
Partition and Code:
Learning how to Compress Graphs

Giorgos Bouritsas, Andreas Loukas, Nikolaos Karalias, Michael Bronstein

1

Why do we care about compressing graphs?

Practical
transmission/storage/processing

2

Theoretical
Fundamental problem in computer science

Internet
https://www.opte.org/

Single graph Graph datasets

dataset number of
graphs

size
(processed)

ogbg-ppa 158K 30GB

ogbg-code 453K 3GB

ogbg-molpcba 438K 2GB

What is the role of machine learning in compression?

Lossless Graph Compression

…000011110101011010…

Encoder
(Description Method)

Decoder

G1 ≅ G2

{
Description length in bits L𝖢𝖮𝖣𝖤(G)

𝖢𝖮𝖣𝖤 𝖢𝖮𝖣𝖤−1

Source p

G1 G2

This work: sample space of isomorphism classes
Previous work: (1) labelled graphs or (2) a single large graph

3

Objective: find a description method that minimises the expected description length.

min
𝖢𝖮𝖣𝖤

𝔼G∼p[L𝖢𝖮𝖣𝖤(G)]

Information theory basics

4

Objective: find a description method that minimises the expected description length.

min
𝖢𝖮𝖣𝖤

𝔼G∼p[L𝖢𝖮𝖣𝖤(G)]

Shannon’s source coding theorem (informal): For all description
methods it holds that:

,

where is the Entropy of the r.v. G.

𝖢𝖮𝖣𝖤

𝔼G∼p[L𝖢𝖮𝖣𝖤(G)] ≥ 𝔼G∼p[−log p(G)] = HG∼p[G]

HG∼p[G]

Information theory basics

4

• Optimise for probability distributions instead of description methods.

• Every distribution on a finite sample space can be converted to a uniquely decodable code
using an entropy coder (e.g., Arithmetic Coding, ANS).

min
q

𝔼G∼p[−log q(G)]

q

Information theory basics

5

 is optimal.L𝖢𝖮𝖣𝖤(G) = − log p(G) ⇔ 𝖢𝖮𝖣𝖤

C = …01000001010001… LC(G) = n2 ⇔ q(G) =
1

2n2

0 1 0 0 0 0 0
1 0 1 0 0 0 1
0 1 0 1 0 0 0
0 0 1 0 1 0 0
0 0 0 1 0 1 0
0 0 0 0 1 0 1
0 1 0 0 0 1 0

Adjacency
 matrix

Warmup: Simple uninformative encodings

Erdős - Rényi
m = 14

 = {(1,2), (2,1), (2,3), (2,7),
(3,2), (3,4), (4,3), (4,5), (5,4),
(5,6), (6,5), (6,7), (7,2), (7,6)}

ℰEncoder
C = …101000111000… LC(G) = log(n2 + 1) + log (n2

m)
 q(G) =

1
n2 + 1

1

(n2

m)
6

Encoder

⇔

G1

• Unique to graphs, makes the problem fundamentally different.

• To achieve optimality, the distribution needs to be defined on isomorphism classes.

• Requires solving graph isomorphism.

G2

C = …00011010101010…
Encoder

S

Challenge 1: The usual suspect - Isomorphism

7

• Evaluate the probability everywhere, e.g., by decomposing the probability distribution
(autoregressive models for ordered data - images and text).

https://towardsdatascience.com/autoregressive-
models-pixelcnn-e30734ede0c1

q(X) = q(x1)
n

∏
i=2

q(xi |xi−1, xi−2, …x1)

• Observation space of graphs is huge - grows with .

• How to decompose the distribution in the absence of ordering?

Ω(2n2

n!)

Challenge 2: Estimating & evaluating the likelihood

8

…00011101010…

DecoderD
N

 DNN
…010010101010…

• In case of parametric model (e.g., a DNN), the encoder and the decoder need to both possess
the paremetrisation of the distribution. Hence:

Challenge 3: The description length of the model
 Compression vs Generative models

9

Minimum Description Length

 min
q,M

𝔼G∼p[−log q(G |M)] +
1
N

L(M)

• Overparametrisation might be problematic.

• Typically neural compressors are only optimised w.r.t. the cross-entropy.

