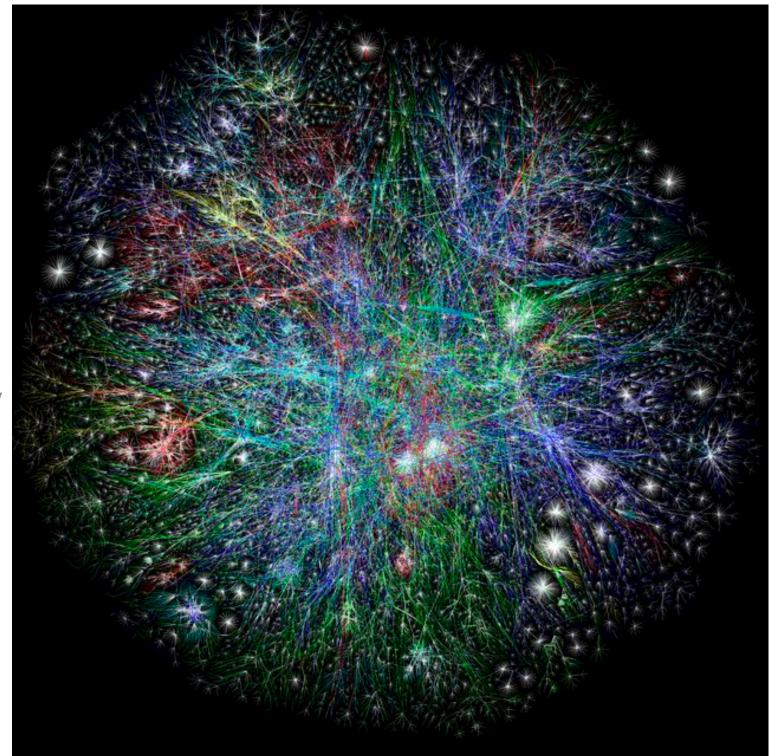
Partition and Code: Learning how to Compress Graphs

Giorgos Bouritsas, Andreas Loukas, Nikolaos Karalias, Michael Bronstein

Why do we care about compressing graphs?

Single graph



Internet https://www.opte.org/

Practical

transmission/storage/processing

What is the role of machine learning in compression?

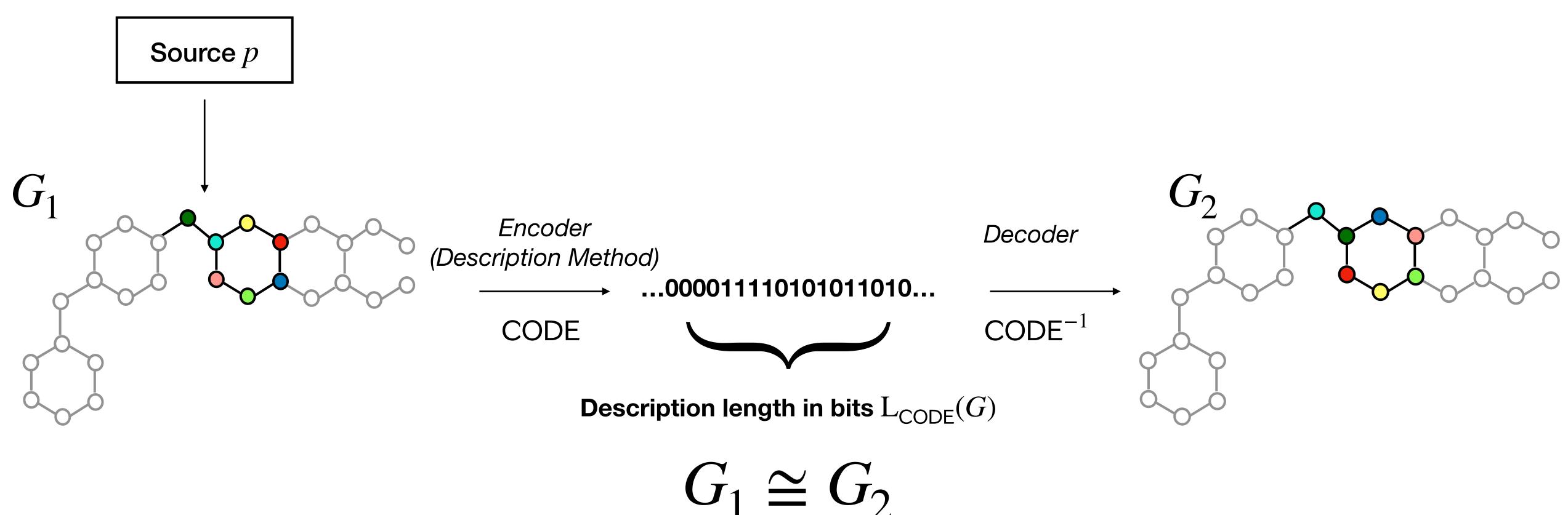
Graph datasets

dataset	number of graphs	size (processed)
ogbg-ppa	158K	30GB
ogbg-code	453K	3GB
ogbg-molpcba	438K	2GB

Theoretical

Fundamental problem in computer science

Lossless Graph Compression



This work: sample space of isomorphism classes Previous work: (1) labelled graphs or (2) a single large graph

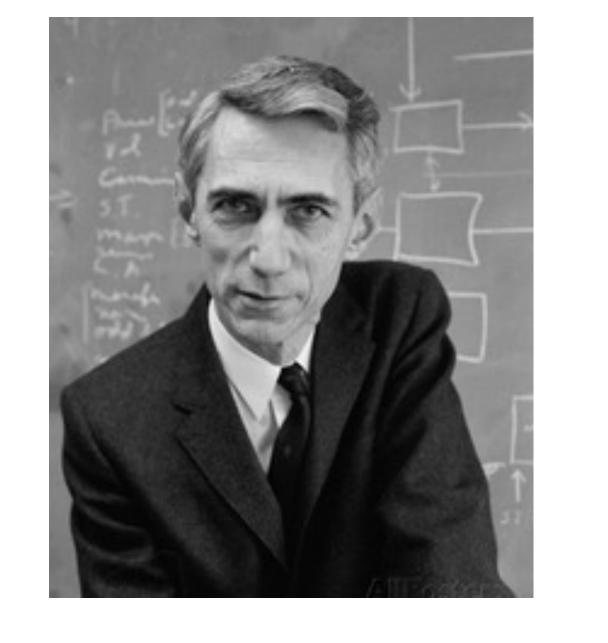
Information theory basics

Objective: find a description method that minimises the expected description length.

 $\min_{\mathsf{CODE}} \mathbb{E}_{G \sim p}[\mathcal{L}_{\mathsf{CODE}}(G)]$

Information theory basics

Objective: find a description method that minimises the expected description length.



Shannon's source coding theorem (informal): For all description methods CODE it holds that:

where $H_{G \sim p}[G]$ is the *Entropy* of the r.v. G.

 $\min_{\text{CODE}} \mathbb{E}_{G \sim p}[L_{\text{CODE}}(G)]$

 $\mathbb{E}_{G\sim p}[\mathcal{L}_{\mathsf{CODE}}(G)] \ge \mathbb{E}_{G\sim p}[-\log p(G)] = \mathcal{H}_{G\sim p}[G],$

Information theory basics

$$L_{CODE}(G) = -\log g$$

Optimise for probability distributions instead of description methods.

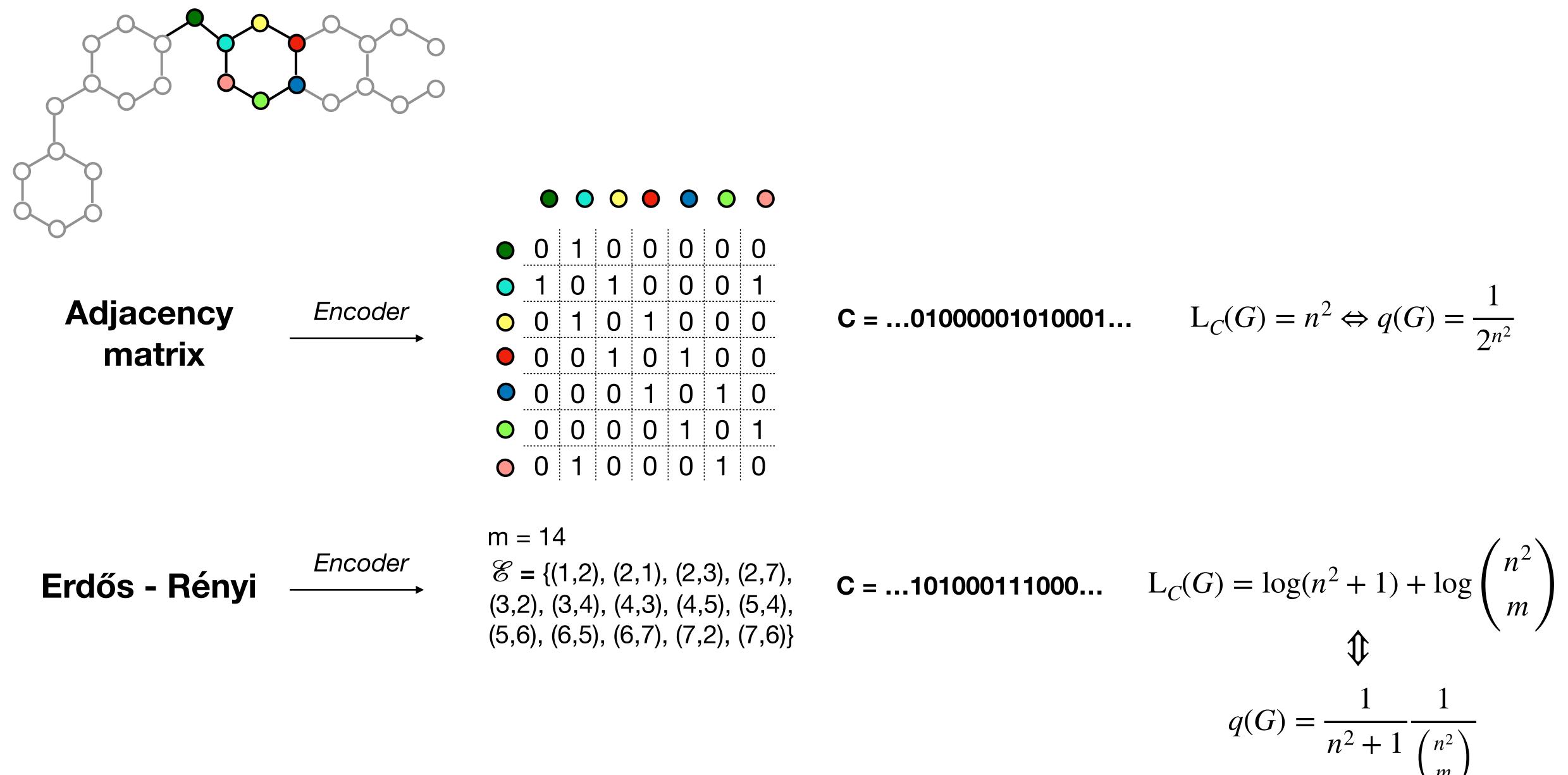
using an entropy coder (e.g., Arithmetic Coding, ANS).

 $p(G) \Leftrightarrow \text{CODE}$ is optimal.

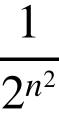
 $\min_{q} \mathbb{E}_{G \sim p}[-\log q(G)]$

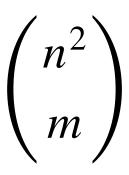
• Every distribution q on a finite sample space can be converted to a uniquely decodable code

Warmup: Simple uninformative encodings



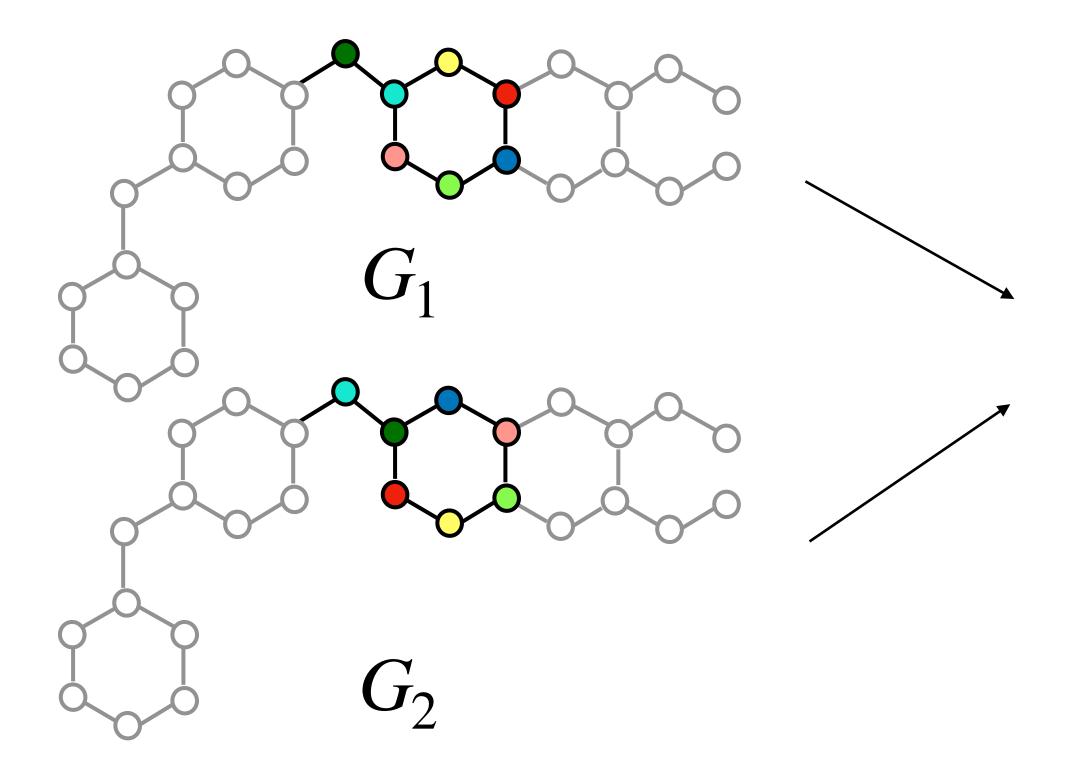
6





Challenge 1: The usual suspect - Isomorphism

- Unique to graphs, makes the problem fundamentally different. ullet
- To achieve optimality, the distribution needs to be defined on isomorphism classes.
- **Requires solving graph isomorphism.** \bullet



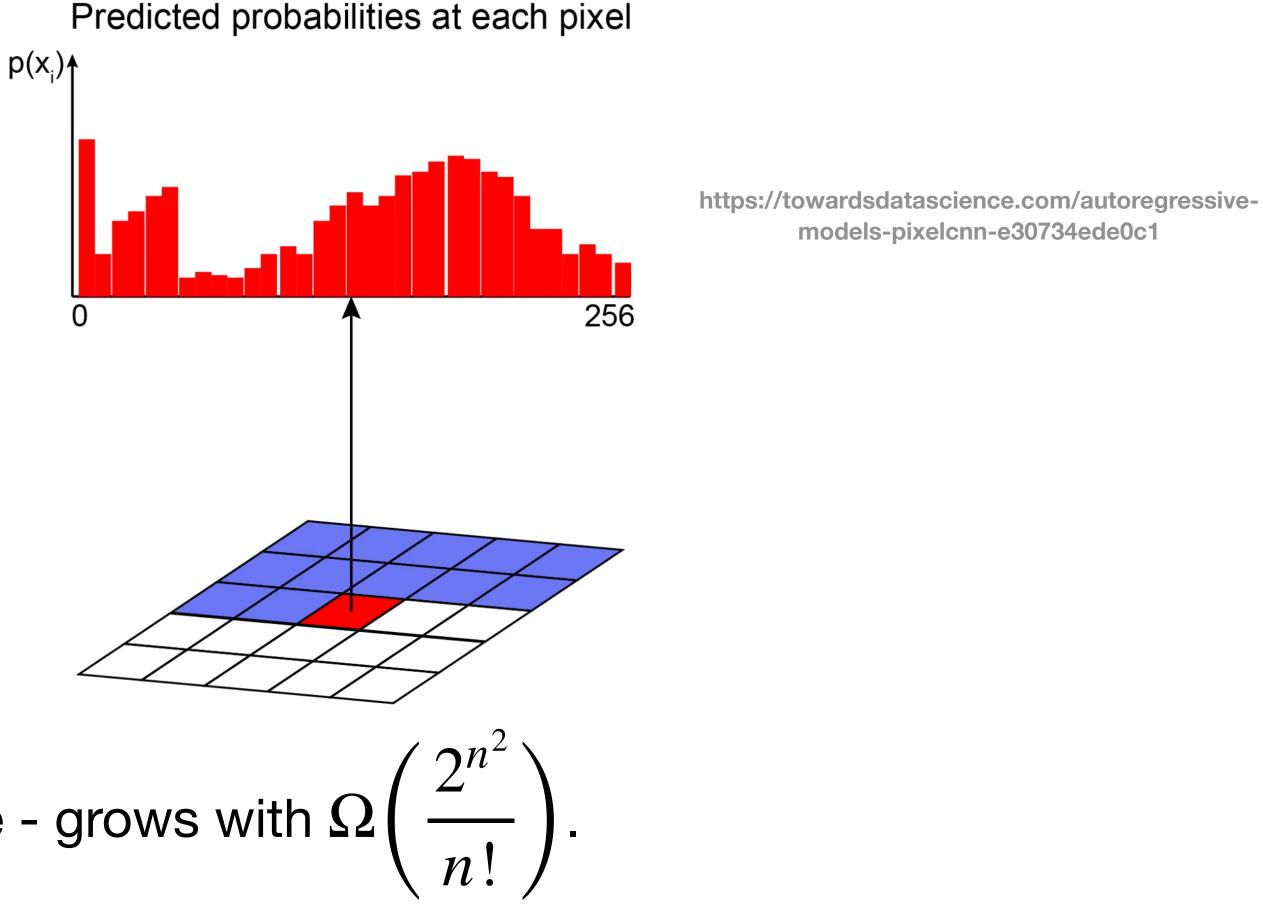
Encoder

C = ...000110101010...

