

Explanation-based Data Augmentation for Image Classification

Sandareka Wickramanayake, Mong Li Lee, Wynne Hsu {sandaw, leeml, whsu}@comp.nus.edu.sg School of Computing, National University of Singapore

Training Dataset must be Representative.

Black Tern

White Breasted Nuthatch

Training Dataset must be Representative.

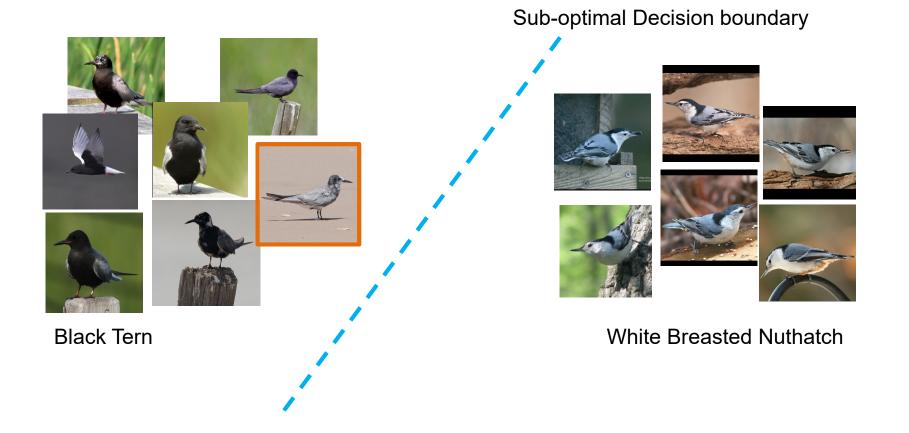
Black Tern

White Breasted Nuthatch

- Train dataset contains very few images of Juvenile Black Terns.
- Juvenile Black Terns are under-represented.

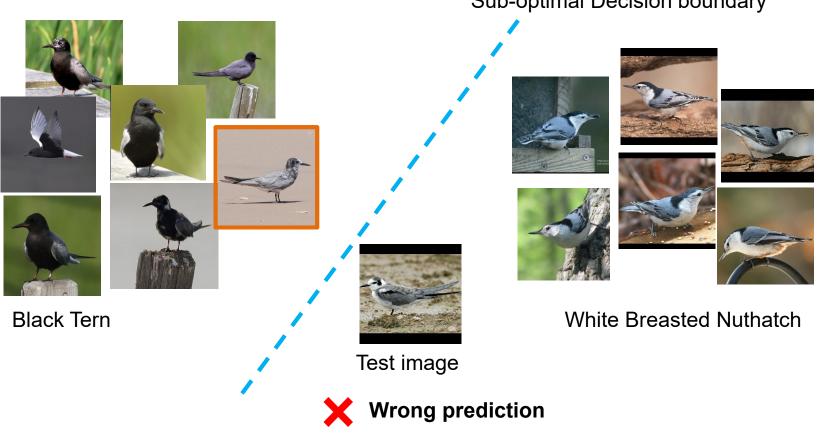
BRACE - BetteR Accuracy from Concept-based Explanation

Training Dataset must be Representative.



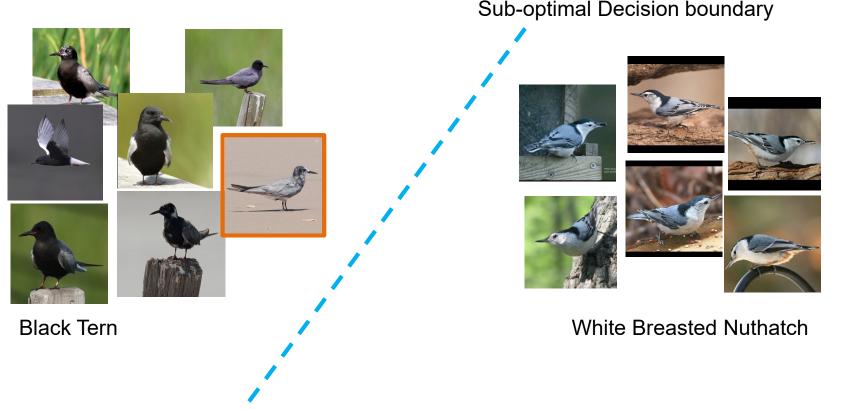
BRACE - BetteR Accuracy from Concept-based Explanation

Training Dataset must be Representative.



