Dynamic Trace Estimation

Prathamesh Dharangutte, Christopher Musco New York University

Conference on Neural Information Processing Systems (NeurIPS 2021)

Implicit trace estimation

• A basic problem in linear algebra Given matrix $A \in \mathbb{R}^{n \times n}$ and access to A via matrix vector products $Av \in \mathbb{R}^n$, for $v \in \mathbb{R}^n$ (implicit access), approximate tr(A) = $\sum_{i=1}^n A_{ii}$.

Implicit trace estimation

- A basic problem in linear algebra Given matrix $A \in \mathbb{R}^{n \times n}$ and access to A via matrix vector products $Av \in \mathbb{R}^n$, for $v \in \mathbb{R}^n$ (implicit access), approximate tr(A) = $\sum_{i=1}^n A_{ii}$.
- Computing Hessian if often impractical but Hessian-vector product $(\nabla^2 f(x)v)$ can be efficiently computed using finite difference method.

Implicit trace estimation

- A basic problem in linear algebra Given matrix $A \in \mathbb{R}^{n \times n}$ and access to A via matrix vector products $Av \in \mathbb{R}^n$, for $v \in \mathbb{R}^n$ (implicit access), approximate tr(A) = $\sum_{i=1}^n A_{ii}$.
- Computing Hessian if often impractical but Hessian-vector product $(\nabla^2 f(x)v)$ can be efficiently computed using finite difference method.

Figure 1: Ghorbani et al. [2019] analyze spectrum of Hessian for Resnet-32.

• For matrix functions A = f(B), we can leverage iterative methods to approximate Av = f(B)v. (e.g. $A = B^{-1}/\exp(B)/\log(B)$). Typically, runtime is $O(n^2)$ compared to $O(n^3)$ for explicitly forming A.

- For matrix functions A = f(B), we can leverage iterative methods to approximate Av = f(B)v. (e.g. A = B⁻¹/exp(B)/log(B)). Typically, runtime is O(n²) compared to O(n³) for explicitly forming A.
- Measure the computational cost in number of matrix-vector products required $Av_1, ..., Av_\ell$.

• Approximate tr(A) as $h_{\ell}(A) = \frac{1}{\ell} \sum_{i=1}^{\ell} g_i^{\mathsf{T}} A g_i$ where entries in $g_i \in \mathbb{R}^n$ are random i.i.d. ± 1 .

• Approximate tr(A) as $h_{\ell}(A) = \frac{1}{\ell} \sum_{i=1}^{\ell} g_i^{\mathsf{T}} A g_i$ where entries in $g_i \in \mathbb{R}^n$ are random i.i.d. ± 1 .

$$\mathbb{E}[g^{T}Ag] = \mathbb{E}\left(\sum_{i=1}^{n} g_{i}^{2}A_{ii} + \sum_{i=1}^{n} \sum_{\substack{j=1\\i\neq j}}^{n} g_{i}g_{j}A_{ij}\right) = \sum_{i=1}^{n} A_{ii}\mathbb{E}[g_{i}^{2}] = \sum_{i=1}^{n} A_{ii} = \operatorname{tr}(A)$$

• Approximate tr(A) as $h_{\ell}(A) = \frac{1}{\ell} \sum_{i=1}^{\ell} g_i^{\mathsf{T}} A g_i$ where entries in $g_i \in \mathbb{R}^n$ are random i.i.d. ± 1 .

$$\mathbb{E}[g^{T}Ag] = \mathbb{E}(\sum_{i=1}^{n} g_{i}^{2}A_{ii} + \sum_{i=1}^{n} \sum_{\substack{j=1\\i \neq j}}^{n} g_{i}g_{j}A_{ij}) = \sum_{i=1}^{n} A_{ii}\mathbb{E}[g_{i}^{2}] = \sum_{i=1}^{n} A_{ii} = tr(A)$$

• $h_{\ell}(A)$ approximates tr(A) in expectation.