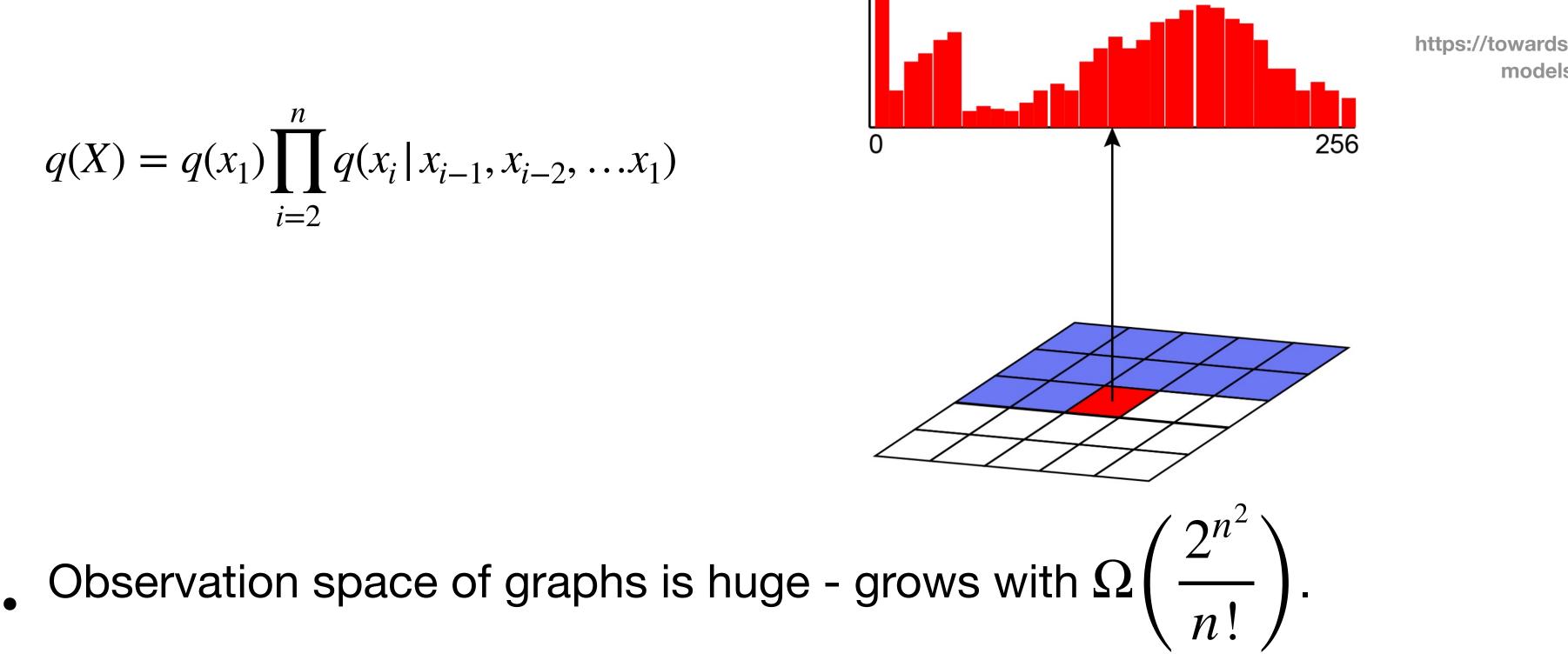
S

Challenge 2: Estimating & evaluating the likelihood

 \bullet (autoregressive models for ordered data - images and text).



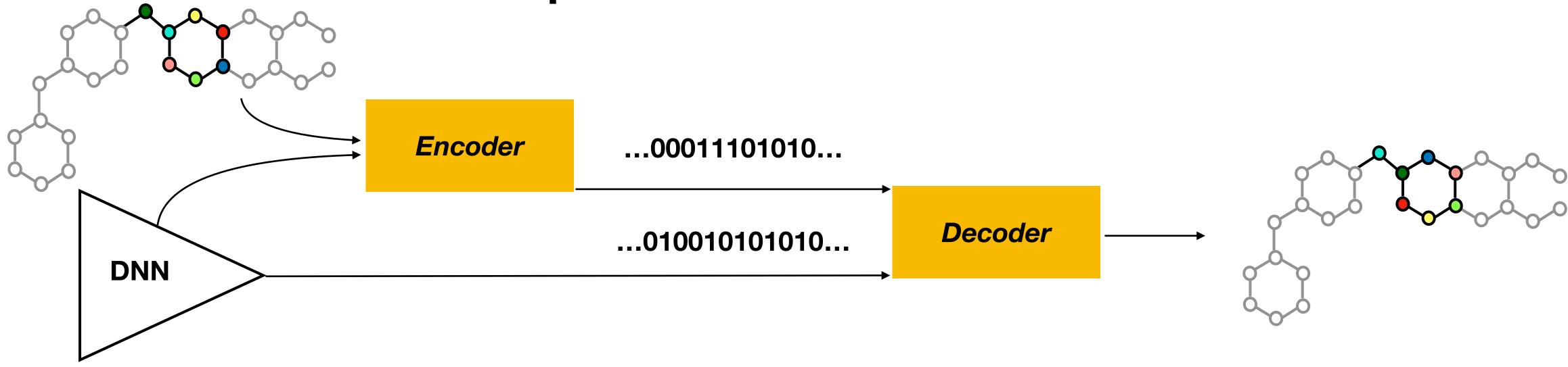
$$q(X) = q(x_1) \prod_{i=2}^{n} q(x_i | x_{i-1}, x_{i-2}, \dots, x_1)$$



How to decompose the distribution in the absence of ordering?

Evaluate the probability everywhere, e.g., by decomposing the probability distribution

Challenge 3: The description length of the model **Compression vs Generative models**

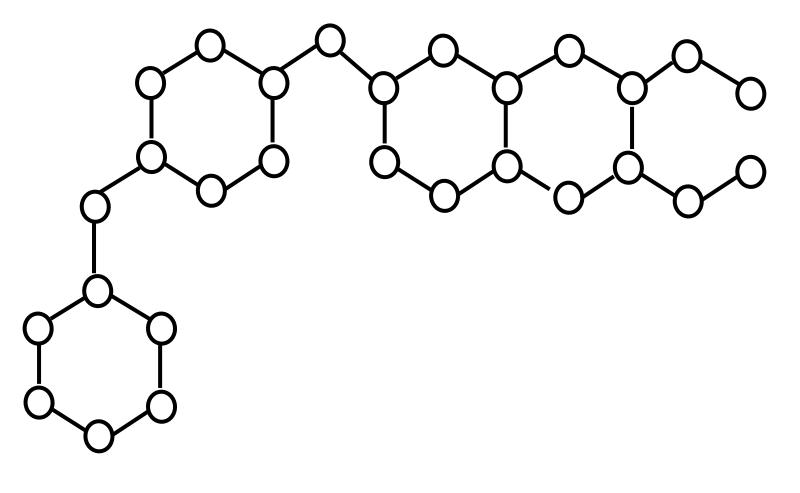


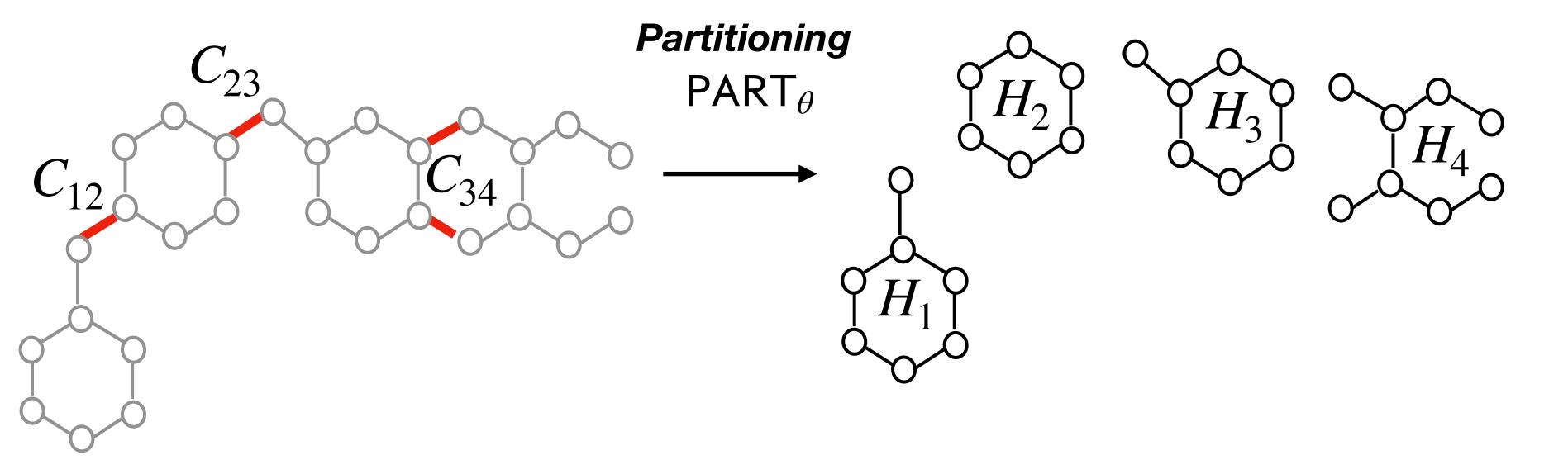
the paremetrisation of the distribution. Hence:

Minimum Description Length $\min_{q,M} \mathbb{E}_{G \sim p}[-\log q(G|M)] + \frac{1}{N}L(M)$

- Overparametrisation might be problematic.
- Typically neural compressors are only optimised w.r.t. the cross-entropy.

• In case of parametric model (e.g., a DNN), the encoder and the decoder need to both possess

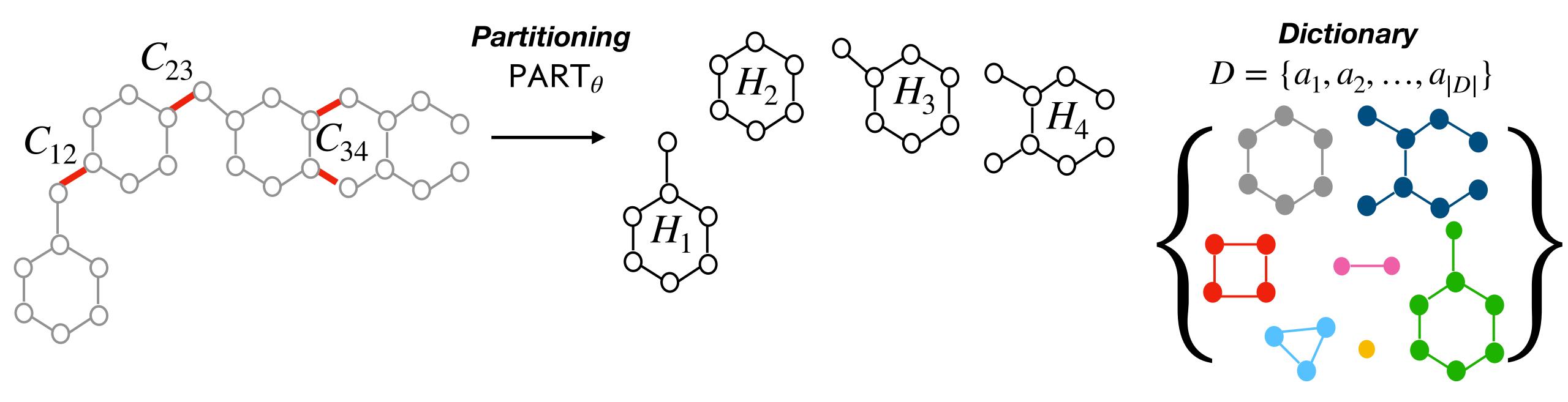




Cuts $C = \{C_{12}, C_{13}, C_{14}, C_{23}, C_{24}, C_{34}\}$

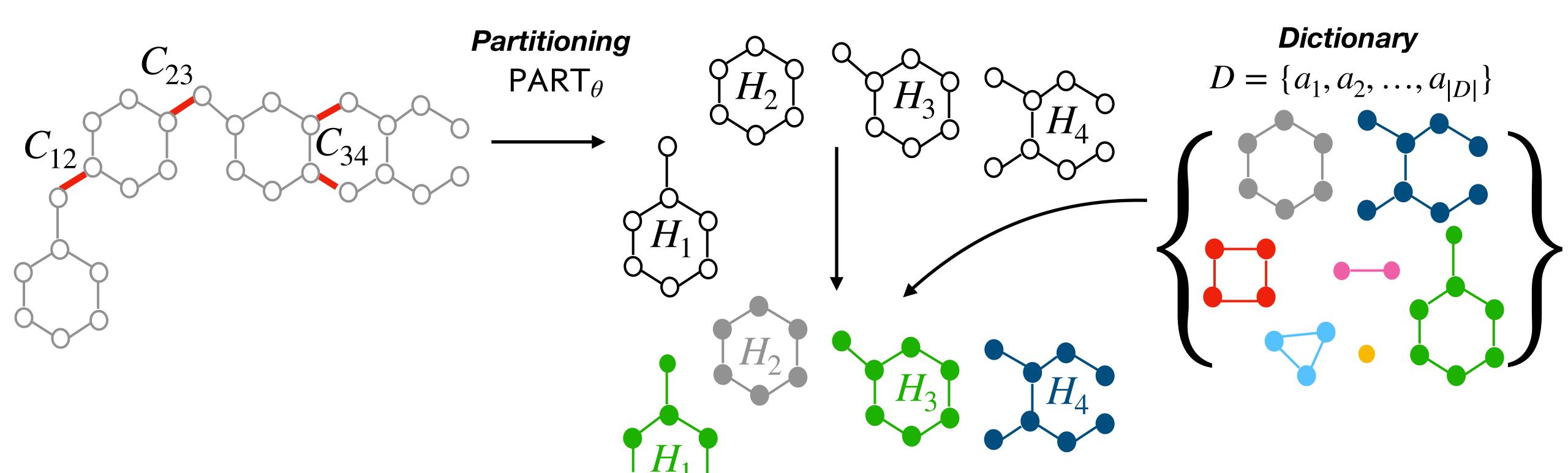
Subgraphs $\mathcal{H} = \{H_1, H_2, H_3, H_4\}$