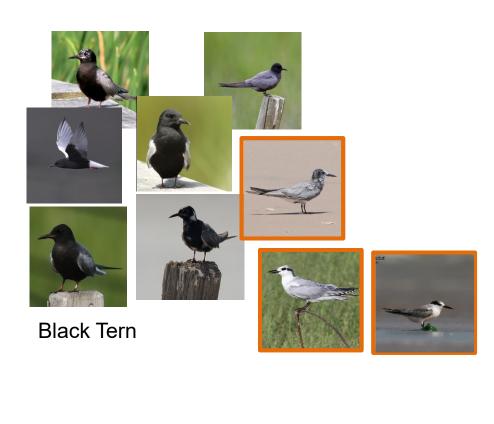
Sub-optimal Decision boundary

Transformation-based Data Augmentation?



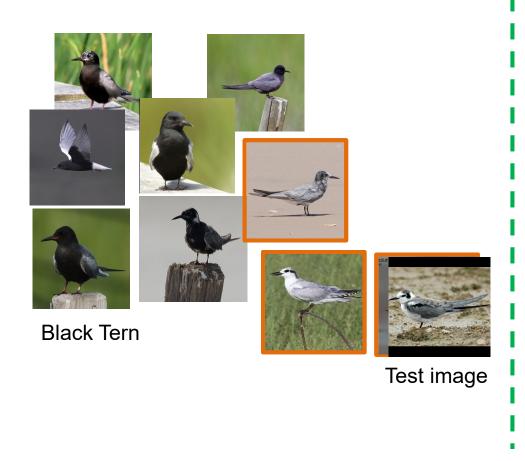
Only explore the neighborhood of existing samples and may not cover the under-represented regions.

White Breasted Nuthatch



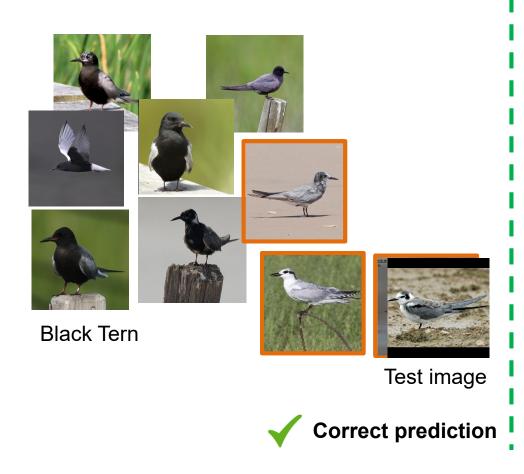
New Decision boundary

White Breasted Nuthatch



New Decision boundary

White Breasted Nuthatch



New Decision boundary



White Breasted Nuthatch

NUS National University of Singapore

- Should not introduce noise
 - e.g., out-of-distribution images.

(a) Images obtained for Black Tern class

• Added images should be informative.

Explanations Provide Useful Insights!

- E.g., CCNN[1] misclassifies juvenile Black Tern in Fig (a) as White Breasted Nuthatch.
- Concepts caused misclassification : White breast, White belly, Black crown

(a) Juvenile Black Tern

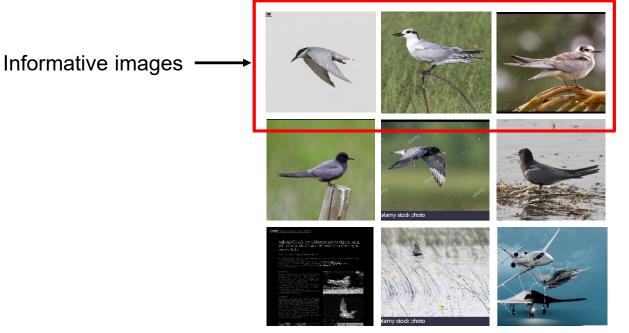
(b) Images of adult Black Tern

(c) Images of White Breasted Nuthatch

[1] Comprehensible Convolutional Neural Networks via Guided Concept Learning, IJCNN, 2021

BRACE - BetteR Accuracy from Concept-based Explanation

Use Explanations to Identify Informative Images?