Main takeaways from the Hutchinson's estimator (Avron and Toledo [2011], Roosta-Khorasani and Ascher [2015], Cortinovis and Kressner [2020]):

Main takeaways from the Hutchinson's estimator (Avron and Toledo [2011], Roosta-Khorasani and Ascher [2015], Cortinovis and Kressner [2020]):

• Variance of $h_{\ell}(A) \leq \frac{2}{\ell} \|A\|_F^2$

Main takeaways from the Hutchinson's estimator (Avron and Toledo [2011], Roosta-Khorasani and Ascher [2015], Cortinovis and Kressner [2020]):

- Variance of $h_{\ell}(A) \leq \frac{2}{\ell} \|A\|_{F}^{2}$
- For $\ell = O(\frac{\log(1/\delta)}{\epsilon^2})$, with high probability, $|h_{\ell}(A) tr(A)| \le \epsilon ||A||_F$

Dynamic setting

Want good approximations $t_1, t_2, ..., t_m$ across all time steps.

Want good approximations $t_1, t_2, ..., t_m$ across all time steps.

Naively, would require total $O(\frac{m \log(1/\delta)}{\epsilon^2})$ mat-vec products.

Want good approximations $t_1, t_2, ..., t_m$ across all time steps. Naively, would require total $O(\frac{m \log(1/\delta)}{\epsilon^2})$ mat-vec products. A natural question: Can we achieve $\ell_{\text{total}} < O(\frac{m \log(1/\delta)}{\epsilon^2})$?

Want good approximations $t_1, t_2, ..., t_m$ across all time steps.

Naively, would require total $O(\frac{m \log(1/\delta)}{\epsilon^2})$ mat-vec products.

A natural question: Can we achieve $\ell_{\text{total}} < O(\frac{m \log(1/\delta)}{\epsilon^2})$?

Our result: Yes and can obtain <u>quadratic</u> improvements under certain assumptions!

Problem (Dynamic trace estimation)

Let $A_1, ..., A_m$ be $n \times n$ symmetric matrices satisfying:

- 1. $||A_i||_F \le 1$, for all $i \in [1, m]$.
- 2. $\|A_{i+1} A_i\|_F \le \alpha$, for all $i \in [1, m 1]$.

Given implicit matrix-vector multiplication access to each A_i in sequence, the goal is to compute trace approximations t_1, \ldots, t_m for $tr(A_1), \ldots, tr(A_m)$ such that, for each $i \in 1, \ldots, m$,

$$\mathbb{P}[|t_i - tr(A_i)| \geq \epsilon] \leq \delta.$$

Dynamic setting

Dynamic setting

$$A_2 = A_1 + \Delta_1$$
$$tr(A_2) = tr(A_1) + tr(\Delta_1)$$

$$A_{2} = A_{1} + \Delta_{1}$$

$$tr(A_{2}) = tr(A_{1}) + tr(\Delta_{1})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$t_{2} = \text{Reuse} \qquad \text{Estimate}$$

 $\Delta_1 = A_2 - A_1,$

 $\Delta_1 = A_2 - A_1, \ \operatorname{tr}(\Delta_1) = \operatorname{tr}(A_2 - A_1)$

$$\Delta_1 = A_2 - A_1, \ \operatorname{tr}(\Delta_1) = \operatorname{tr}(A_2 - A_1) = \frac{1}{\ell} \sum_{i=1}^{\ell} g_i^T (A_2 - A_1) g_i$$

$$\Delta_1 = A_2 - A_1, \ \operatorname{tr}(\Delta_1) = \operatorname{tr}(A_2 - A_1) = \frac{1}{\ell} \sum_{i=1}^{\ell} g_i^T (A_2 - A_1) g_i = \frac{1}{\ell} \sum_{i=1}^{\ell} g_i^T (A_2 g_i - A_1 g_i)$$

Instead of estimating $t_{i+1} = t_i + h_\ell (A_{i+1} - A_i)^1$

¹<u>Note:</u> h_{ℓ} is the Hutchinson estimator with ℓ mat-vec products.

Instead of estimating $t_{i+1} = t_i + h_\ell (A_{i+1} - A_i)^1$ Estimate, for $0 < \gamma < 1$ <u>DeltaShift</u>: $t_{i+1} = (1 - \gamma)t_i + h_\ell (A_{i+1} - (1 - \gamma)A_i)$

¹<u>Note:</u> h_{ℓ} is the Hutchinson estimator with ℓ mat-vec products.