11



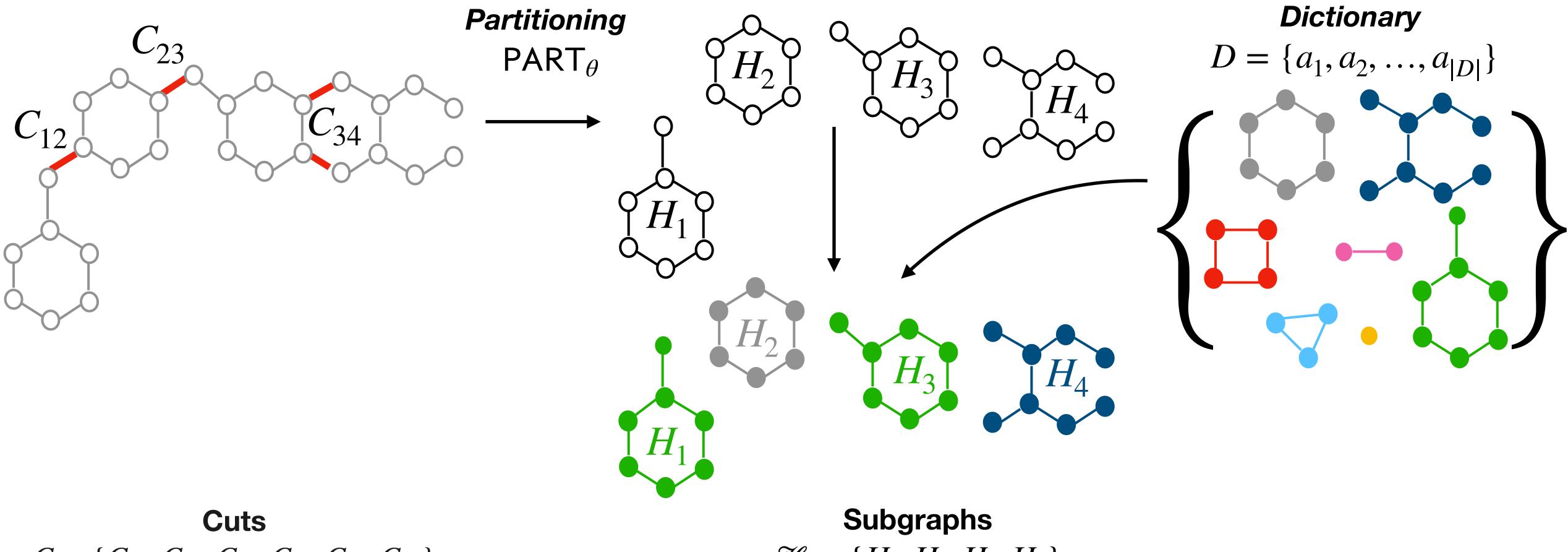
Cuts $C = \{C_{12}, C_{13}, C_{14}, C_{23}, C_{24}, C_{34}\}$

Subgraphs $\mathcal{H} = \{H_1, H_2, H_3, H_4\}$



Cuts $C = \{C_{12}, C_{13}, C_{14}, C_{23}, C_{24}, C_{34}\}$

Subgraphs $\mathcal{H} = \{H_1, H_2, H_3, H_4\}$



$C = \{C_{12}, C_{13}, C_{14}, C_{23}, C_{24}, C_{34}\}$

Graph encoding: L(G|M)

Cut Encoding: $-\log q(C \mid \mathcal{H})$

....00010011.....

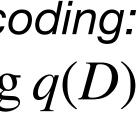
 $\mathscr{H} = \{H_1, H_2, H_3, H_4\}$

Subgraph Encoding: $-\log q(\mathcal{H} \mid D)$00010011.....

Dictionary Encoding: $\mathcal{L}(M) = -\log q(D)$

....00010011.....

+



How do we address the challenges?

C1 Isomorphism: **Dictionary**

- We efficiently solve it for small graphs of size k = O(1).
- tradeoff between expressivity and complexity.

How do we address the challenges?

C1 Isomorphism: **Dictionary**

- We efficiently solve it for small graphs of size k = O(1).
- tradeoff between expressivity and complexity.

C2 Evaluating the Likelihood: Partitioning

- Provides us with a learnable decomposition of the probability distribution (subgraphs + cuts).

How do we address the challenges?

C1 Isomorphism: **Dictionary**

- We efficiently solve it for small graphs of size k = O(1).
- tradeoff between expressivity and complexity.

C2 Evaluating the Likelihood: Partitioning

C C3 The DL of the model: **End-to-end optimisation + Learnable Dictionary**

$$\min_{q,M} \mathbb{E}_{G \sim p}[-\log q(G|M)] + \frac{1}{N} \mathcal{L}(M) \Rightarrow \min_{\phi,D,\theta} \mathbb{E}_{G \sim p}[-\log q_{\phi}(\mathsf{PART}_{\theta}|D)] + \frac{1}{N} \mathcal{L}(D)$$

PART_{θ} does all the heavy-lifting while ϕ is kept small!

Provides us with a learnable decomposition of the probability distribution (subgraphs + cuts).

NB: $PART_{\theta}$ does not need to be transmitted.

Distribution & dictionary parametrisation

1. Graph Likelihood: Subgraph Encoding + Cut encoding $q_{\phi}(G \mid D) = q(\mathcal{H} \mid D)q(C \mid \mathcal{H}, D)$

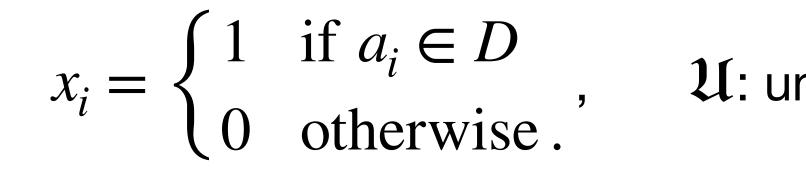
Number of subgraphs + Dictionary subgraphs + Non-dictionary subgraphs + Cuts

Parametric

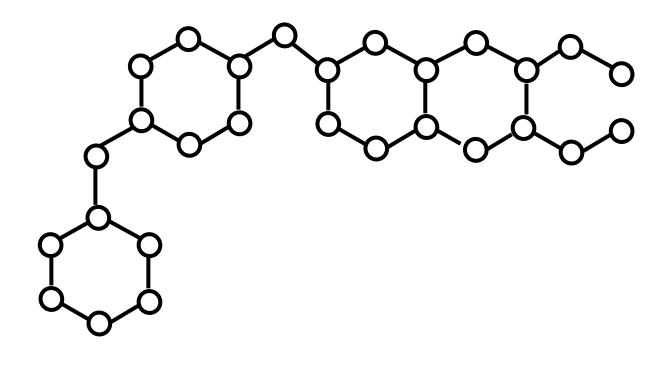
2. Dictionary DL: $L(D) = -\sum_{a_i \in \mathfrak{U}} x_i \log q_{null}(a_i), \quad x_i = \begin{cases} 1 & \text{if } a_i \in D \\ 0 & \text{otherwise.} \end{cases}$, \mathfrak{U} : universe

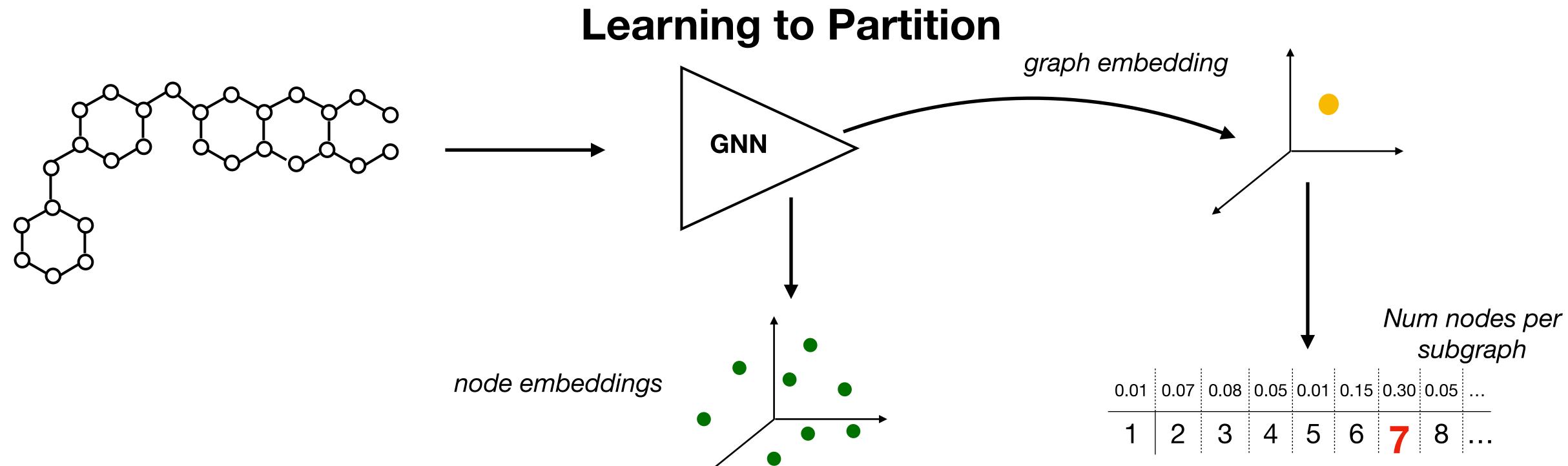
 $= q_{\phi}(b_{dict}, b_{null}) q_{\phi}(\mathcal{H}_{dict} | b_{dict}, D) q_{null}(\mathcal{H}_{null} | b_{null}) q_{null}(C | \mathcal{H})$

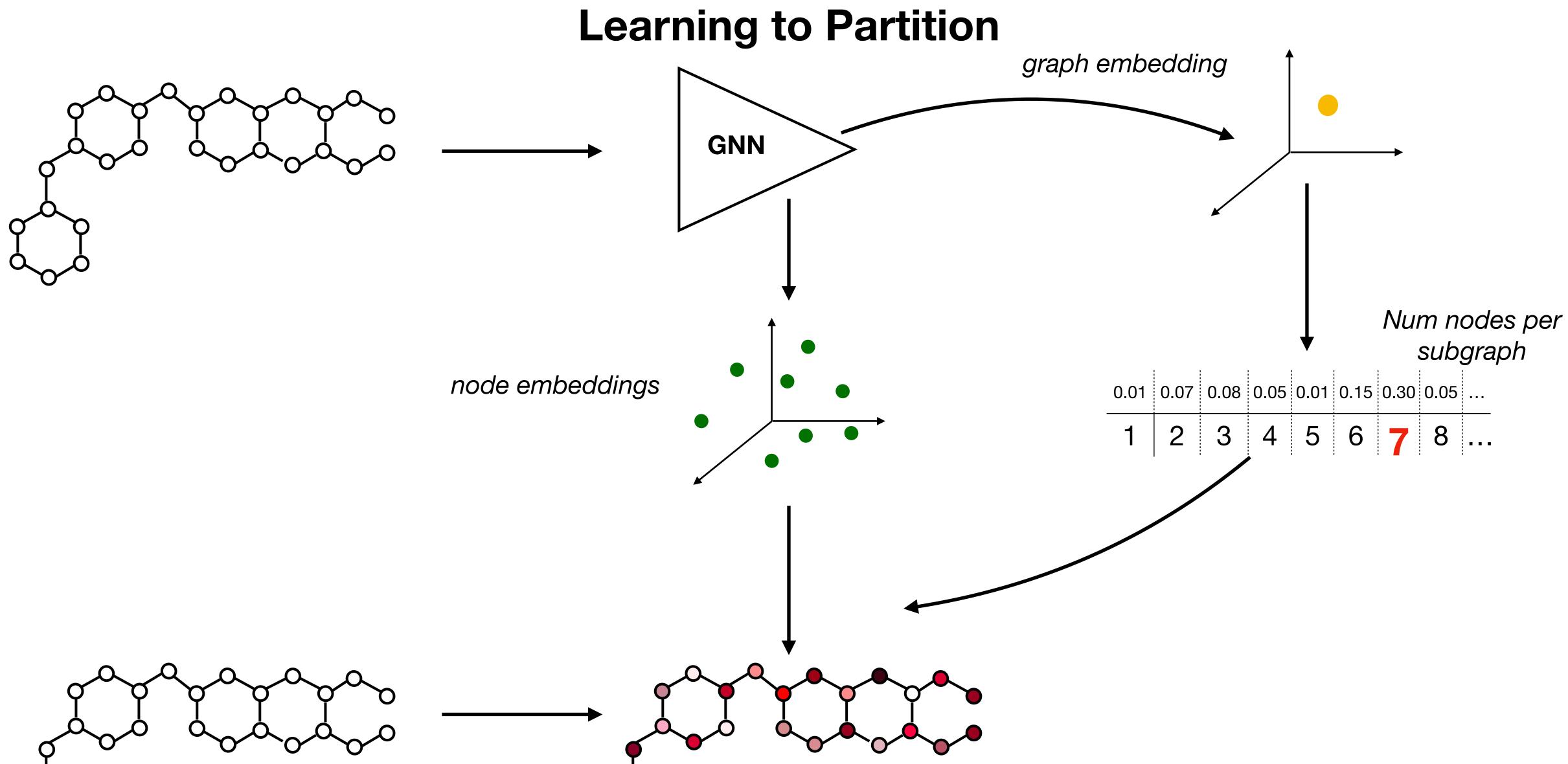
Non-parametric (null model)