(a) Images obtained for Black Tern class

BRACE - BetteR Accuracy from Concept-based
Explanation

BRACE - BetteR Accuracy from Concept-based Explanation

Assess Utility of New Images

- Suppose an image of c is misclassified into \overline{c} .
- Is the new image from the under-represented region?
 - Similar to the existing images of c.
 - Model's confidence that the new image belongs to a \bar{c} is high.

$$\boldsymbol{\beta}(\boldsymbol{x},\boldsymbol{c},\overline{\boldsymbol{c}}) = \frac{f_{x} f_{c}}{\|f_{x}\| \|f_{c}\|} \times \boldsymbol{e}^{\boldsymbol{P}(\overline{\boldsymbol{c}}|\boldsymbol{x})}$$

x = new image $f_x =$ visual features of x $f_c =$ avg visual features of class cVisual features are extracted using the classifier trained with original train dataset.

Assess Utility of New Images

- Does the new image contain concepts caused misclassifications?
 - Derive concepts caused misclassifications $S_{c \rightarrow \overline{c}}$
 - Computer degree of match between visual features in the new image and $S_{c \to \overline{c}}$ $\Delta(S_{c \to \overline{c}}, x)$
- *utility* = $\sum_{\overline{c} \in \overline{C}} [\beta(x, c, \overline{c}) \times \Delta(S_{c \to \overline{c}}, x)]$ where $\overline{C} = \bigcup \overline{C}$

Which Explanation Methods?

- Concept-based explanation methods
- Post-hoc explanations or explanations from inherently interpretable models
- Post-hoc methods GradCAM [1], ACE [2], IBD [3]
- Inherently interpretable models CCNN [4], ProtoPNet [5]

[1] Grad-cam: Visual explanations from deep networks via gradient-based localization, ICCV, 2017.

[2] Towards automatic concept-based explanations, NeurIPS, 2019.

[3] Interpretable basis decomposition for visual explanation, ECCV, 2018.

[4] Comprehensible Convolutional Neural Networks via Guided Concept Learning, IJCNN, 2021.

[5] This looks like that: deep learning for interpretable image recognition, NeurIPS, 2019.

BRACE - BetteR Accuracy from Concept-based Explanation

Which Explanation Methods?

- Concept-based explanation methods
- Post-hoc explanations or explanations from inherently interpretable models
- Post-hoc methods GradCAM [1], ACE [2], IBD [3]
- Inherently interpretable models CCNN [4], ProtoPNet [5]

[1] Grad-cam: Visual explanations from deep networks via gradient-based localization, ICCV, 2017.

[2] Towards automatic concept-based explanations, NeurIPS, 2019.

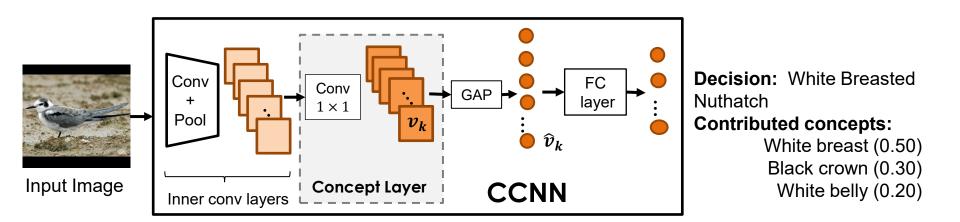
[3] Interpretable basis decomposition for visual explanation, ECCV, 2018.

[4] Comprehensible Convolutional Neural Networks via Guided Concept Learning, IJCNN, 2021.

[5] This looks like that: deep learning for interpretable image recognition, NeurIPS, 2019.

BRACE - BetteR Accuracy from Concept-based Explanation

BRACE – CCNN

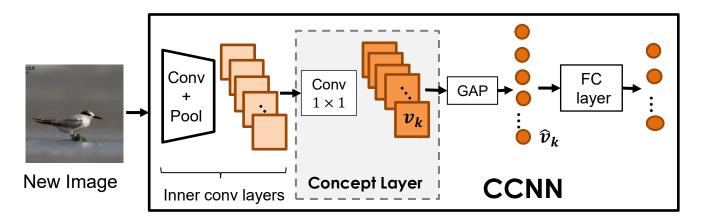


- For each misclassified image obtained top-contributed concepts.
- Select top-r concepts that have contributed for highest number of misclassifications of class $c S_{c \rightarrow \overline{c}}$

Comprehensible Convolutional Neural Networks via Guided Concept Learning, IJCNN, 2021.

