
Learnability of Linear Thresholds
from Label Proportions

Rishi Saket
Google Research
Bangalore, India

NeurIPS 2021

Motivation and Problem Definition

PAC model [Valiant’84] :- Given a training samples (x, f(x)) ~ distn. D, efficiently
output h s.t. PrD[h(x) = f(x)] ≥ 1 - δ , ∀ δ > 0. (f, h : ℝd, {0,1}d→ {0,1})

Motivation and Problem Definition

PAC model [Valiant’84] :- Given a training samples (x, f(x)) ~ distn. D, efficiently
output h s.t. PrD[h(x) = f(x)] ≥ 1 - δ , ∀ δ > 0. (f, h : ℝd, {0,1}d→ {0,1})

● If so, class of { f } can be learnt by class of { h }.

Motivation and Problem Definition

PAC model [Valiant’84] :- Given a training samples (x, f(x)) ~ distn. D, efficiently
output h s.t. PrD[h(x) = f(x)] ≥ 1 - δ , ∀ δ > 0. (f, h : ℝd, {0,1}d→ {0,1})

● If so, class of { f } can be learnt by class of { h }.
● linear threshold functions (LTFs) a.k.a. halfspaces can be learnt by LTFs

LTF : pos(〈r, x〉+ c) where pos(a) = 1 if a > 0, 0 otherwise.

E.g. pos(2x1+ 3x2 - x3 + 2)

Motivation and Problem Definition

PAC model [Valiant’84] :- Given a training samples (x, f(x)) ~ distn. D, efficiently
output h s.t. PrD[h(x) = f(x)] ≥ 1 - δ , ∀ δ > 0. (f, h : ℝd, {0,1}d→ {0,1})

● If so, class of { f } can be learnt by class of { h }.
● linear threshold functions (LTFs) a.k.a. halfspaces can be learnt by LTFs
● 2-term DNFs can be learnt by degree-2 polynomial threshold fns. (PTFs)

 OR of two ANDs

E.g. (x1 ∧¬x2) ∨(x2 ∧ ¬x3 ∧ x4)

Degree-t PTF : pos(p(x)) where p(x) is deg.-t polynomial

E.g. deg.-2 PTF: pos(x2
1+ x2 - 4x3 + 7)

Motivation and Problem Definition

PAC model [Valiant’84] :- Given a training samples (x, f(x)) ~ distn. D, efficiently
output h s.t. PrD[h(x) = f(x)] ≥ 1 - δ , ∀ δ > 0. (f, h : ℝd, {0,1}d→ {0,1})

● If so, class of { f } can be learnt by class of { h }.

Motivation and Problem Definition

PAC model [Valiant’84] :- Given a training samples (x, f(x)) ~ distn. D, efficiently
output h s.t. PrD[h(x) = f(x)] ≥ 1 - δ , ∀ δ > 0. (f, h : ℝd, {0,1}d→ {0,1})

● If so, class of { f } can be learnt by class of { h }.

What if only aggregate training labels for collections (bags) of feature vecs.?

● Privacy [Wojtusiak et al.’11] [Rueping’10] constraints
● Labeling Cost [Chen et al.’04], lack of instrumentation [Dery et al.’17]

Learning from Label Proportions (LLP)

● Feature-vector space 𝒳 = ℝd, {0,1}d Bags ℬ = 2𝒳.

Learning from Label Proportions (LLP)

● Feature-vector space 𝒳 = ℝd, {0,1}d Bags ℬ = 2𝒳.
● f : 𝒳→ {0,1} , define σ(B,f) ≔ Avg{f(x) : x ∈ B} for B ∈ ℬ

Learning from Label Proportions (LLP)

● Feature-vector space 𝒳 = ℝd, {0,1}d Bags ℬ = 2𝒳.
● f : 𝒳→ {0,1} , define σ(B,f) ≔ Avg{f(x) : x ∈ B} for B ∈ ℬ
● Training examples (B, σ(B,f)), goal is to train h consistent with f.
● h : 𝒳→ {0,1} satisfies B if σ(B,h) = σ(B,f)

Learning from Label Proportions (LLP)

● Feature-vector space 𝒳 = ℝd, {0,1}d Bags ℬ = 2𝒳.
● f : 𝒳→ {0,1} , define σ(B,f) ≔ Avg{f(x) : x ∈ B} for B ∈ ℬ
● Training examples (B, σ(B,f)), goal is to train h consistent with f.
● h : 𝒳→ {0,1} satisfies B if σ(B,h) = σ(B,f)

Goal: Given (Bk, σ(Bk,f)) sampled from some distribution, (k=1,...,m)

find hypothesis h : 𝒳 →{0,1} maximizing # satisfied bags Bk.