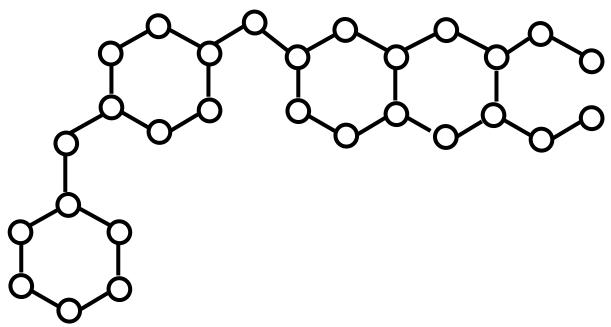


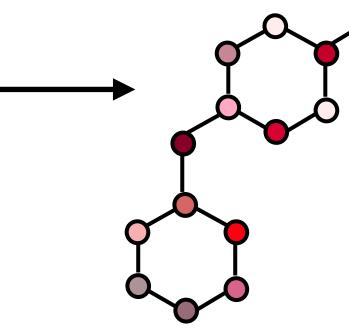
Learning to Partition

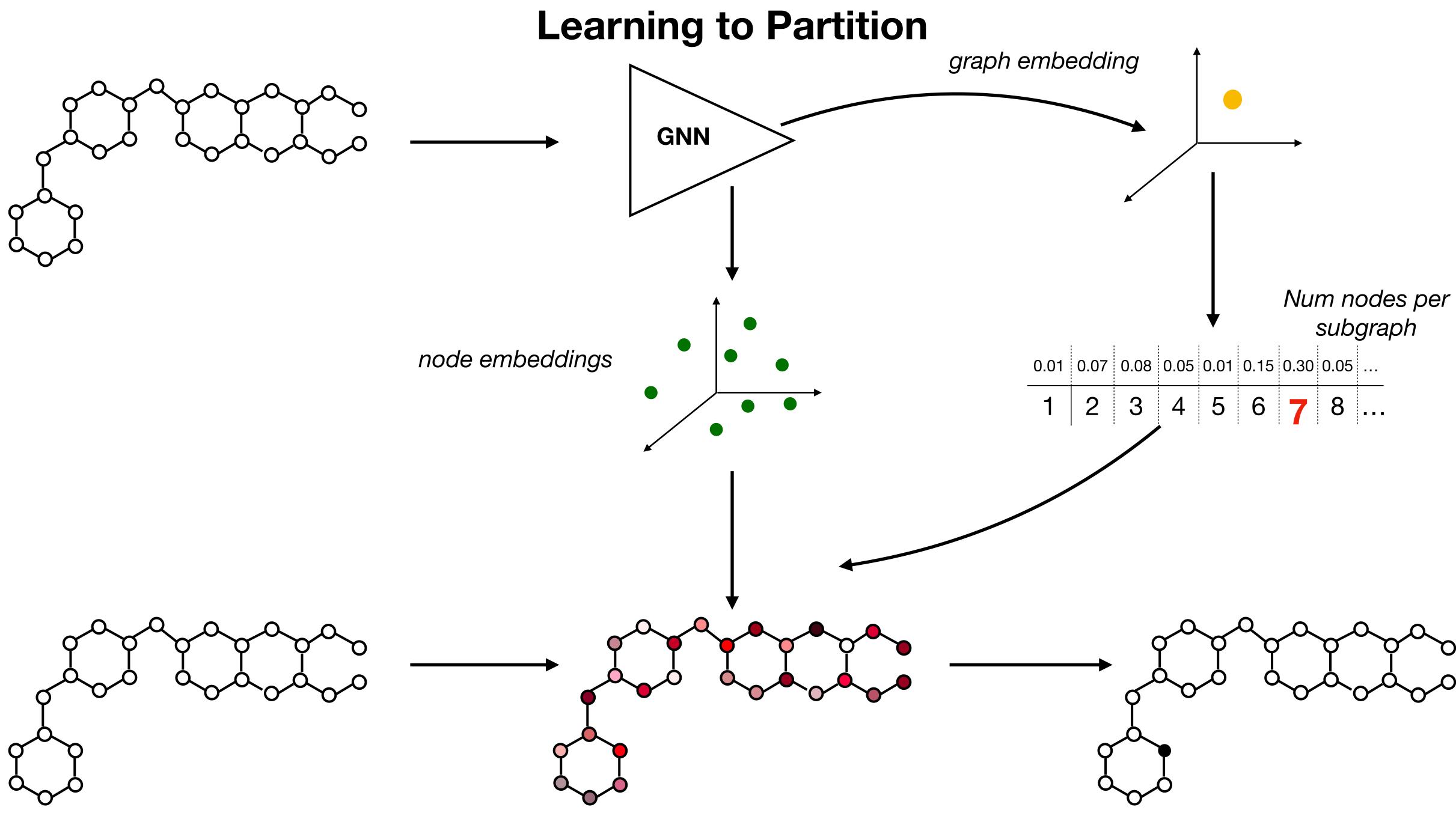


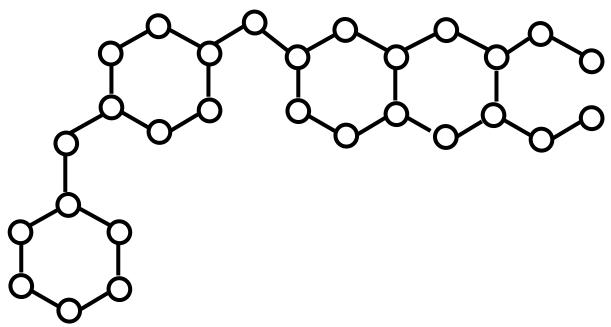


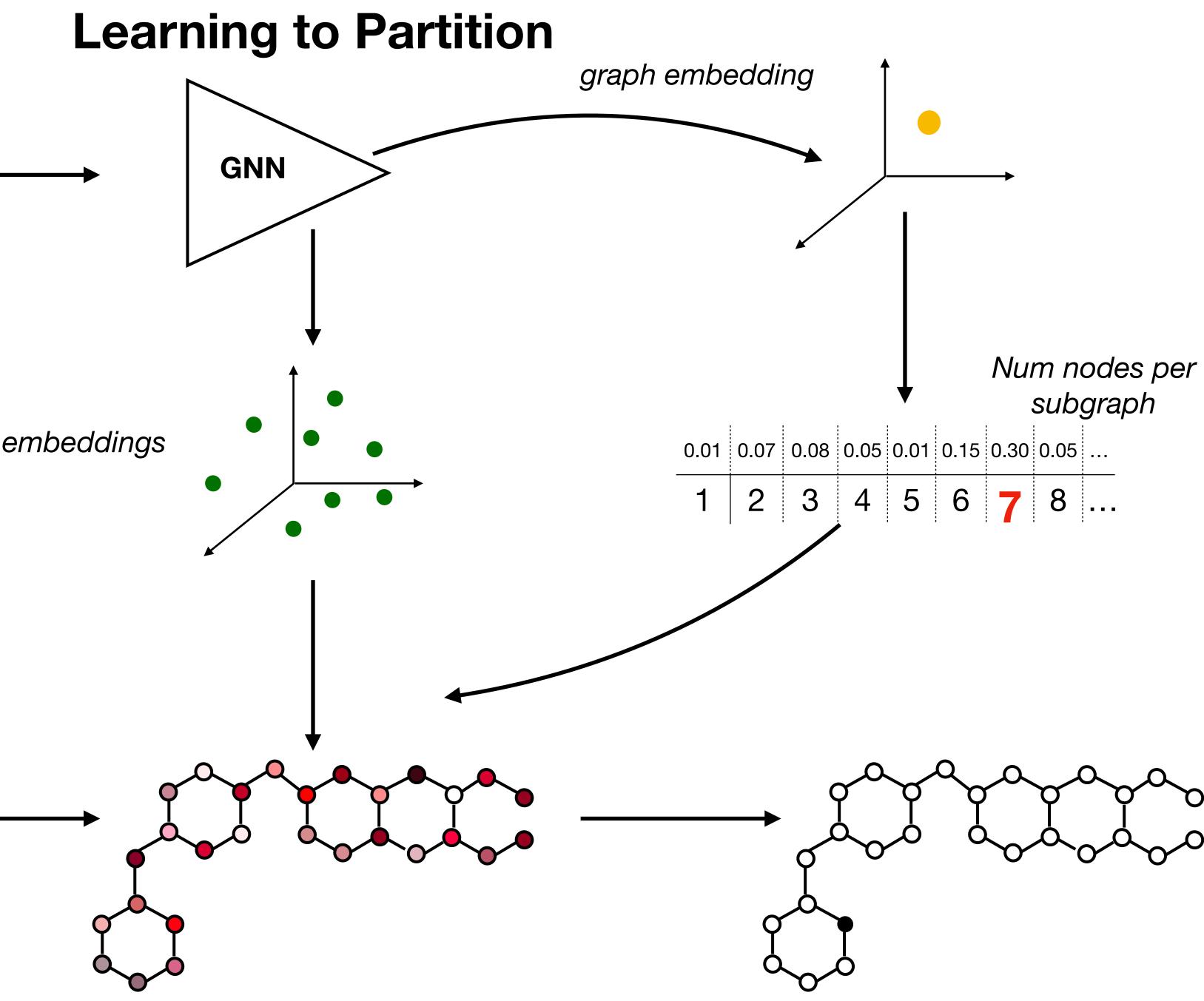


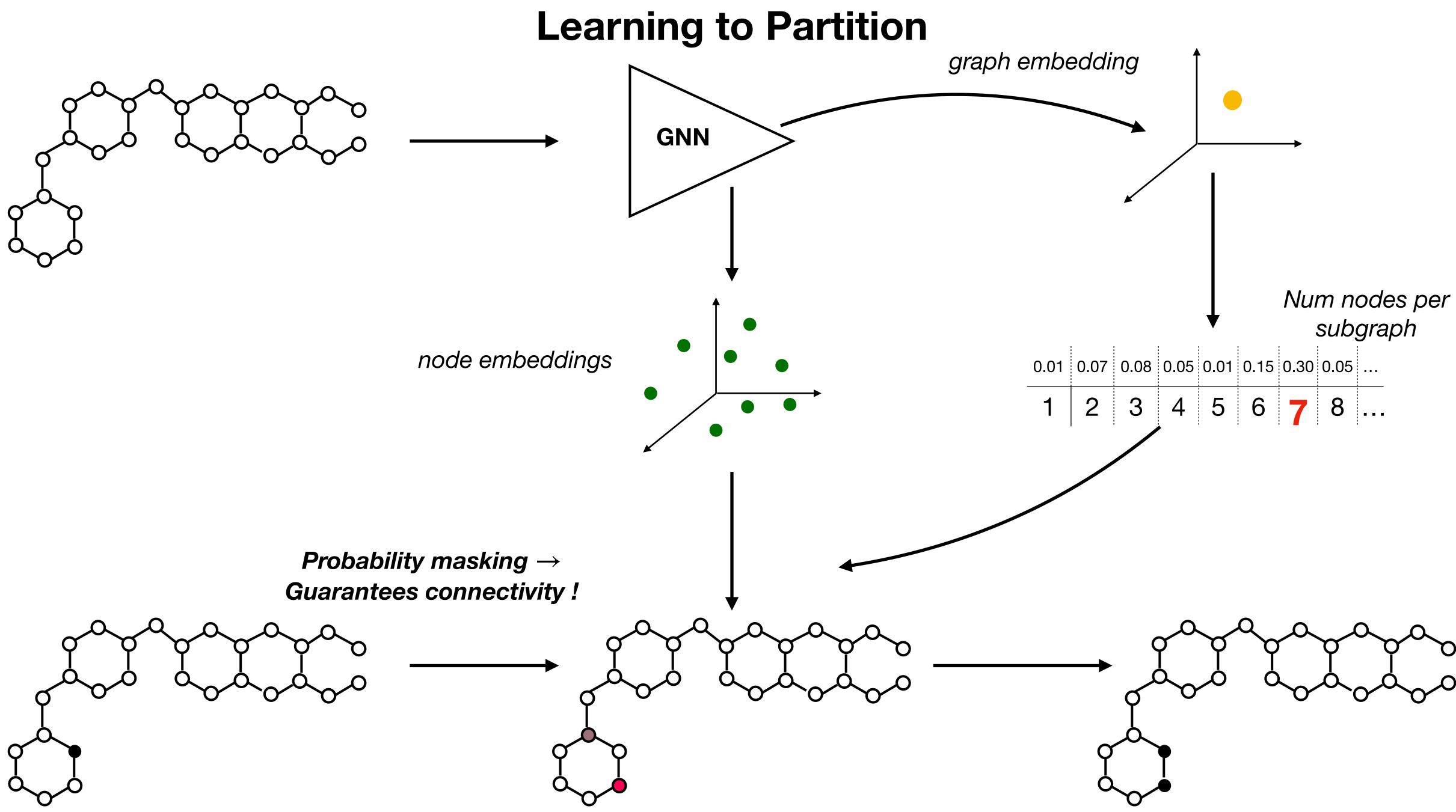


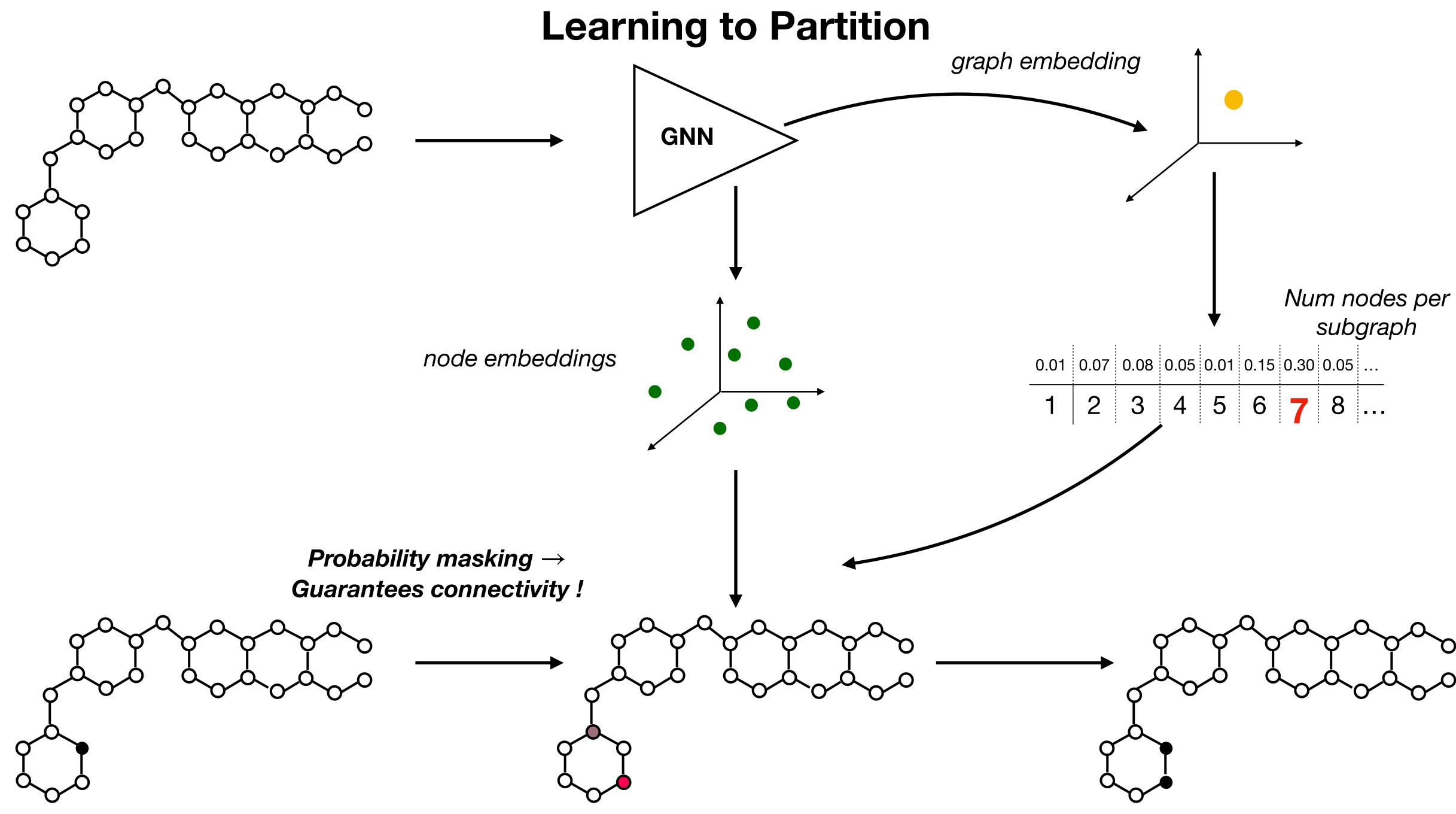


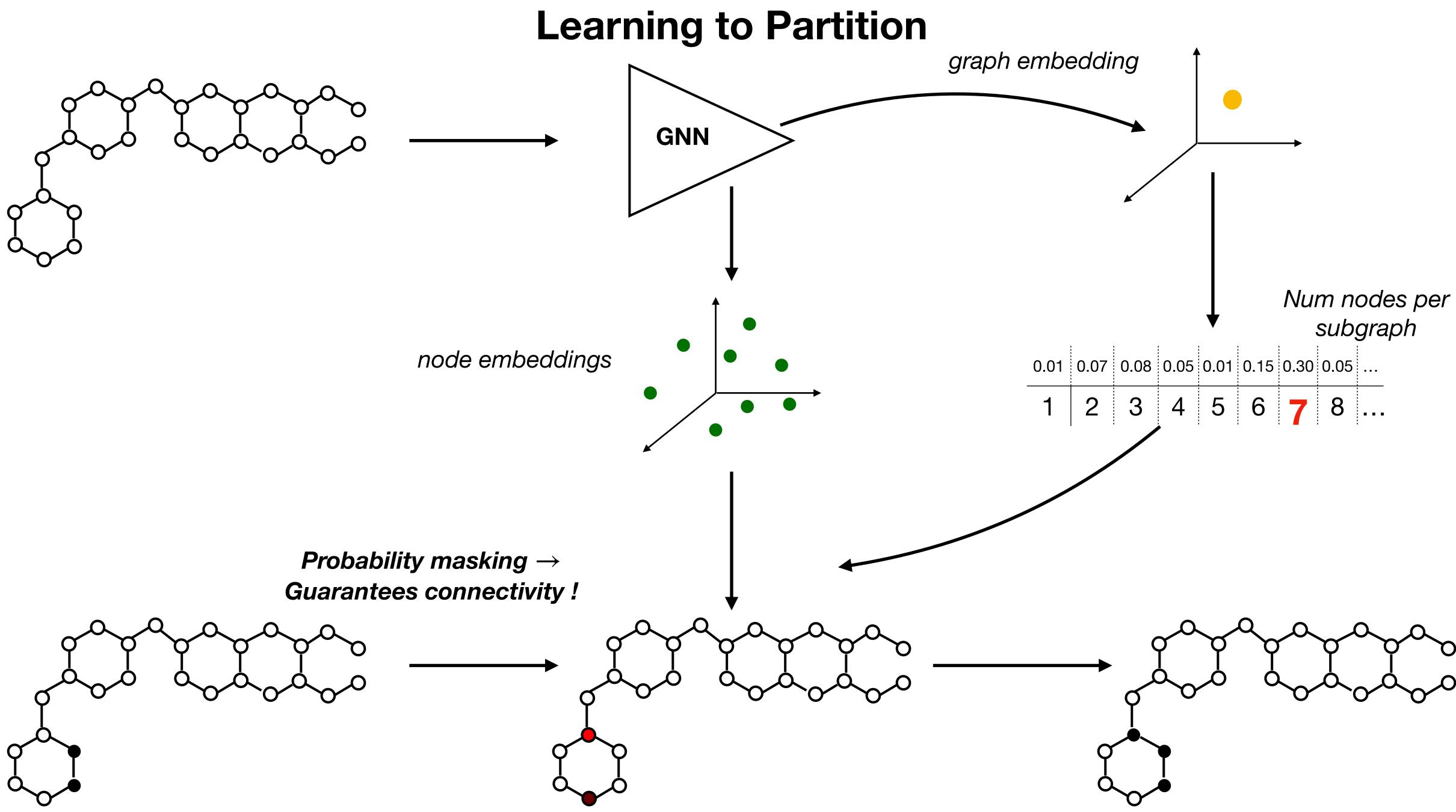


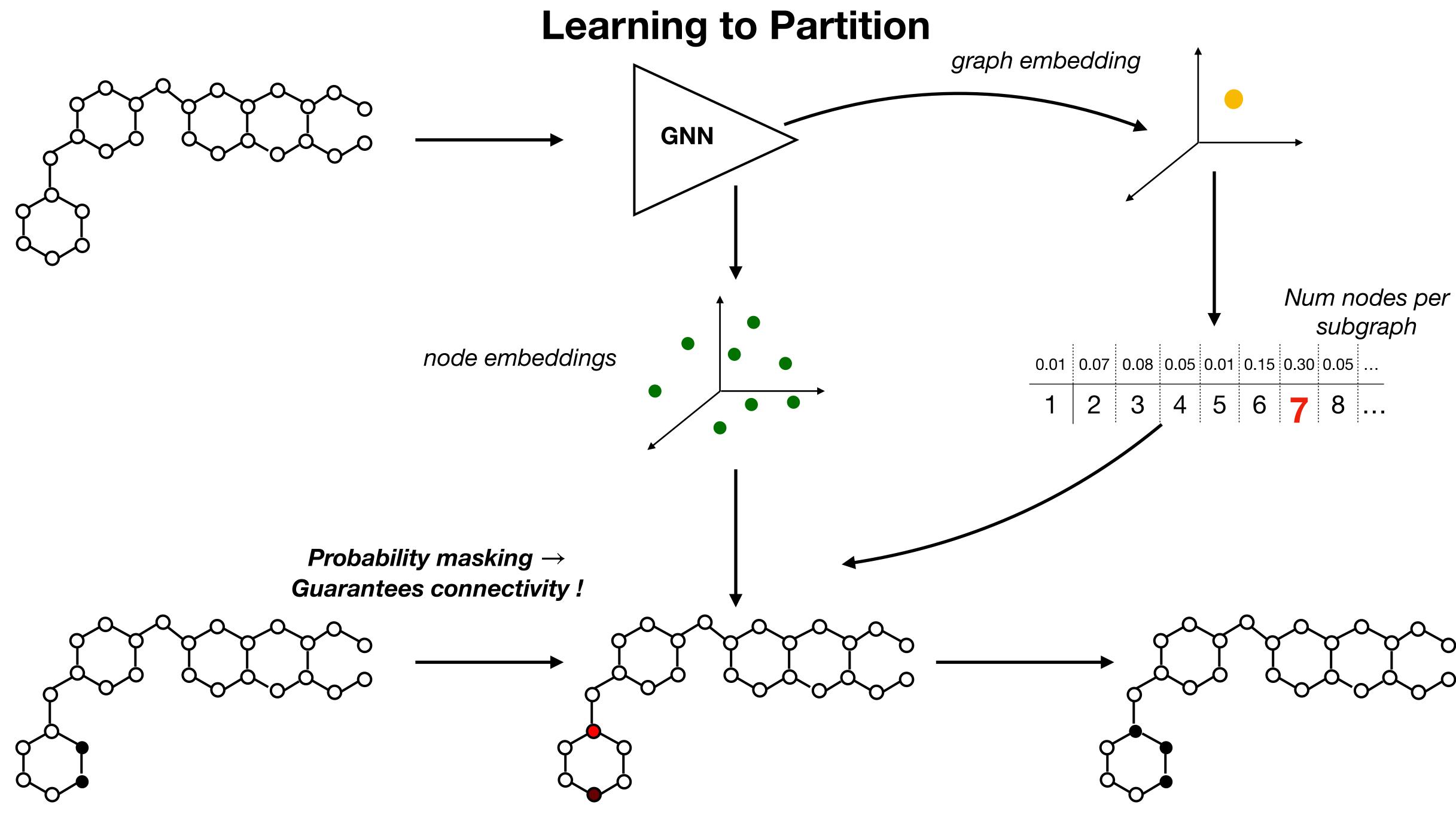


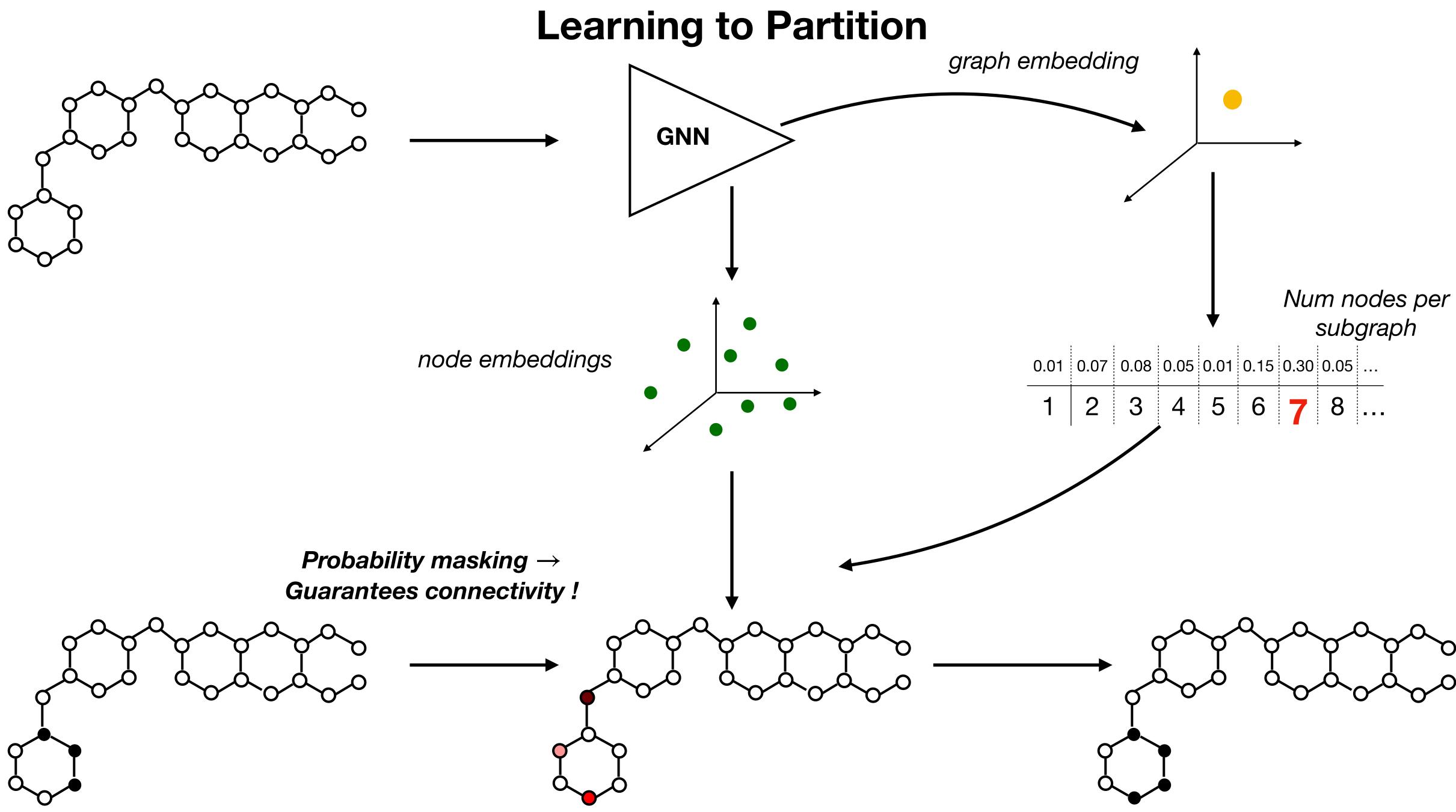


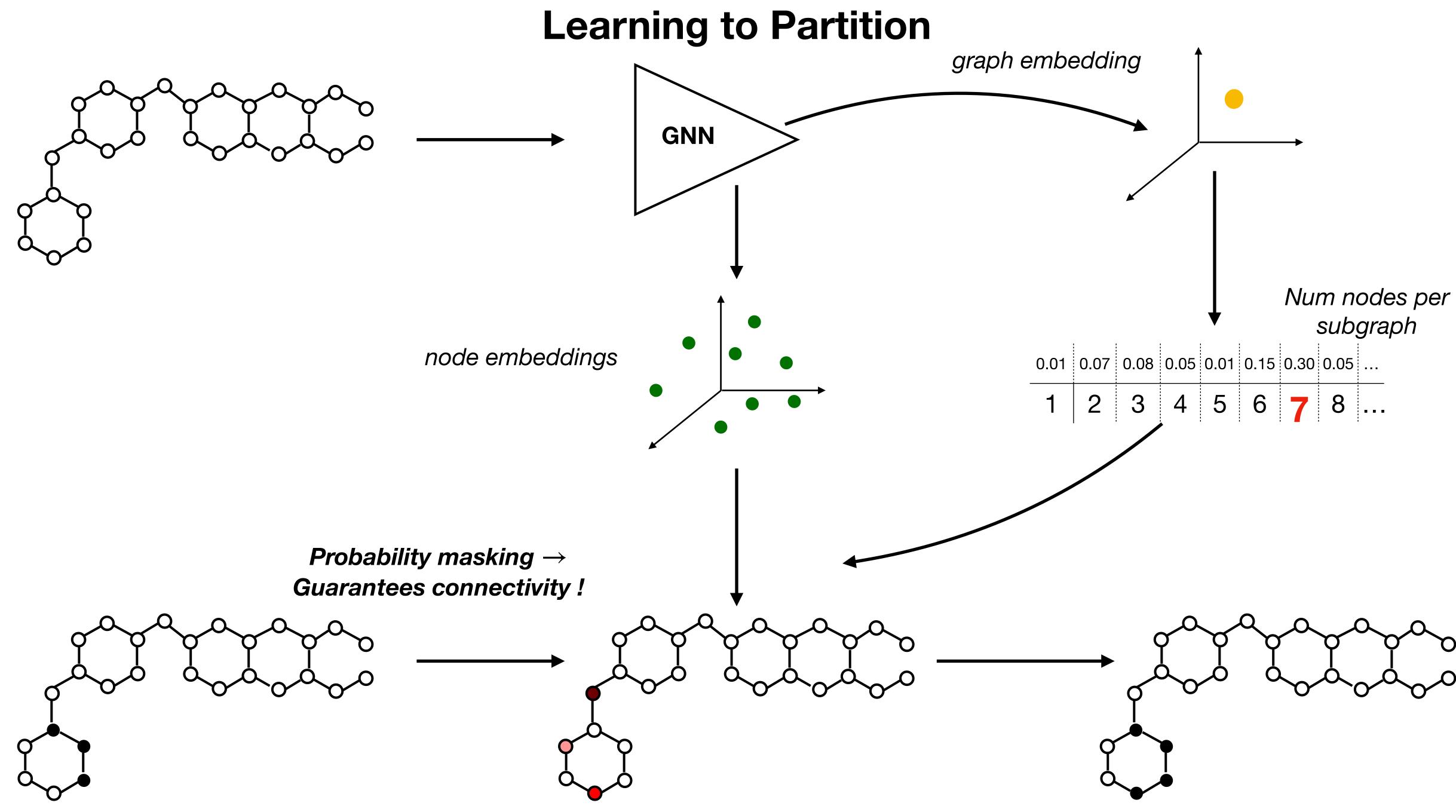


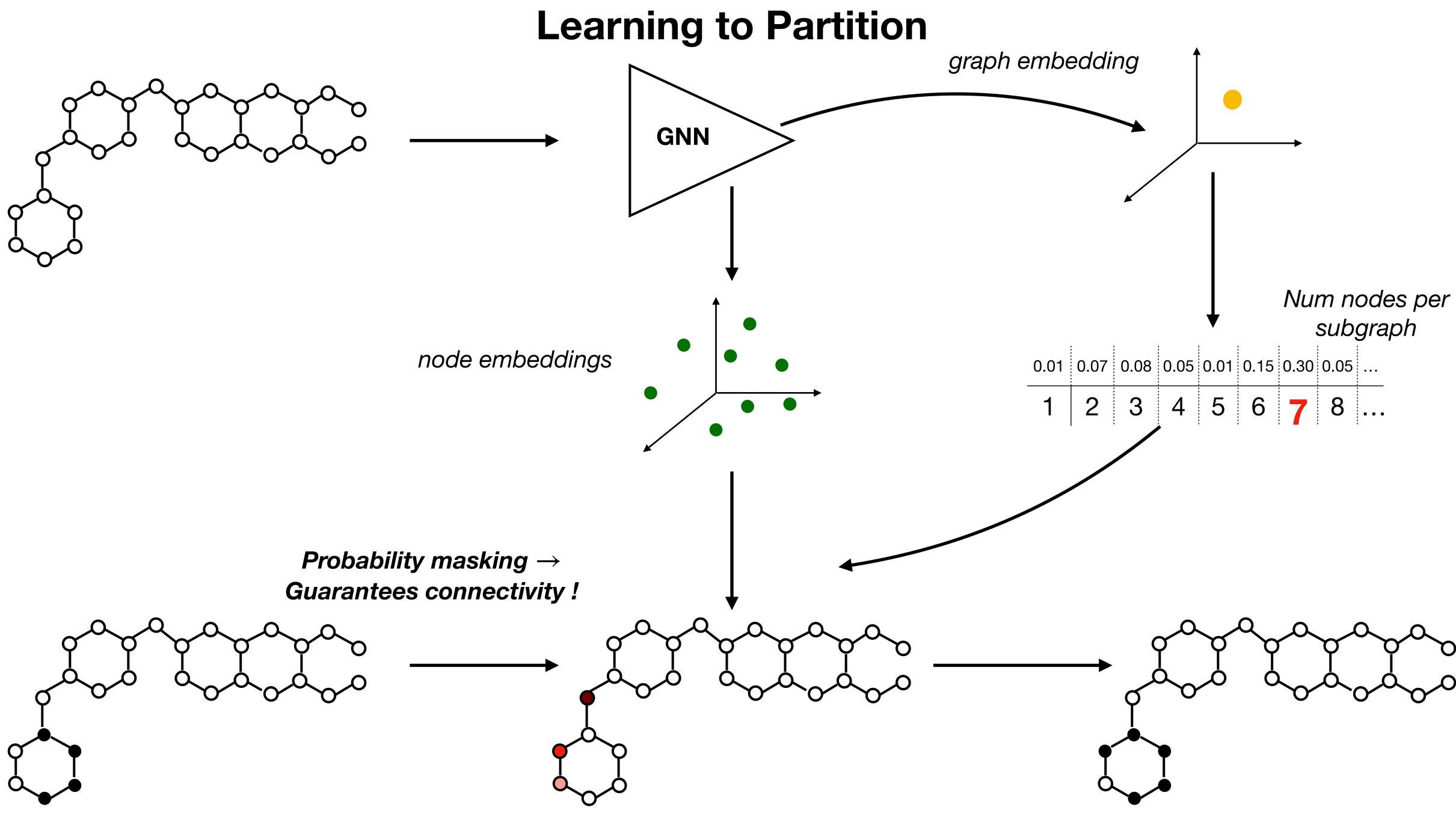


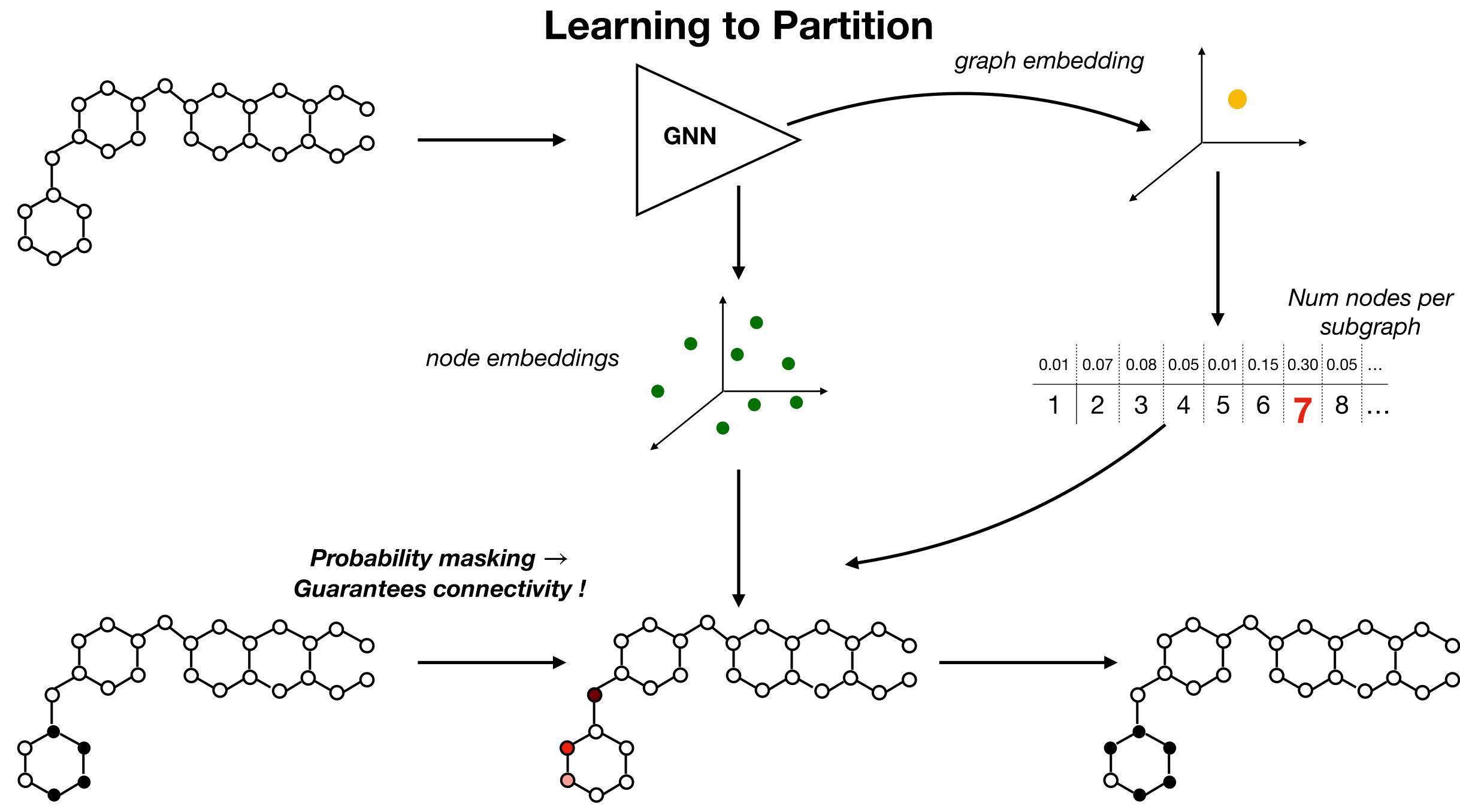


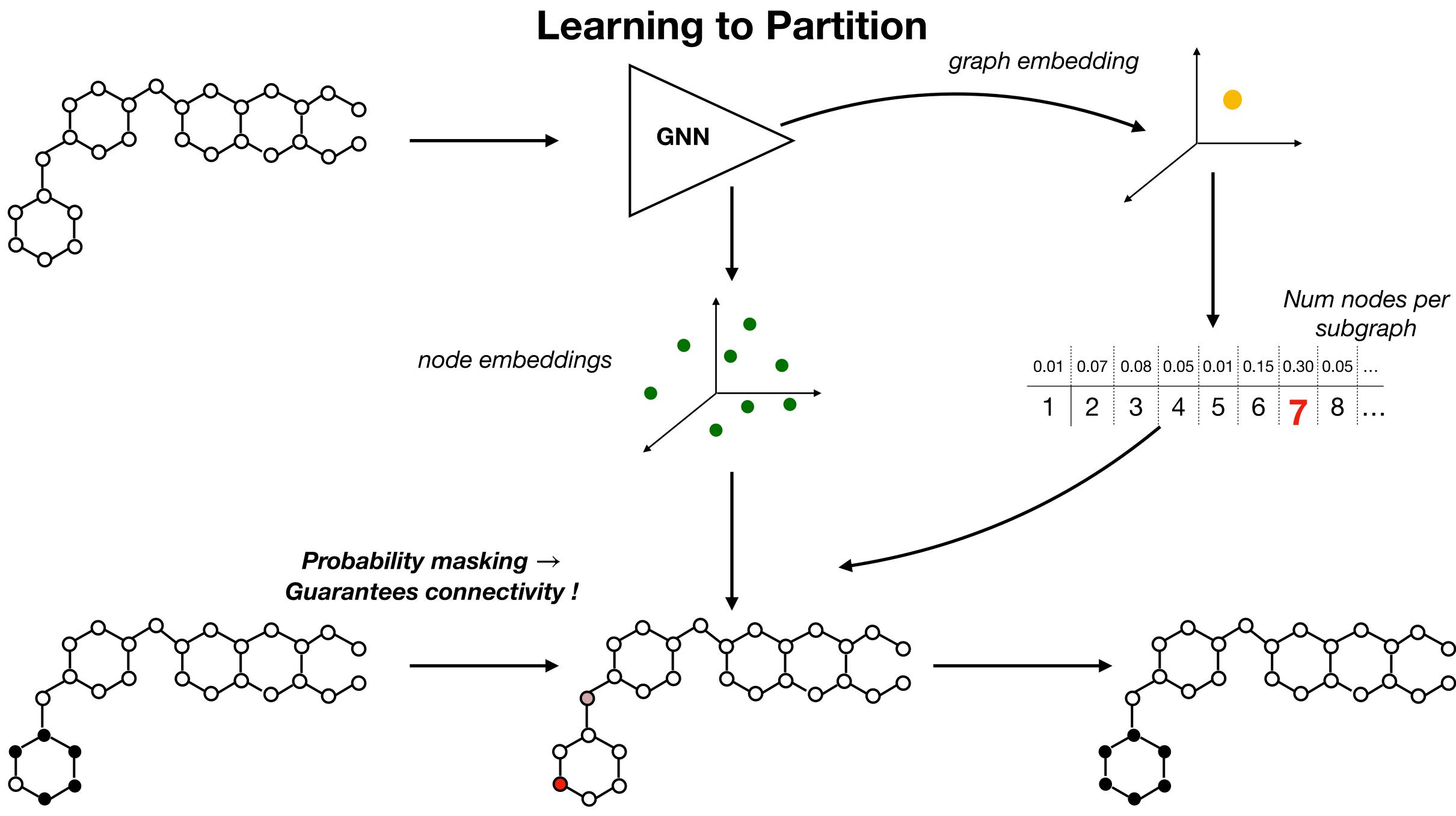


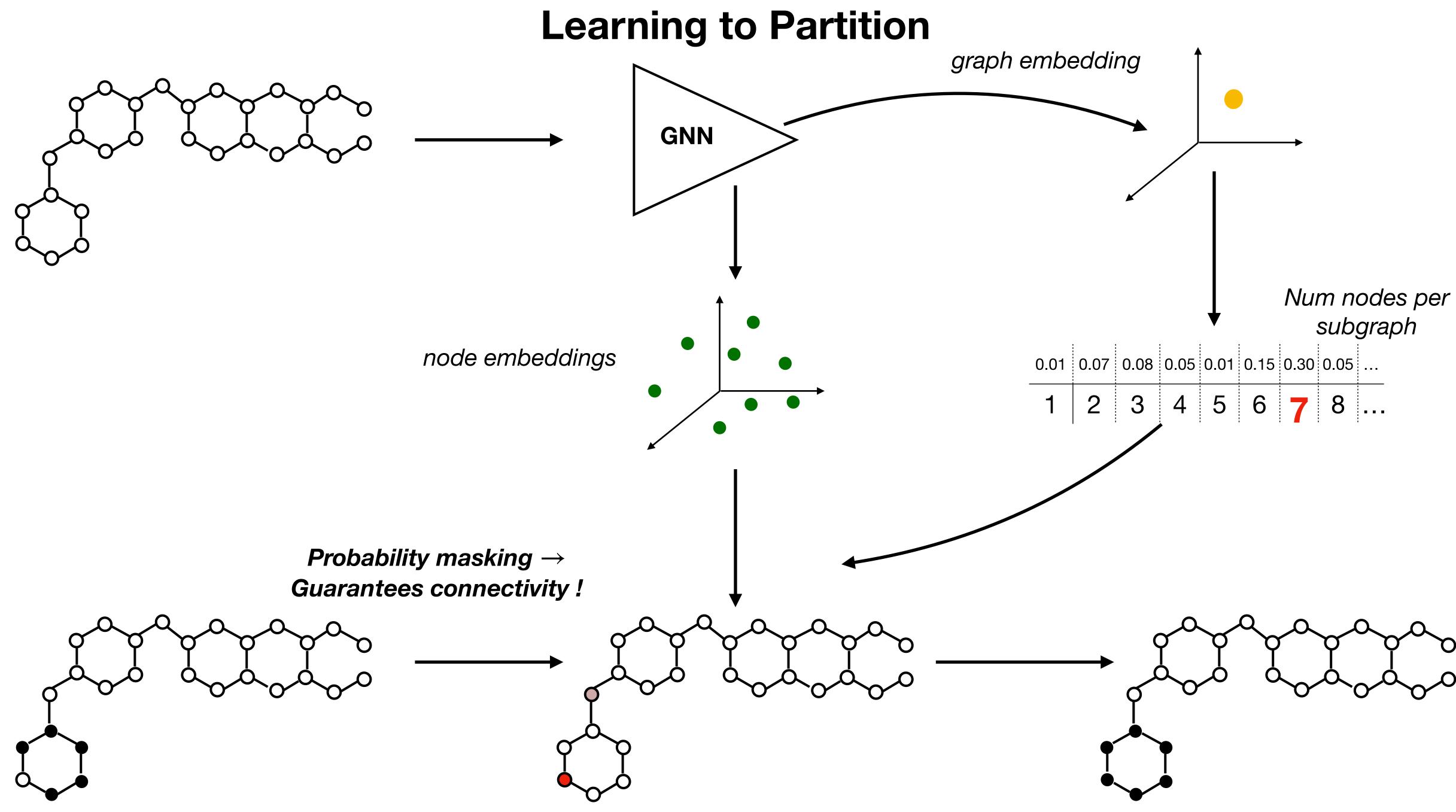


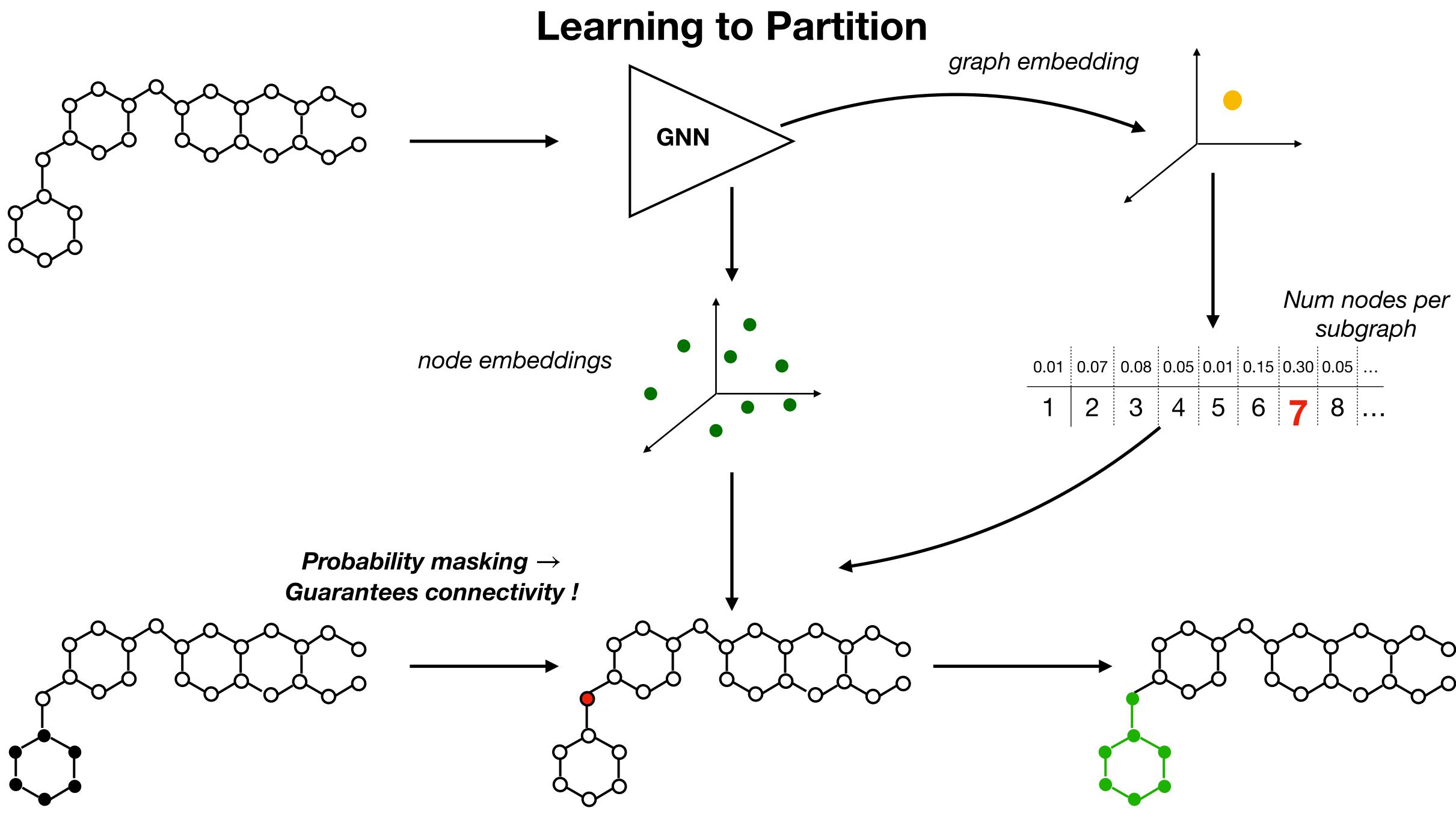


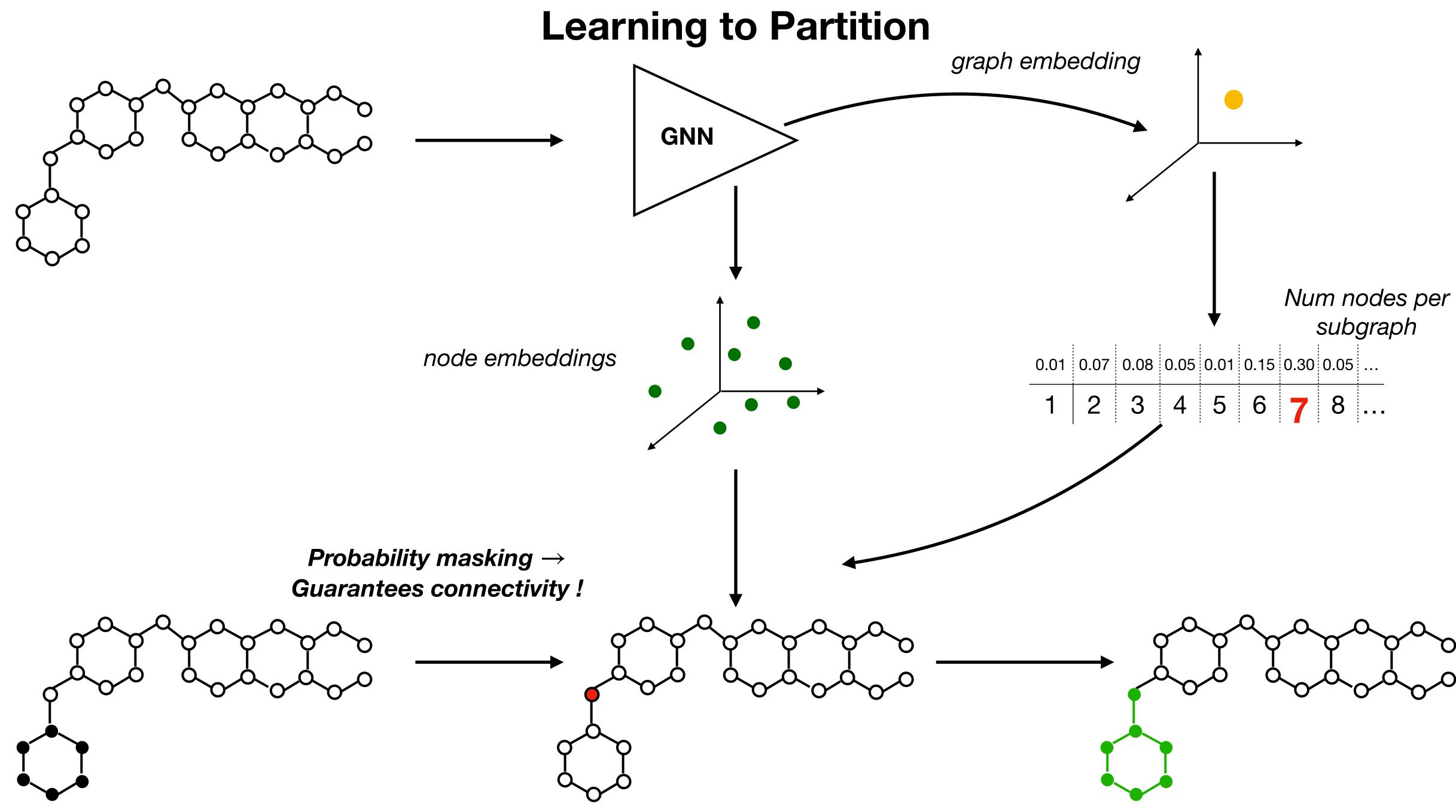


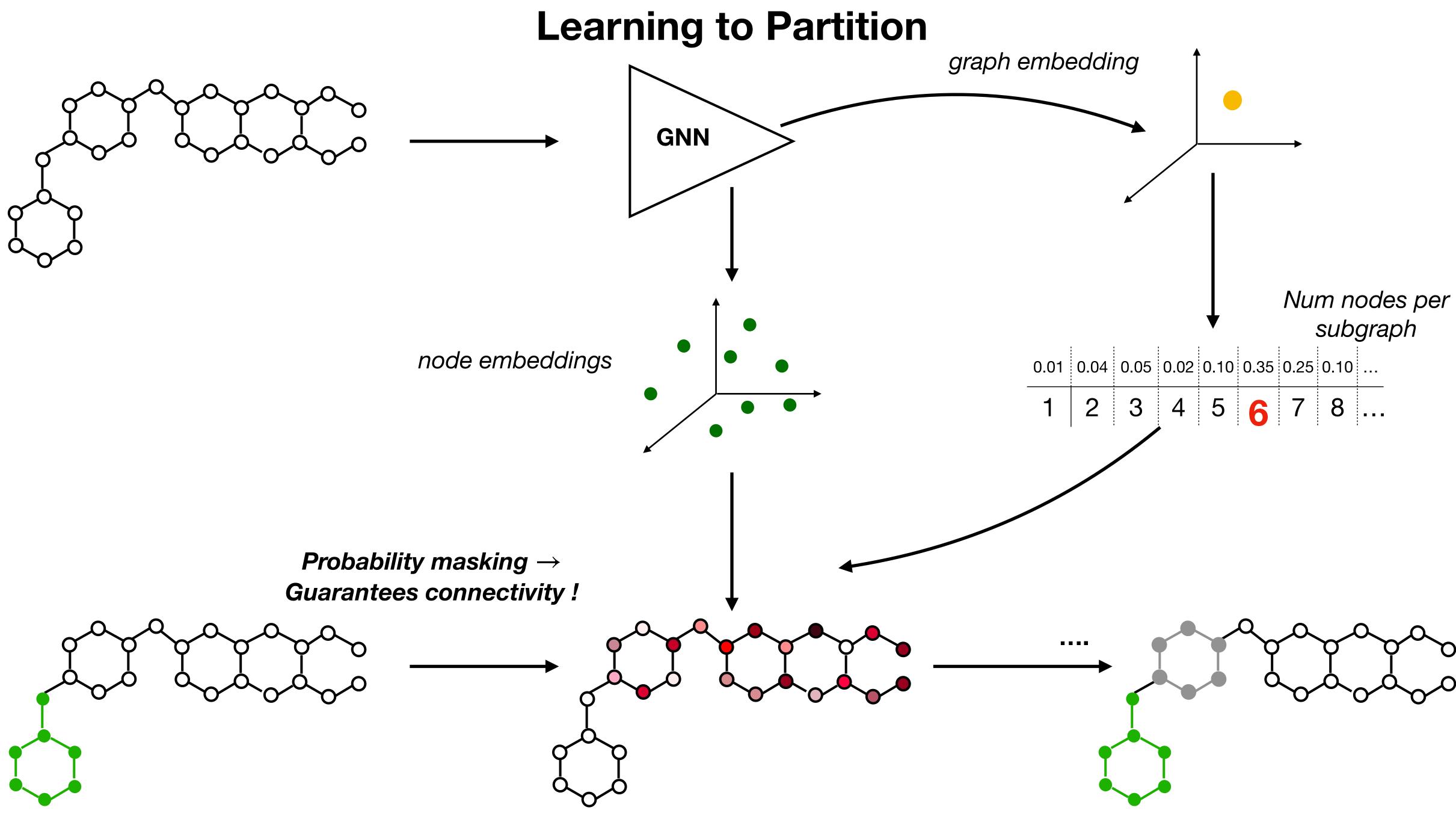


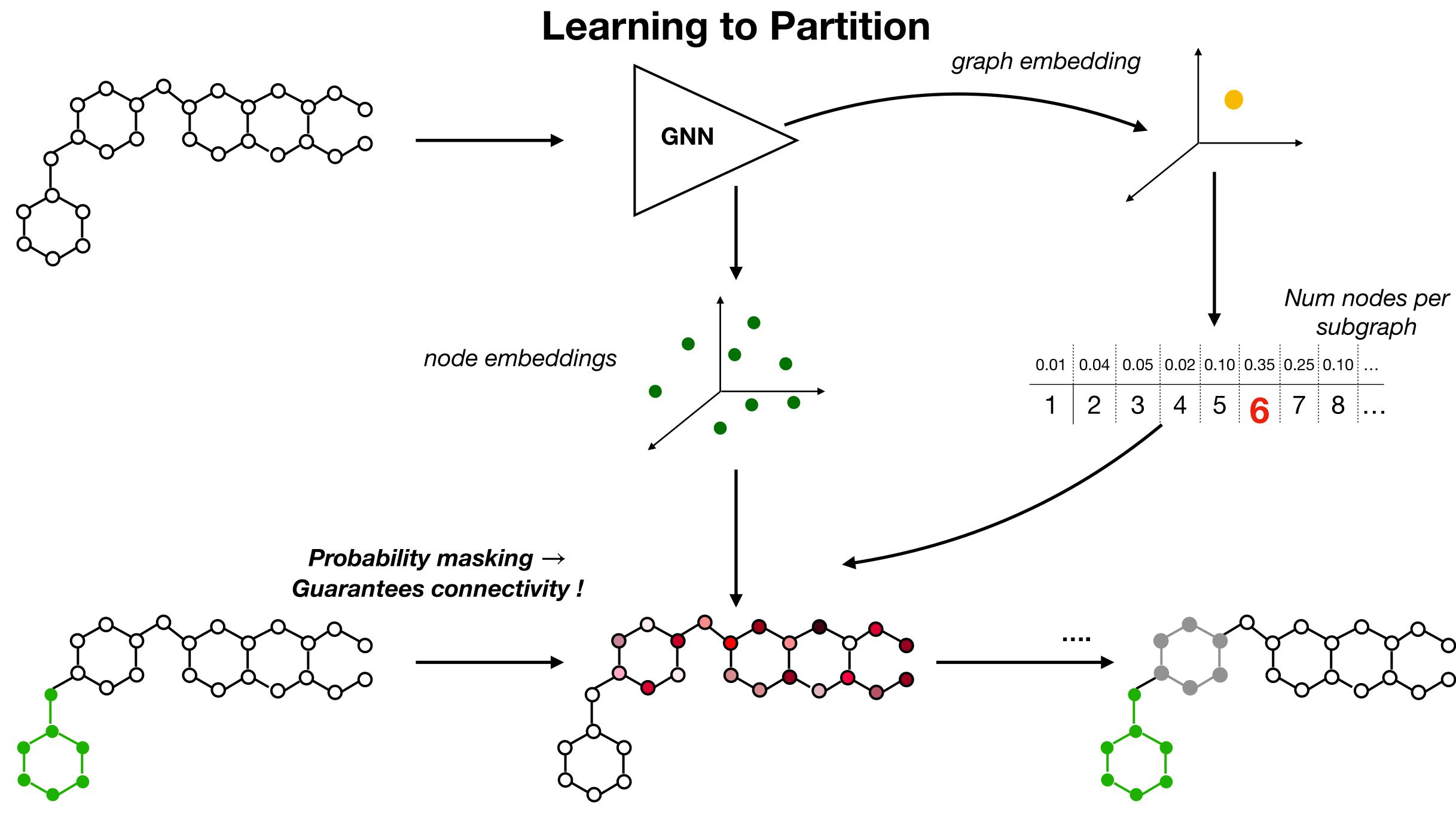


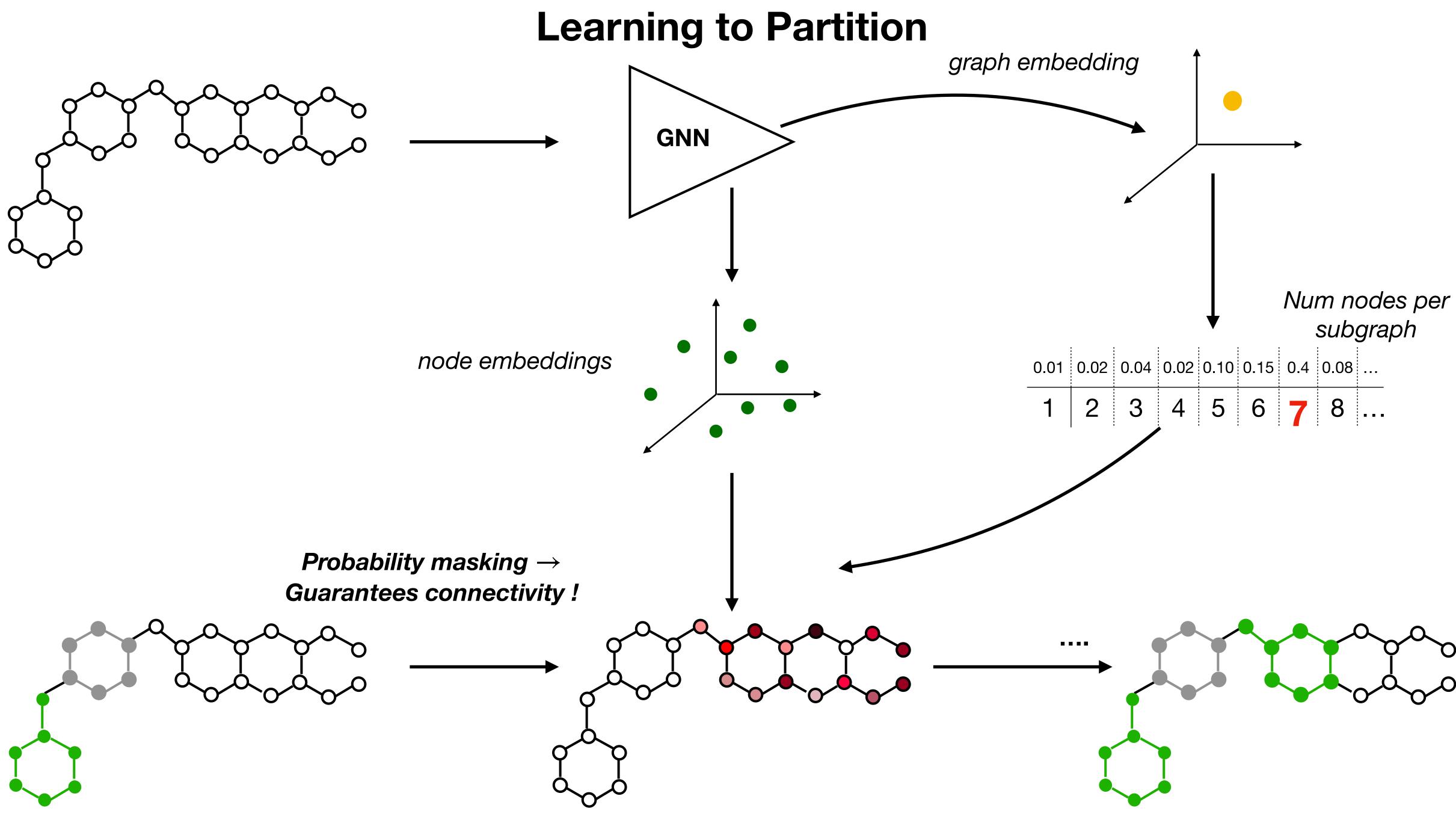


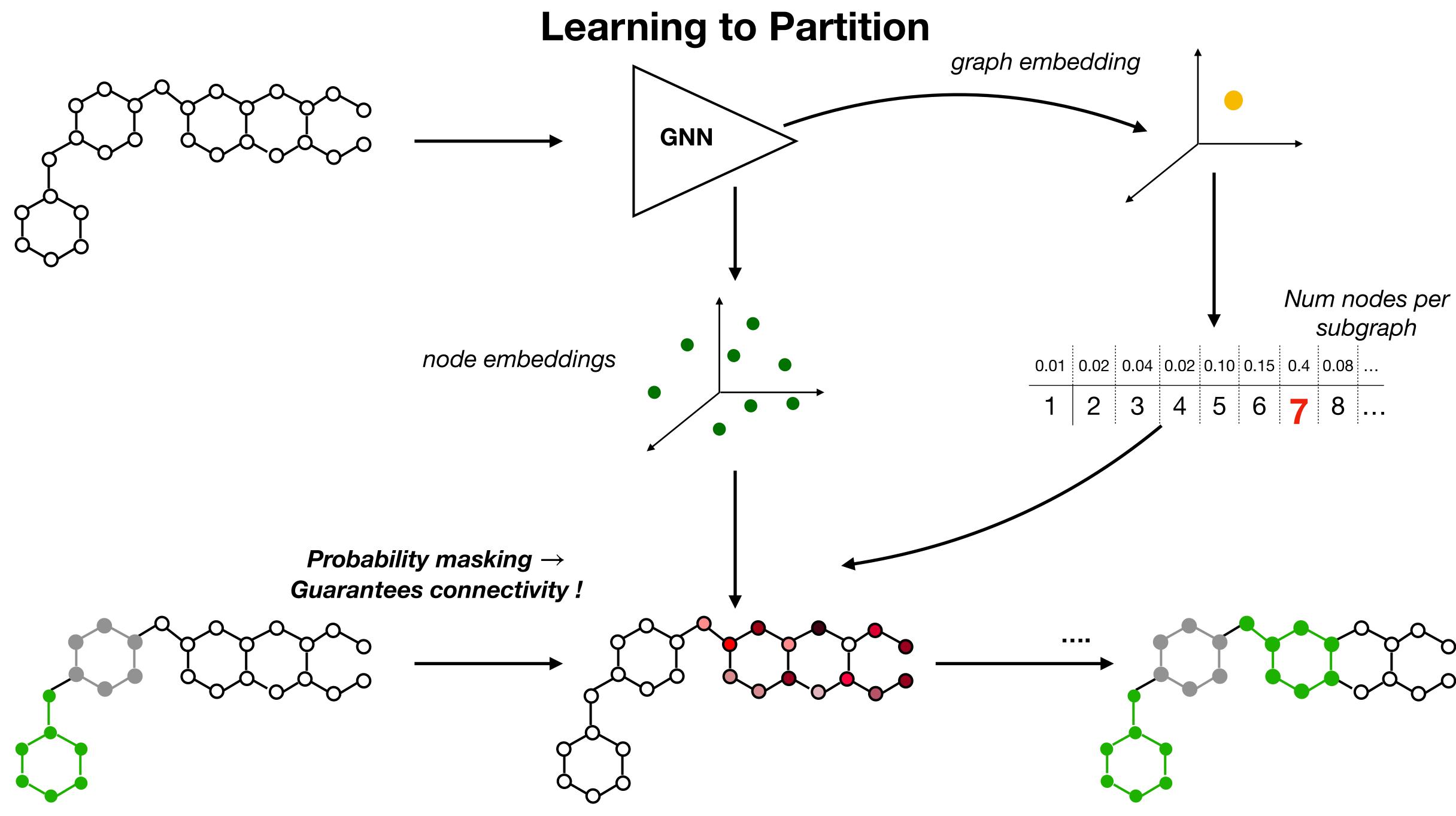


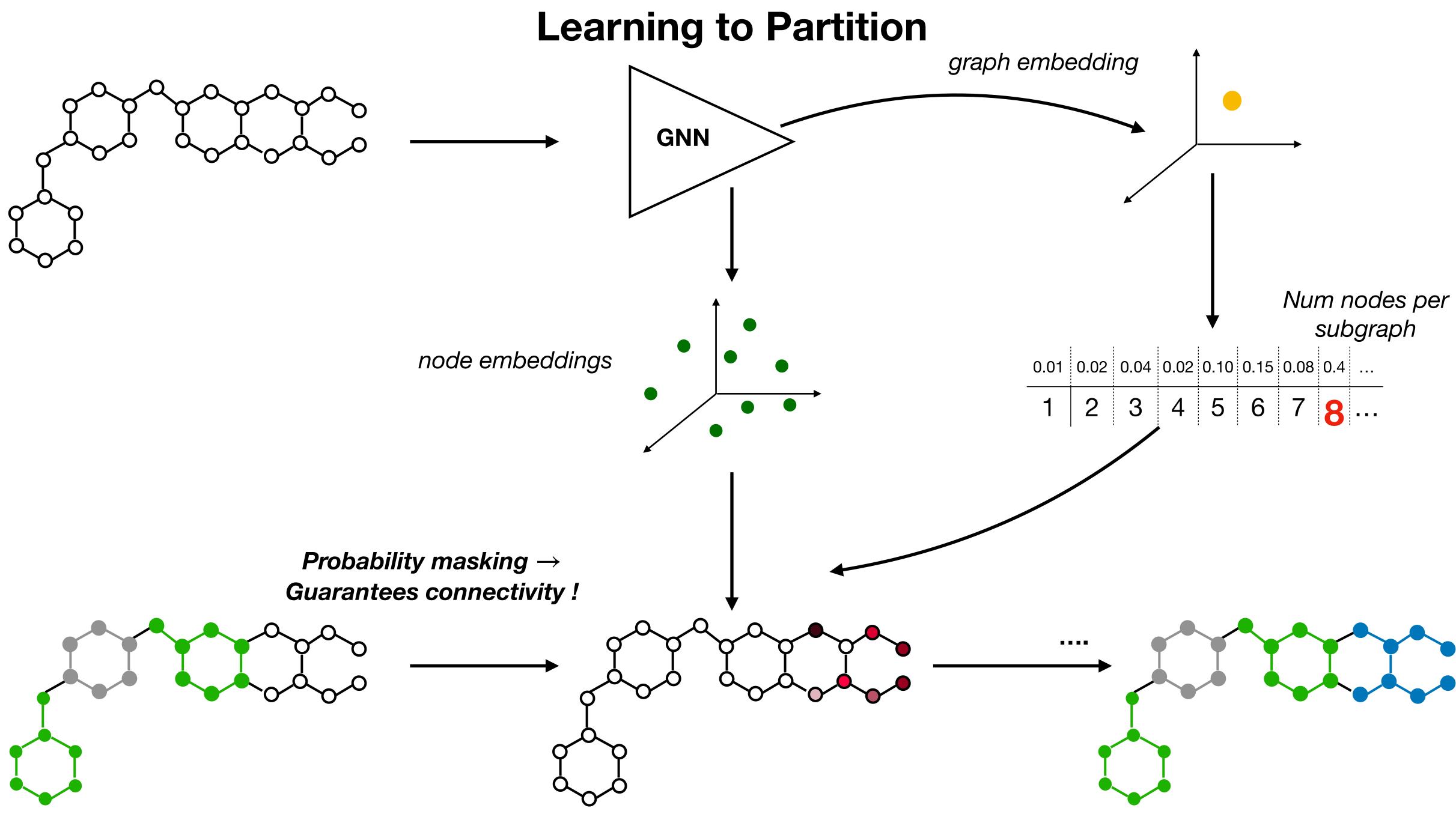


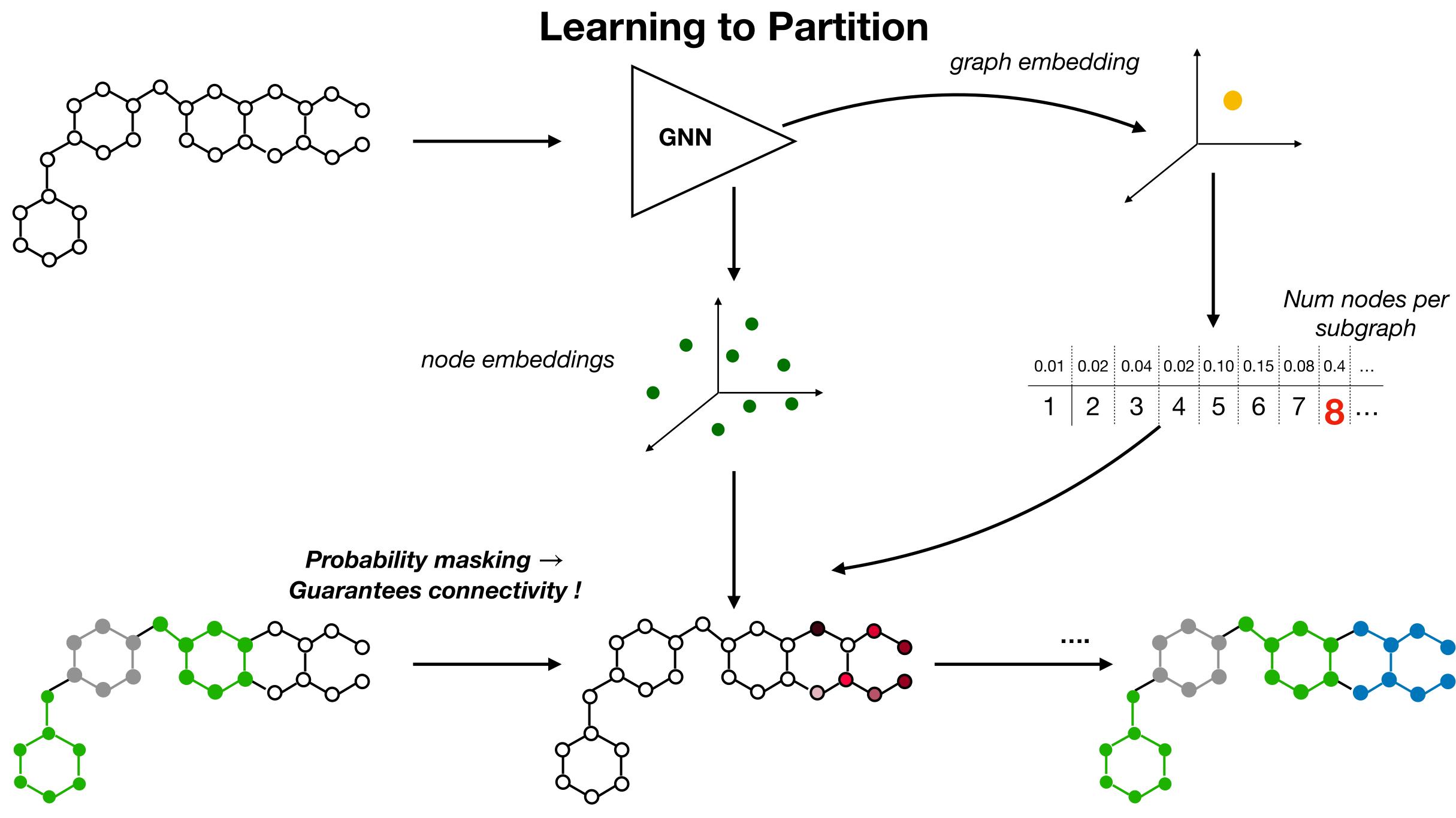








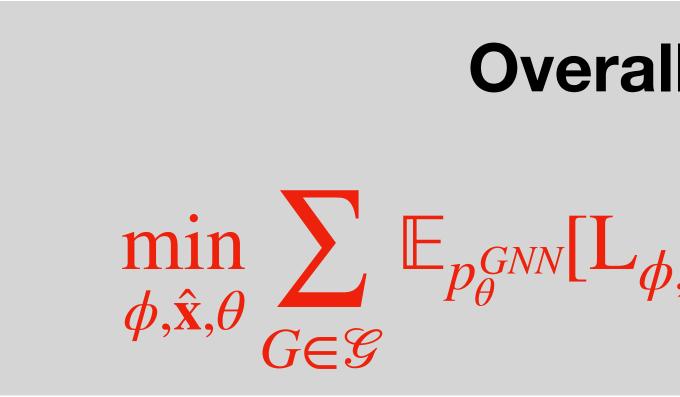




Optimisation

End-to-end with gradient descent:

- (1) Differentiable w.r.t ϕ ,
- (3) PART_{θ} : REINFORCE.



(2) D: continuous relaxation to obtain differentiability w.r.t. the fractional indicator variables $\hat{x} \in [0,1]$,

Overall objective