BRACE - BetteR Accuracy from Concept-based Explanation

BRACE – CCNN



• For each concept *i* in $S_{c \to \overline{c}}$, calculate degree of matching with a new image using the corresponding activation value of GAP layer in CCNN - a_i

•
$$\Delta(S_{c \to \overline{c}}, x) = \sum_{i=1}^{r} a_i$$

Comprehensible Convolutional Neural Networks via Guided Concept Learning, IJCNN, 2021.

BRACE - BetteR Accuracy from Concept-based Explanation

Performance Evaluation

- Source code <u>https://github.com/sandareka/BRACE</u>
- Datasets CUB, CUB-Families, Tiny Imagenet
- Comparative study
 - Data augmentation methods
 - Cut -mix Cutmix: Regularization strategy to train strong classifiers with localizable features, ICCV, 2019.
 - Snap-mix Snapmix: Semantically proportional mixing for augmenting fine-grained data, AAAI, 2021.
 - WS-DAN See better before looking closer: Weakly supervised data augmentation network for finegrained visual classification, arXiv, 2019.
 - Metaset-based Data-driven meta-set based fine-grained visual recognition, ACM-MM, 2020.

- Sample selection methods

- Random samples are selected randomly.
- Confidence the most confident samples are selected.
- Core-set Active learning for convolutional neural networks: A core-set approach, ICLR, 2018.
- L-loss Learning loss for active learning, CVPR, 2019.

Comparison of Data Augmentation Methods

Performance of fully interpretable CCNN classifier based on ResNet-34.

Method	CUB	CUB-Families
Original dataset	84.3	83.8
Cut-mix	80.6	79.0
Snap-mix	82.4	79.9
WS-DAN	81.6	81.8
Metaset-based	85.1	88.1
BRACE	86.0	88.7

BRACE-augmented datasets achieve the highest accuracy. The improvement is bigger in CUB-Families, where there are more under-represented regions.

Comparison of Sample Selection Methods

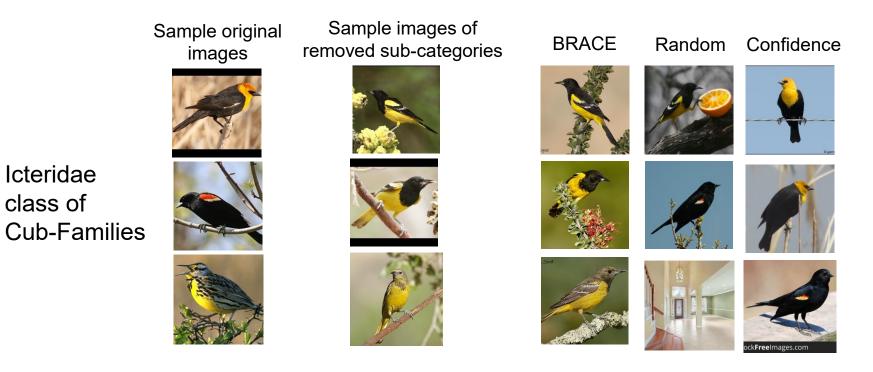
Performance of fully interpretable CCNN classifier based on ResNet-101.

Method	CUB	CUB-Families
Original dataset	86.6	85.7
Core-set	84.6	85.4
L-loss		
Random	87.0	88.0
Confidence	86.7	85.8
BRACE	88.4	92.2

BRACE-augmented datasets consistently achieves the highest accuracy.

BRACE - BetteR Accuracy from Concept-based Explanation

Comparison of Samples Selected by Different Methods



- BRACE selects images similar to those are in the removed subcategories.
- Random may select out-of-distribution images.
- Confidence selects images similar to those are in the original dataset.

Performance Evaluation – Generalizability with BRACE

Comparison on generalizability of ResNet-34 trained with different data augmentation methods.

Method	NAbirds-Sub	ImageNet-V2-Sub
Original dataset	81.5	54.4
Cut-mix	72.1	37.2
Snap-mix	76.0	42.6
WS-DAN	67.0	56.1
Metaset-based	83.5	42.4
BRACE	84.9	70.0

BRACE enables the classifier to learn features that are generalizable to handle more diverse images.

BRACE - BetteR Accuracy from Concept-based Explanation

Thank You