Encoder

Partition and Code: Pipeline

10

H3

Partition and Code: Pipeline

Partitioning
 𝖯𝖠𝖱𝖳θ

H1

H2 H4C12

C23

C34

11

Cuts
C = {C12, C13, C14, C23, C24, C34}

Subgraphs
ℋ = {H1, H2, H3, H4}

H3

Partition and Code: Pipeline

Partitioning
 𝖯𝖠𝖱𝖳θ

H1

H2 H4C12

C23

C34

11

Cuts
C = {C12, C13, C14, C23, C24, C34}

Subgraphs
ℋ = {H1, H2, H3, H4}

{ }
Dictionary

 D = {a1, a2, …, a|D|}

H3

Partition and Code: Pipeline

Partitioning
 𝖯𝖠𝖱𝖳θ

H1

H2 H4C12

C23

C34

11

Cuts
C = {C12, C13, C14, C23, C24, C34}

Subgraphs
ℋ = {H1, H2, H3, H4}

{ }
Dictionary

 D = {a1, a2, …, a|D|}

H2 H3 H4

H1

H3

Partition and Code: Pipeline

Partitioning
 𝖯𝖠𝖱𝖳θ

H1

H2 H4C12

C23

C34

11

Cuts
C = {C12, C13, C14, C23, C24, C34}

Subgraphs
ℋ = {H1, H2, H3, H4}

{ }
Dictionary

 D = {a1, a2, …, a|D|}

H2 H3 H4

H1

….00010011……

Dictionary Encoding:
L(M) = − log q(D)

….00010011……

Cut Encoding:
−log q(C |ℋ)

Subgraph Encoding:
−log q(ℋ |D)

….00010011……

+
Graph encoding:

L(G |M)

How do we address the challenges?
C1 Isomorphism: Dictionary

• We efficiently solve it for small graphs of size .

• tradeoff between expressivity and complexity.

k = O(1)

12

How do we address the challenges?
C1 Isomorphism: Dictionary

• We efficiently solve it for small graphs of size .

• tradeoff between expressivity and complexity.

k = O(1)

C2 Evaluating the Likelihood: Partitioning

• Provides us with a learnable decomposition of the probability distribution (subgraphs + cuts).

12

How do we address the challenges?
C1 Isomorphism: Dictionary

• We efficiently solve it for small graphs of size .

• tradeoff between expressivity and complexity.

k = O(1)

C2 Evaluating the Likelihood: Partitioning

• Provides us with a learnable decomposition of the probability distribution (subgraphs + cuts).

C3 The DL of the model: End-to-end optimisation + Learnable Dictionary

NB: does not need to be transmitted.

min
q,M

𝔼G∼p[−log q(G |M)] +
1
N

L(M) ⇒ min
ϕ,D,θ

𝔼G∼p[−log qϕ(𝖯𝖠𝖱𝖳θ |D)] +
1
N

L(D)

𝖯𝖠𝖱𝖳θ

 does all the heavy-lifting while is kept small!𝖯𝖠𝖱𝖳θ ϕ

12

1. Graph Likelihood: Subgraph Encoding + Cut encoding

Number of subgraphs + Dictionary subgraphs + Non-dictionary subgraphs + Cuts

2. Dictionary DL: , , : universe

qϕ(G |D) = q(ℋ |D)q(C |ℋ, D)
= qϕ(bdict, bnull)qϕ(ℋdict |bdict, D)qnull(ℋnull |bnull)qnull(C |ℋ)

L(D) = − ∑
ai∈𝔘

xi log qnull(ai) xi = {1 if ai ∈ D
0 otherwise .

𝔘

Parametric
{

Non-parametric (null model)
{

Distribution & dictionary parametrisation

13

Learning to Partition

14

Learning to Partition

D
N

 GNN

node embeddings

graph embedding

Num nodes per
subgraph

14

0.01 0.07 0.08 0.05 0.01 0.15 0.30 0.05 …

1 2 3 4 5 6 7 8 …

Learning to Partition

D
N

 GNN

node embeddings

graph embedding

Num nodes per
subgraph

14

0.01 0.07 0.08 0.05 0.01 0.15 0.30 0.05 …

1 2 3 4 5 6 7 8 …

Learning to Partition

D
N

 GNN

node embeddings

graph embedding

Num nodes per
subgraph

14

0.01 0.07 0.08 0.05 0.01 0.15 0.30 0.05 …

1 2 3 4 5 6 7 8 …

Learning to Partition

node embeddings

graph embedding

Num nodes per
subgraph

15

Probability masking
Guarantees connectivity !

→

D
N

 GNN

0.01 0.07 0.08 0.05 0.01 0.15 0.30 0.05 …

1 2 3 4 5 6 7 8 …

Learning to Partition

node embeddings

graph embedding

Num nodes per
subgraph

16

D
N

 GNN

0.01 0.07 0.08 0.05 0.01 0.15 0.30 0.05 …

1 2 3 4 5 6 7 8 …

Probability masking
Guarantees connectivity !

→

Learning to Partition

node embeddings

graph embedding

Num nodes per
subgraph

17

D
N

 GNN

0.01 0.07 0.08 0.05 0.01 0.15 0.30 0.05 …

1 2 3 4 5 6 7 8 …

Probability masking
Guarantees connectivity !

→

Learning to Partition

node embeddings

graph embedding

Num nodes per
subgraph

18

D
N

 GNN

0.01 0.07 0.08 0.05 0.01 0.15 0.30 0.05 …

1 2 3 4 5 6 7 8 …

Probability masking
Guarantees connectivity !

→

Learning to Partition

node embeddings

graph embedding

Num nodes per
subgraph

19

D
N

 GNN

0.01 0.07 0.08 0.05 0.01 0.15 0.30 0.05 …

1 2 3 4 5 6 7 8 …

Probability masking
Guarantees connectivity !