Learning from Label Proportions (LLP)

● Feature-vector space 𝒳 = ℝd, {0,1}d Bags ℬ = 2𝒳.
● f : 𝒳→ {0,1} , define σ(B,f) ≔ Avg{f(x) : x ∈ B} for B ∈ ℬ
● Training examples (B, σ(B,f)), goal is to train h consistent with f.
● h : 𝒳→ {0,1} satisfies B if σ(B,h) = σ(B,f)

Goal: Given (Bk, σ(Bk,f)) sampled from some distribution, (k=1,...,m)

find hypothesis h : 𝒳 →{0,1} maximizing # satisfied bags Bk.

● Weaker notions of bag consistency [Yu et al.’14]
● Strict consistency makes sense for small bags.

Learnability of Linear Thresholds

Our study: f is LTF and h is also LTF

Learnability of Linear Thresholds

Our study: f is LTF and h is also LTF

PAC Learning (bags of size 1 only)

● LTF is efficiently learnable using LTF to arbitrary accuracy
● Linear Programming can find LTF satisfying all training examples.

Learnability of Linear Thresholds

Our study: f is LTF and h is also LTF

PAC Learning (bags of size 1 only)

● LTF is efficiently learnable using LTF to arbitrary accuracy
● Linear Programming can find LTF satisfying all training examples.

Hardness of PAC learning LTFs

● In presence of adversarial ε-noise, NP-hard to compute any constant degree
PTF with accuracy ½ + δ, for any const. δ > 0 [Bhattacharyya Ghoshal S.’18]

○ Improves on [Guruswami-Raghavendra’06, Feldman et al.’06, Diakonikolas et al.’11]

Learnability of Linear Thresholds

Our study: f is LTF and h is also LTF

PAC Learning (bags of size 1 only)

● LTF is efficiently learnable using LTF to arbitrary accuracy
● Linear Programming can find LTF satisfying all training examples.

Hardness of PAC learning LTFs

● In presence of adversarial ε-noise, NP-hard to compute any constant degree
PTF with accuracy ½ + δ, for any const. δ > 0 [Bhattacharyya Ghoshal S.’18]

○ Improves on [Guruswami-Raghavendra’06, Feldman et al.’06, Diakonikolas et al.’11]

Question: In the noiseless LLP setting, what is the complexity of learning LTF?

LLP Learnability of Linear Thresholds (LLP-LTF)

Question: In the noiseless LLP setting, what is the complexity of learning LTF?

Our Answer: Drastically harder, even if only bags of size ≤ 2 are allowed.

LLP Learnability of Linear Thresholds (LLP-LTF)

Question: In the noiseless LLP setting, what is the complexity of learning LTF?

Our Answer: Drastically harder, even if only bags of size ≤ 2 are allowed.

● Linear programming doesn’t work (don’t know feature-vector labels)

LLP Learnability of Linear Thresholds (LLP-LTF)

Question: In the noiseless LLP setting, what is the complexity of learning LTF?

Our Answer: Drastically harder, even if only bags of size ≤ 2 are allowed.

● Linear programming doesn’t work (don’t know feature-vector labels)

Our Algorithmic Results:

Given instance ({(Bk , σ(Bk,f))} : k = 1,...,m) s.t. |Bk| ≤ 2, f is unknown LTF:

● Efficient algorithm that finds an LTF h satisfying ⅖ fraction of all the bags.

LLP Learnability of Linear Thresholds (LLP-LTF)

Question: In the noiseless LLP setting, what is the complexity of learning LTF?

Our Answer: Drastically harder, even if only bags of size ≤ 2 are allowed.

● Linear programming doesn’t work (don’t know feature-vector labels)

Our Algorithmic Results:

Given instance ({(Bk , σ(Bk,f))} : k = 1,...,m) s.t. |Bk| ≤ 2, f is unknown LTF:

● Efficient algorithm that finds an LTF h satisfying ⅖ fraction of all the bags.
● If all bags are non-monochromatic then h satisfies ½ frac.
● (Trivial) easy to to find an LTF satisfying all monochromatic bags.

LLP Learnability of Linear Thresholds (LLP-LTF)

Question: In the noiseless LLP setting, what is the complexity of learning LTF?

Our Answer: Drastically harder, even if only bags of size ≤ 2 are allowed.

● Linear programming doesn’t work (don’t know feature-vector labels)

Our Algorithmic Results:

Given instance ({(Bk , σ(Bk,f))} : k = 1,...,m) s.t. |Bk| ≤ 2, f is unknown LTF:

● Efficient algorithm that finds an LTF h satisfying ⅖ fraction of all the bags.
● If all bags are non-monochromatic then h satisfies ½ frac.
● (Trivial) easy to find an LTF satisfying all monochromatic bags.

Question: Can we do better?

LLP Learnability of Linear Thresholds (LLP-LTF)

Our (Main) Hardness Result:

Given an instance of LLP-LTF over 𝒳 = {0,1}d

● consisting only of non-monochromatic bags,
● each bag of size 2, s.t.
● there is a monotone OR that satisfies all bags,

LLP Learnability of Linear Thresholds (LLP-LTF)

Our (Main) Hardness Result:

Given an instance of LLP-LTF over 𝒳 = {0,1}d

● consisting only of non-monochromatic bags,
● each bag of size 2, s.t.
● there is a monotone OR that satisfies all bags,

it is NP-hard to find any boolean function of q LTFs that

 satisfies (1/2 + δ)-fraction of the bags, for any constants q ∈ ℤ+, δ > 0.