$$_{b,\hat{\mathbf{X}}}(\mathcal{H}, C | D)] + L_{\hat{\mathbf{X}}}(D)$$

Theoretical gains

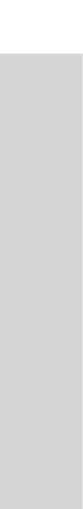
Quadratic gains against (1) Null models and Linear against (2) Pure non-parametric partitioning.

Theorem 1 (informal). Consider a partitioning algorithm that decomposes a graph of n vertices into blocks of k = O(1)vertices. Under mild conditions, it holds that:

The absolute compression gains are:

$\mathbb{E}_{G\sim p}[L_{PnC}(G)] \lesssim \mathbb{E}_{G\sim p}[L_{Part}(G)] \lesssim \mathbb{E}_{G\sim p}[L_{null}(G)]$

$\mathbb{E}_{G\sim p}[L_{part}(G)] \lesssim \mathbb{E}_{G\sim p}[L_{null}(G)] - \Theta(n^2) \quad and \quad \mathbb{E}_{G\sim p}[L_{PnC}(G)] \lesssim \mathbb{E}_{G\sim p}[L_{Part}(G)] - \Theta(n)$



Theoretical gains

Quadratic gains against (1) Null models and Linear against (2) Pure non-parametric partitioning.

Theorem 1 (informal). Consider a partitioning algorithm that decomposes a graph of n vertices into blocks of k = O(1)vertices. Under mild conditions, it holds that:

The absolute compression gains are:

Theorem 2 (informal). Consider a PnC compressor that yields dictionary subgraphs with probability $1 - \delta$. Then:

$\mathbb{E}_{G\sim p}[L_{PnC}(G)] \lesssim \mathbb{E}_{G\sim p}[L_{Part}(G)] \lesssim \mathbb{E}_{G\sim p}[L_{null}(G)]$

