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Why do we care about compressing graphs?

Practical 
transmission/storage/processing
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Theoretical 
Fundamental problem in computer science

Internet 
https://www.opte.org/

Single graph Graph datasets

dataset number of 
graphs

size 
(processed)

ogbg-ppa 158K 30GB

ogbg-code 453K 3GB

ogbg-molpcba 438K 2GB

What is the role of machine learning in compression?



Lossless Graph Compression

…000011110101011010…

Encoder 
(Description Method)

Decoder

G1 ≅ G2

{
Description length in bits L𝖢𝖮𝖣𝖤(G)

𝖢𝖮𝖣𝖤 𝖢𝖮𝖣𝖤−1

Source p

G1 G2

This work: sample space of isomorphism classes 
Previous work: (1)  labelled graphs or (2) a single large graph
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Objective: find a description method that minimises the expected description length.


min
𝖢𝖮𝖣𝖤

𝔼G∼p[L𝖢𝖮𝖣𝖤(G)]

Information theory basics

4



Objective: find a description method that minimises the expected description length.


min
𝖢𝖮𝖣𝖤

𝔼G∼p[L𝖢𝖮𝖣𝖤(G)]

Shannon’s source coding theorem (informal): For all description 
methods  it holds that: 

,


where  is the Entropy of the r.v. G.

𝖢𝖮𝖣𝖤

𝔼G∼p[L𝖢𝖮𝖣𝖤(G)] ≥ 𝔼G∼p[−log p(G)] = HG∼p[G]

HG∼p[G]

Information theory basics
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• Optimise for probability distributions instead of description methods.





• Every distribution  on a finite sample space can be converted to a uniquely decodable code 
using an entropy coder (e.g., Arithmetic Coding, ANS).

min
q

𝔼G∼p[−log q(G)]

q

Information theory basics
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 is optimal.L𝖢𝖮𝖣𝖤(G) = − log p(G) ⇔ 𝖢𝖮𝖣𝖤



C = …01000001010001…  LC(G) = n2 ⇔ q(G) =
1

2n2

0 1 0 0 0 0 0
1 0 1 0 0 0 1
0 1 0 1 0 0 0
0 0 1 0 1 0 0
0 0 0 1 0 1 0
0 0 0 0 1 0 1
0 1 0 0 0 1 0

Adjacency 
 matrix

Warmup: Simple uninformative encodings

Erdős - Rényi
m = 14 


 = {(1,2), (2,1), (2,3), (2,7), 
(3,2), (3,4), (4,3), (4,5), (5,4), 
(5,6), (6,5), (6,7), (7,2), (7,6)}

ℰEncoder
C = …101000111000…  LC(G) = log(n2 + 1) + log (n2

m )
 q(G) =

1
n2 + 1

1

(n2

m )
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Encoder

 
⇔



G1

• Unique to graphs, makes the problem fundamentally different.


• To achieve optimality, the distribution needs to be defined on isomorphism classes.


• Requires solving graph isomorphism.

G2

C = …00011010101010…
Encoder

S

Challenge 1: The usual suspect - Isomorphism
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• Evaluate the probability everywhere, e.g., by decomposing the probability distribution 
(autoregressive models for ordered data - images and text).

https://towardsdatascience.com/autoregressive-
models-pixelcnn-e30734ede0c1

q(X) = q(x1)
n

∏
i=2

q(xi |xi−1, xi−2, …x1)

• Observation space of graphs is huge - grows with .


• How to decompose the distribution in the absence of ordering?

Ω( 2n2

n! )

Challenge 2: Estimating & evaluating the likelihood 
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…00011101010…

DecoderD
N

 DNN
…010010101010…

• In case of parametric model (e.g., a DNN), the encoder and the decoder need to both possess 
the paremetrisation of the distribution. Hence:

Challenge 3: The description length of the model 
  Compression vs Generative models
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Minimum Description Length  

 min
q,M

𝔼G∼p[−log q(G |M)] +
1
N

L(M)

• Overparametrisation might be problematic.


• Typically neural compressors are only optimised w.r.t. the cross-entropy.