Instead of estimating $t_{i+1} = t_i + h_\ell (A_{i+1} - A_i)^1$ Estimate, for $0 < \gamma < 1$ <u>DeltaShift</u>: $t_{i+1} = (1 - \gamma)t_i + h_\ell (A_{i+1} - (1 - \gamma)A_i)$

• t_i 's are still unbiased estimators of the trace.

¹<u>Note:</u> h_{ℓ} is the Hutchinson estimator with ℓ mat-vec products.

Instead of estimating $t_{i+1} = t_i + h_\ell (A_{i+1} - A_i)^1$ Estimate, for $0 < \gamma < 1$ <u>DeltaShift</u>: $t_{i+1} = (1 - \gamma)t_i + h_\ell (A_{i+1} - (1 - \gamma)A_i)$

- t_i 's are still unbiased estimators of the trace.
- Multiplying by (1γ) reduces the variance of the leading term.

¹<u>Note:</u> h_{ℓ} is the Hutchinson estimator with ℓ mat-vec products.

For any $\epsilon,\delta,\alpha\in(0,1),$ the DeltaShift algorithm solves Dynamic Trace Estimation problem with

$$O\left(m \cdot rac{lpha \log(1/\delta)}{\epsilon^2} + rac{\log(1/\delta)}{\epsilon^2}
ight)$$

total matrix-vector multiplications involving A_1, \ldots, A_m .

For any $\epsilon, \delta, \alpha \in (0, 1)$, the DeltaShift algorithm solves Dynamic Trace Estimation problem with

$$O\left(m \cdot rac{lpha \log(1/\delta)}{\epsilon^2} + rac{\log(1/\delta)}{\epsilon^2}
ight)$$

total matrix-vector multiplications involving A_1, \ldots, A_m .

For $\alpha \approx \epsilon$, DeltaShift requires $O(\frac{\log(1/\delta)}{\epsilon})$ total matrix-vector products.

• How do you choose the parameter γ ?

- How do you choose the parameter γ ?
- Can estimate near-optimal γ at each time-step with very little overhead. Let v_i be the variance of estimator at time-step i.

- How do you choose the parameter γ ?
- Can estimate near-optimal γ at each time-step with very little overhead. Let v_i be the variance of estimator at time-step i.
- Use: For any matrix A, $||A||_F^2 = tr(A^T A)$

- How do you choose the parameter γ ?
- Can estimate near-optimal γ at each time-step with very little overhead. Let v_i be the variance of estimator at time-step i.
- Use: For any matrix A, $||A||_F^2 = tr(A^T A)$

$$\gamma_j^* = \min_{\gamma} \left[(1 - \gamma)^2 v_{j-1} + \frac{2}{\ell} \|\Delta_j\|_F^2 \right]$$

- How do you choose the parameter γ ?
- Can estimate near-optimal γ at each time-step with very little overhead. Let v_i be the variance of estimator at time-step i.
- Use: For any matrix A, $||A||_F^2 = tr(A^T A)$

$$\gamma_{j}^{*} = \min_{\gamma} \left[(1 - \gamma)^{2} \mathsf{v}_{j-1} + \frac{2}{\ell} \|\Delta_{j}\|_{F}^{2} \right]$$
$$= 1 - \frac{2h_{\ell}(A_{j-1}^{T}A_{j})}{\ell \mathsf{v}_{j-1} + 2h_{\ell}(A_{j-1}^{T}A_{j-1})}$$

Selecting γ

- How do you choose the parameter γ ?
- Can estimate near-optimal γ at each time-step with very little overhead. Let v_i be the variance of estimator at time-step i.
- Use: For any matrix A, $||A||_F^2 = tr(A^T A)$

$$\gamma_{j}^{*} = \min_{\gamma} \left[(1 - \gamma)^{2} V_{j-1} + \frac{2}{\ell} \|\Delta_{j}\|_{F}^{2} \right]$$
$$= 1 - \frac{2h_{\ell}(A_{j-1}^{T}A_{j})}{\ell V_{j-1} + 2h_{\ell}(A_{j-1}^{T}A_{j-1})}$$

• <u>Note</u>: We can reuse the same matrix-vector products used by trace estimation.