→

Learning to Partition

node embeddings

graph embedding

Num nodes per
subgraph

20

D
N

 GNN

0.01 0.07 0.08 0.05 0.01 0.15 0.30 0.05 …

1 2 3 4 5 6 7 8 …

Probability masking
Guarantees connectivity !

→

Learning to Partition

node embeddings

graph embedding

Num nodes per
subgraph

….

21

D
N

 GNN

0.01 0.04 0.05 0.02 0.10 0.35 0.25 0.10 …

1 2 3 4 5 6 7 8 …

Probability masking
Guarantees connectivity !

→

Learning to Partition

node embeddings

graph embedding

Num nodes per
subgraph

….

22

D
N

 GNN

0.01 0.02 0.04 0.02 0.10 0.15 0.4 0.08 …

1 2 3 4 5 6 7 8 …

Probability masking
Guarantees connectivity !

→

Learning to Partition

node embeddings

graph embedding

Num nodes per
subgraph

….

23

D
N

 GNN

0.01 0.02 0.04 0.02 0.10 0.15 0.08 0.4 …

1 2 3 4 5 6 7 8 …

Probability masking
Guarantees connectivity !

→

End-to-end with gradient descent:

(1) Differentiable w.r.t φ,

(2) : continuous relaxation to obtain differentiability w.r.t. the fractional indicator variables ,

(3) : REINFORCE.

D ̂x ∈ [0,1]

𝖯𝖠𝖱𝖳θ

Optimisation

24

Overall objective

min
ϕ,x̂,θ ∑

G∈𝒢

𝔼pGNN
θ

[Lϕ,x̂(ℋ, C |D)] + Lx̂(D)

Theorem 1 (informal). Consider a partitioning algorithm that decomposes a graph of vertices into blocks of
vertices. Under mild conditions, it holds that:

The absolute compression gains are:

n k = O(1)

𝔼G∼p[LPnC(G)] ≲ 𝔼G∼p[LPart(G)] ≲ 𝔼G∼p[Lnull(G)]

𝔼G∼p[Lpart(G)] ≲ 𝔼G∼p[Lnull(G)] − Θ(n2) and 𝔼G∼p[LPnC(G)] ≲ 𝔼G∼p[LPart(G)] − Θ(n)

Quadratic gains against (1) Null models and Linear against (2) Pure non-parametric partitioning.

Theoretical gains

25

Theorem 1 (informal). Consider a partitioning algorithm that decomposes a graph of vertices into blocks of
vertices. Under mild conditions, it holds that:

The absolute compression gains are:

n k = O(1)

𝔼G∼p[LPnC(G)] ≲ 𝔼G∼p[LPart(G)] ≲ 𝔼G∼p[Lnull(G)]

𝔼G∼p[Lpart(G)] ≲ 𝔼G∼p[Lnull(G)] − Θ(n2) and 𝔼G∼p[LPnC(G)] ≲ 𝔼G∼p[LPart(G)] − Θ(n)

Quadratic gains against (1) Null models and Linear against (2) Pure non-parametric partitioning.

Linear gains against (3) PnC without isomorphism testing.

Theorem 2 (informal). Consider a PnC compressor that yields dictionary subgraphs with probability . Then: 1 − δ

𝔼G∼p[LPnC−S(G)] ≈ 𝔼G∼p[LPnC−G(G)] − n(1 − δ)log k

Theoretical gains

25

Results

• Biological and Social network distributions.

• Baselines:

• (1) Null (uninformative),

• (2) Pure partitioning,

• (3) Deep generative models

• Description length is measured in bits per edges.

26

Results

27

• Deep generative models suffer from overparametrisation.

• Learning to partition helps for graphs with recurrent substructures

Results

28

• Partitioning-based are strong baselines for graphs with
community structure.

• PnC consistently improves compression in every case.

• Vanilla graph generators are suboptimal for compression (heavily overparametrised!).

• Unclear how to minimise total description length.

• Posthoc model compression: tedious/often ineffective.

dataset GraphRNN GRAN
MUTAG x1264 x3412

PTC x484 x3173

ZINC x38 x90

PROTEINS x60 x168

IMDBB infeasible x763

IMDBM infeasible x1033

PnC vs Overparametrised NNs

29

Take home messages

arxiv.org/abs/2107.01952 @gbouritsas

• Lossless graph compression requires estimating distributions over isomorphism classes.

• Challenging in various respects (computationally, statistically, expressivity).

• PnC provides desirable tradeoffs w.r.t the above with guaranteed compression gains.

• Additional advantages: explainability + also optimising w.r.t. the model description length.
• Can we do better?

1. Learnable Partitioning - problem at its own sake.

2. How to scale to large graphs?

3. Deep generative models + accounting for the total DL during training (general problem in neural compression).

Interested to know more? Let’s chat in the NeurIPS poster session!

30