Encoder



Partition and Code: Pipeline
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H3

Partition and Code: Pipeline

Partitioning 
 𝖯𝖠𝖱𝖳θ

H1

H2 H4C12

C23

C34

11

Cuts 
C = {C12, C13, C14, C23, C24, C34}

Subgraphs 
ℋ = {H1, H2, H3, H4}



H3

Partition and Code: Pipeline

Partitioning 
 𝖯𝖠𝖱𝖳θ

H1

H2 H4C12

C23

C34

11

Cuts 
C = {C12, C13, C14, C23, C24, C34}

Subgraphs 
ℋ = {H1, H2, H3, H4}

{ }
Dictionary 

 D = {a1, a2, …, a|D|}



H3

Partition and Code: Pipeline

Partitioning 
 𝖯𝖠𝖱𝖳θ

H1

H2 H4C12

C23

C34

11

Cuts 
C = {C12, C13, C14, C23, C24, C34}

Subgraphs 
ℋ = {H1, H2, H3, H4}

{ }
Dictionary 

 D = {a1, a2, …, a|D|}
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H3

Partition and Code: Pipeline

Partitioning 
 𝖯𝖠𝖱𝖳θ

H1

H2 H4C12

C23

C34

11

Cuts 
C = {C12, C13, C14, C23, C24, C34}

Subgraphs 
ℋ = {H1, H2, H3, H4}

{ }
Dictionary 

 D = {a1, a2, …, a|D|}

H2 H3 H4

H1

….00010011……

Dictionary Encoding: 
L(M) = − log q(D)

….00010011……

Cut Encoding: 
−log q(C |ℋ)

Subgraph Encoding: 
−log q(ℋ |D)

….00010011……

+
Graph encoding: 

L(G |M)



How do we address the challenges?
C1 Isomorphism: Dictionary 

• We efficiently solve it for small graphs of size .


• tradeoff between expressivity and complexity.

k = O(1)
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How do we address the challenges?
C1 Isomorphism: Dictionary 

• We efficiently solve it for small graphs of size .


• tradeoff between expressivity and complexity.

k = O(1)

C2 Evaluating the Likelihood: Partitioning 

• Provides us with a learnable decomposition of the probability distribution (subgraphs + cuts). 
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How do we address the challenges?
C1 Isomorphism: Dictionary 

• We efficiently solve it for small graphs of size .


• tradeoff between expressivity and complexity.

k = O(1)

C2 Evaluating the Likelihood: Partitioning 

• Provides us with a learnable decomposition of the probability distribution (subgraphs + cuts). 

C3 The DL of the model: End-to-end optimisation + Learnable Dictionary 

 

NB:  does not need to be transmitted. 

min
q,M

𝔼G∼p[−log q(G |M)] +
1
N

L(M) ⇒ min
ϕ,D,θ

𝔼G∼p[−log qϕ(𝖯𝖠𝖱𝖳θ |D)] +
1
N

L(D)

𝖯𝖠𝖱𝖳θ

 does all the heavy-lifting while  is kept small!𝖯𝖠𝖱𝖳θ ϕ
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1. Graph Likelihood: Subgraph Encoding + Cut encoding 




Number of subgraphs + Dictionary subgraphs + Non-dictionary subgraphs + Cuts


2. Dictionary DL: ,        ,       : universe


qϕ(G |D) = q(ℋ |D)q(C |ℋ, D)
= qϕ(bdict, bnull)qϕ(ℋdict |bdict, D)qnull(ℋnull |bnull)qnull(C |ℋ)

L(D) = − ∑
ai∈𝔘

xi log qnull(ai) xi = {1 if ai ∈ D
0 otherwise .

𝔘

Parametric
{

Non-parametric (null model)
{

Distribution & dictionary parametrisation
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Learning to Partition
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Learning to Partition

D
N

 GNN

node embeddings

graph embedding

Num nodes per 
subgraph
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Learning to Partition
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Learning to Partition

node embeddings

graph embedding

Num nodes per 
subgraph
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Probability masking   
Guarantees connectivity !

→

D
N

 GNN
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Learning to Partition

node embeddings

graph embedding

Num nodes per 
subgraph
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 GNN
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Learning to Partition

node embeddings

graph embedding

Num nodes per 
subgraph
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Learning to Partition

node embeddings

graph embedding

Num nodes per 
subgraph
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D
N

 GNN
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Probability masking   
Guarantees connectivity !

→



Learning to Partition

node embeddings

graph embedding

Num nodes per 
subgraph
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D
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 GNN
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Learning to Partition

node embeddings

graph embedding

Num nodes per 
subgraph
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D
N

 GNN

0.01 0.07 0.08 0.05 0.01 0.15 0.30 0.05 …

1 2 3 4 5 6 7 8 …

Probability masking   
Guarantees connectivity !