$\mathbb{E}_{G\sim p}[L_{part}(G)] \lesssim \mathbb{E}_{G\sim p}[L_{null}(G)] - \Theta(n^2) \quad and \quad \mathbb{E}_{G\sim p}[L_{PnC}(G)] \lesssim \mathbb{E}_{G\sim p}[L_{Part}(G)] - \Theta(n)$

Linear gains against (3) PnC without isomorphism testing.

 $\mathbb{E}_{G \sim p}[\mathcal{L}_{PnC-S}(G)] \approx \mathbb{E}_{G \sim p}[\mathcal{L}_{PnC-G}(G)] - n(1-\delta)\log k$

- Biological and Social network distributions. \bullet
- **Baselines**: \bullet
 - (1) Null (uninformative),
 - (2) Pure partitioning,
 - (3) Deep generative models
- Description length is measured in **bits per edges**. \bullet

Results

Method	Graph type				Sn	nall Molecules				
type	Dataset name		MUTAG			PTC			ZINC	
		data	total	params	data	total	params	data	total	params
	Uniform (raw adjac.)	-	8.44	-	-	17.43	-	_	10.90	-
Null	Edge list	-	7.97	-	-	9.38	-	-	8.60	-
	Erdős-Renyi	-	4.78	-	-	5.67	-	-	5.15	-
Neural	GraphRNN	1.33	1669.77	388K	1.57	698.08	389K	1.62	22.39	388K
(likelihood)	GRAN	0.81	6279.28	1460K	2.18	2636	1470K	1.30	79.50	1461K
Partitioning	SBM-Bayes	_	4.62	_	_	5.12	_	_	4.75	_
(non-parametric)	Louvain	-	4.80	-	-	5.27	-	-	4.77	-
· · · · ·	PropClust	_	4.92	-	_	5.40	-	_	4.85	-
PnC	PnC + SBM	3.81	4.11	49	4.38	4.79	155	3.34	3.45	594
	${ m PnC}+{ m Louvain}$	2.20	2.51	47	2.65	3.15	166	1.96	1.99	196
