LLP-LTF on size ≤ 2 bags.

Extend to algo to larger sized bags (possibly more sophisticated techniques).

Other classifiers: degree-d PTFs, DNF formulas, decision trees, neural-nets ..



Thank You!