→



Learning to Partition

node embeddings

graph embedding

Num nodes per 
subgraph

….
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D
N

 GNN

0.01 0.04 0.05 0.02 0.10 0.35 0.25 0.10 …

1 2 3 4 5 6 7 8 …

Probability masking   
Guarantees connectivity !

→



Learning to Partition

node embeddings

graph embedding

Num nodes per 
subgraph

….
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D
N

 GNN

0.01 0.02 0.04 0.02 0.10 0.15 0.4 0.08 …

1 2 3 4 5 6 7 8 …

Probability masking   
Guarantees connectivity !

→



Learning to Partition

node embeddings

graph embedding

Num nodes per 
subgraph

….
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D
N

 GNN

0.01 0.02 0.04 0.02 0.10 0.15 0.08 0.4 …

1 2 3 4 5 6 7 8 …

Probability masking   
Guarantees connectivity !

→



End-to-end with gradient descent: 

(1) Differentiable w.r.t φ, 


(2) : continuous relaxation to obtain differentiability w.r.t. the fractional indicator variables ,


(3)  : REINFORCE.

D ̂x ∈ [0,1]

𝖯𝖠𝖱𝖳θ

Optimisation
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Overall objective 

min
ϕ,x̂,θ ∑

G∈𝒢

𝔼pGNN
θ

[Lϕ,x̂(ℋ, C |D)] + Lx̂(D)



Theorem 1 (informal). Consider a partitioning algorithm  that decomposes a graph of  vertices into blocks of  
vertices. Under mild conditions, it holds that: 




The absolute compression gains are: 

n k = O(1)

𝔼G∼p[LPnC(G)] ≲ 𝔼G∼p[LPart(G)] ≲ 𝔼G∼p[Lnull(G)]

𝔼G∼p[Lpart(G)] ≲ 𝔼G∼p[Lnull(G)] − Θ(n2) and 𝔼G∼p[LPnC(G)] ≲ 𝔼G∼p[LPart(G)] − Θ(n)

Quadratic gains against (1) Null models and Linear against (2) Pure non-parametric partitioning.

Theoretical gains
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Theorem 1 (informal). Consider a partitioning algorithm  that decomposes a graph of  vertices into blocks of  
vertices. Under mild conditions, it holds that: 




The absolute compression gains are: 

n k = O(1)

𝔼G∼p[LPnC(G)] ≲ 𝔼G∼p[LPart(G)] ≲ 𝔼G∼p[Lnull(G)]

𝔼G∼p[Lpart(G)] ≲ 𝔼G∼p[Lnull(G)] − Θ(n2) and 𝔼G∼p[LPnC(G)] ≲ 𝔼G∼p[LPart(G)] − Θ(n)

Quadratic gains against (1) Null models and Linear against (2) Pure non-parametric partitioning.

Linear gains against (3) PnC without isomorphism testing.

Theorem 2 (informal). Consider a PnC compressor that  yields dictionary subgraphs with probability . Then: 1 − δ

𝔼G∼p[LPnC−S(G)] ≈ 𝔼G∼p[LPnC−G(G)] − n(1 − δ)log k

Theoretical gains
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Results

• Biological and Social network distributions.


• Baselines: 


• (1) Null (uninformative), 


• (2) Pure partitioning, 


• (3) Deep generative models


• Description length is measured in bits per edges.
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Results
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• Deep generative models suffer from overparametrisation. 

• Learning to partition helps for graphs with recurrent substructures



Results
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• Partitioning-based are strong baselines for graphs with 
community structure. 

• PnC consistently improves compression in every case.



• Vanilla graph generators are suboptimal for compression (heavily overparametrised!).


• Unclear how to minimise total description length.


• Posthoc model compression: tedious/often ineffective.

dataset GraphRNN GRAN
MUTAG x1264 x3412

PTC x484 x3173

ZINC x38 x90

PROTEINS x60 x168

IMDBB infeasible x763

IMDBM infeasible x1033

PnC vs Overparametrised NNs
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Take home messages

arxiv.org/abs/2107.01952 @gbouritsas

• Lossless graph compression requires estimating distributions over isomorphism classes.

• Challenging in various respects (computationally, statistically, expressivity).

• PnC provides desirable tradeoffs w.r.t the above with guaranteed compression gains.

• Additional advantages: explainability + also optimising w.r.t. the model description length. 
• Can we do better?


1. Learnable Partitioning - problem at its own sake.

2. How to scale to large graphs?

3. Deep generative models + accounting for the total DL during training (general problem in neural compression). 

Interested to know more? Let’s chat in the NeurIPS poster session!
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