	${ m PnC}+{ m PropClust}$	2.42	3.03	63	3.38	4.02	178	2.20	2.35	726
	PnC + Neural Part.	$2.17{\pm}0.02$	$\textbf{2.45}{\pm 0.02}$	46 ± 1	$2.63{\pm}0.26$	$2.97{\pm}0.14$	143 ± 31	$2.01{\pm}0.02$	$2.07{\pm}0.03$	$384{\pm}10$

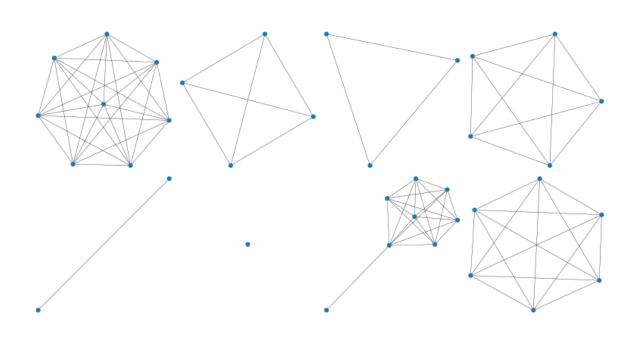
- **Deep generative models** suffer from overparametrisation.
- Learning to partition helps for graphs with recurrent substructures

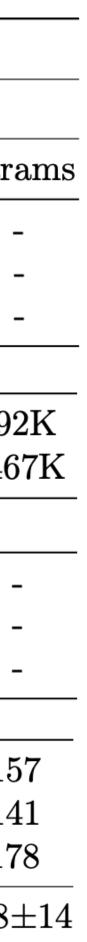
Results

Method	Graph type	Biology			Social Networks					
	Dataset name PROTEINS			IMDB-B			IMDB-M			
		data	total	params	data	total	params	data	total	parai
N.,11	Uniform (raw adjac.)	-	24.71	_	-	2.52	_	_	1.83	_
Null	Edge list	-	10.92		-	8.29	-	-	7.74	-
(non-narametric)	Erdős-Renyi	-	5.46	-	-	1.94	-	-	1.32	-
Neural	GraphRNN	2.03	79.51	392K	1.03	66.65	395K	0.72	64.28	392I
(likelihood)	GRAN	1.51	304.735	1545K	0.26	244.57	1473K	0.17	237.65	1467
	SBM-Bayes	_	3.98	_	_	0.80	_	_	0.60	_
Partitioning (non-parametric)	Louvain	-	3.95	-	-	1.22	-	-	0.88	-
	PropClust	-	4.11	-	-	1.99	-	-	1.37	-
PnC	PnC + SBM	3.26	3.60	896	0.50	0.54	198	0.38	0.38	157
	PnC + Louvain	3.30	3.58	854	0.96	1.02	202	0.66	0.70	141
	PnC + PropClust	3.40	3.70	866	1.45	1.64	241	0.93	1.04	178
	PnC + Neural Part.	$3.34{\pm}0.25$	$3.51{\pm}0.23$	717 ± 61	$1.00{\pm}0.04$	$1.05{\pm}0.04$	$186{\pm}25$	$0.66{\pm}0.05$	$0.72{\pm}0.05$	$178\pm$

- Partitioning-based are strong baselines for graphs with community structure.
- **PnC** consistently improves compression in every case.

Results





PnC vs Overparametrised NNs

			10 ⁵
dataset	GraphRNN	GRAN	
MUTAG	x1264	x3412	104
PTC	x484	x3173	10 ³ 문
ZINC	x38	x90	Total BPE
PROTEINS	x60	x168	10 ¹
IMDBB	infeasible	x763	10 ⁰
IMDBM	infeasible	x1033	10

- Vanilla graph generators are suboptimal for compression (heavily overparametrised!).
- Unclear how to minimise total description length. \bullet
- Posthoc model compression: tedious/often ineffective.



Take home messages

- Lossless graph compression requires estimating distributions over isomorphism classes. \bullet
- Challenging in various respects (computationally, statistically, expressivity).
- PnC provides desirable tradeoffs w.r.t the above with guaranteed compression gains.
- Additional advantages: explainability + also optimising w.r.t. the model description length.
- Can we do better?
 - Learnable Partitioning problem at its own sake. 1.
 - 2. How to scale to large graphs?
 - 3.

Deep generative models + accounting for the total DL during training (general problem in neural compression).

Interested to know more? Let's chat in the NeurIPS poster session!

@gbouritsas