LLP-LTF is provably hard to approximate even for a very special case.

LLP Learnability of Linear Thresholds (LLP-LTF)

Proof idea: Start with Label-Cover ℒ: NP-hard 2-variable CSP

Replace each variable of ℒ with a group of coordinates.

Transform each “edge” of ℒ into a sub-instance of LLP-LTF.

LLP Learnability of Linear Thresholds (LLP-LTF)

Proof idea: Start with Label-Cover ℒ: NP-hard 2-variable CSP

Replace each variable of ℒ with a group of coordinates.

Transform each “edge” of ℒ into a sub-instance of LLP-LTF.

Use a bespoke dictatorship test :

● any satisfying labeling to the edge corresponds to solution of sub-instance
● any good enough solution to sub-instance can be independently decoded to a

satisfying labeling to the edge (with significant probability).

Final instance : union of all sub-instances.

Tools: anti-concentration, multi-dim. Berry-Esseen

Algorithm (Bags of size ≤ 2)

m : # bags, s : # non-monochromatic bags

(Trivial Algorithm) Given instance of LLP-LTF easy to find (using LP) an LTF which
satisfies all the (m-s) monochromatic bags

Algorithm (Bags of size ≤ 2)

m : # bags, s : # non-monochromatic bags

(Trivial Algorithm) Given instance of LLP-LTF easy to find (using LP) an LTF which
satisfies all the (m-s) monochromatic bags

Main Algorithm 𝒜 : Given LLP-LTF instance computes in poly-time an LTF that
satisfies in expectation (s/2 + (m-s)/4) bags

⅖ -approximation: If (m-s) ≥ (⅖)m use Trivial Algo., else use 𝒜.

Main Algorithm 𝒜
Append 1 to each feature vector x so that the satisfying LTF is pos(〈r*, x〉)

Assume that training points are classified with non-zero margin by pos(〈r*, x〉)

Main Algorithm 𝒜
Append 1 to each feature vector x so that the satisfying LTF is pos(〈r*, x〉)

Assume that training points are classified with non-zero margin by pos(〈r*, x〉)

Suppose xi and xj are in a bag B. Then,

〈r*, xi 〉〈r*, xj〉< 0 if B is non-monochromatic and 〈r*, xi 〉〈r*, xj〉 > 0 o/w

Main Algorithm 𝒜
Append 1 to each feature vector x so that the satisfying LTF is pos(〈r*, x〉)

Assume that training points are classified with non-zero margin by pos(〈r*, x〉)

Suppose xi and xj are in a bag B. Then,

〈r*, xi 〉〈r*, xj〉< 0 if B is non-monochromatic and 〈r*, xi 〉〈r*, xj〉 > 0 o/w

i.e. the following SDP over symmetric psd R :

(xi)TR xj < 0 for all non-mon. bags {xi, xj}

(xi)TR xj > 0 for all mon. bags {xi, xj}

is feasible with at least one solution R = r* r*T

Main Algorithm 𝒜

Solve the SDP for symmetric psd R and factor it as R = ATA

Thus,

〈Axi, Axj〉< 0 for all non-mon. bags {xi, xj}

〈Axi, Axj〉> 0 for all mon. bags {xi, xj}

Main Algorithm 𝒜

Solve the SDP for symmetric psd R and factor it as R = ATA

Thus,

〈Axi, Axj〉< 0 for all non-mon. bags {xi, xj}

〈Axi, Axj〉> 0 for all mon. bags {xi, xj}

Sample g as a random standard Gaussian vector.

Prg[pos(〈Axi, g〉) ≠ pos(〈Axj, g〉)] > ½ for all non-mon. bags {xi, xj}

Prg[pos(〈Axi, g〉) = pos(〈Axj, g〉)] > ½ for all mon. bags {xi, xj}

Main Algorithm 𝒜

Define LTFs h(x) = pos(〈Ax, g〉), h’(x) = pos(-〈Ax, g〉)

h and h’ both satisfy the special non-monochromatic bags.

Main Algorithm 𝒜

Define LTFs h(x) = pos(〈Ax, g〉), h’(x) = pos(-〈Ax, g〉)

h and h’ both satisfy the special non-monochromatic bags.

One of h and h’ satisfies at least ½ of the special monochromatic bags.

Taking the best out of h and h’ gives the desired random LTF.

Future Directions

Bridge the gap b/w ⅖ (algo) and ½ (hardness) for LLP-LTF on size ≤ 2 bags.

Extend to algo to larger sized bags (possibly more sophisticated techniques).

Other classifiers: degree-d PTFs, DNF formulas, decision trees, neural-nets ..

Thank You!