DeltaShift++

For a PSD matrix, recent algorithm by Meyer et al. [2021] obtains the (ϵ, δ) bounds with $\frac{\log(1/\delta)}{\epsilon}$ matrix-vector products.

DeltaShift++

For a PSD matrix, recent algorithm by Meyer et al. [2021] obtains the (ϵ, δ) bounds with $\frac{\log(1/\delta)}{\epsilon}$ matrix-vector products.

For stronger assumptions (in form of nuclear norm) on sequence of matrices:

 $\underline{\text{DeltaShift}^{++}}: t_{i+1} = \gamma \cdot h_{\ell}^{++}(A_{i+1}) + (1 - \gamma) \cdot (t_i + h_{\ell}^{++}(A_{i+1} - A_i))$

DeltaShift++

For a PSD matrix, recent algorithm by Meyer et al. [2021] obtains the (ϵ, δ) bounds with $\frac{\log(1/\delta)}{\epsilon}$ matrix-vector products.

For stronger assumptions (in form of nuclear norm) on sequence of matrices:

$$\underline{\text{DeltaShift}^{++}}: t_{i+1} = \gamma \cdot h_{\ell}^{++}(A_{i+1}) + (1 - \gamma) \cdot (t_i + h_{\ell}^{++}(A_{i+1} - A_i))$$

For $||A_i||_* \le 1$ and $||A_{i+1} - A_i||_* \le \alpha$ for all *i*, DeltaShift++ solves dynamic trace estimation problem with

$$O\left(m\cdot\frac{\sqrt{\alpha/\delta}}{\epsilon}+\frac{\sqrt{1/\delta}}{\epsilon}\right)$$

total matrix-vector products with $A_1, A_2, ..., A_m$.

We can estimate near-optimal γ for DeltaShift++ as well!

Let
$$K_A = ||A - A_k||_F^2$$

$$\gamma_j^* = \min_{\gamma} \left[\frac{\gamma^2 8K_{A_j}}{\ell} + (1 - \gamma)^2 (v_{j-1} + \frac{8K_{\Delta_j}}{\ell}) \right]$$

We can estimate near-optimal γ for DeltaShift++ as well!

Let
$$K_A = ||A - A_k||_F^2$$

$$\begin{split} \gamma_j^* &= \min_{\gamma} \left[\frac{\gamma^2 8 K_{A_j}}{\ell} + (1 - \gamma)^2 (v_{j-1} + \frac{8 K_{\Delta_j}}{\ell}) \right] \\ &= \frac{8 K_{\Delta_j} + \ell v_{j-1}}{8 K_{A_j} + \ell v_{j-1} + 8 K_{\Delta_j}} \end{split}$$

We can estimate near-optimal γ for DeltaShift++ as well!

Let
$$K_A = \|A - A_k\|_F^2$$

$$\begin{split} \gamma_j^* &= \min_{\gamma} \left[\frac{\gamma^2 8 \mathcal{K}_{A_j}}{\ell} + (1 - \gamma)^2 (v_{j-1} + \frac{8 \mathcal{K}_{\Delta_j}}{\ell}) \right] \\ &= \frac{8 \mathcal{K}_{\Delta_j} + \ell v_{j-1}}{8 \mathcal{K}_{A_j} + \ell v_{j-1} + 8 \mathcal{K}_{\Delta_j}} \end{split}$$

Similar to DeltaShift, we can reuse matrix-vector products from trace estimation!

For the dynamic trace problem, we compare using the **same number of total matrix-products** for

- Hutchinson's estimator at each time step
- Estimate $tr(\Delta_i)$ at each time step and add to $tr(A_i)$ (NoRestart)
- DeltaShift

(a) Synthetic data with total matrix- (b) Graph data with total matrix-vector vector products= 8×10^3 products= 10^4

• For estimating spectral density, trace of polynomials of the Hessian is used.

• For estimating spectral density, trace of polynomials of the Hessian is used.

The three term recurrence relation for Chebyshev polynomials is:

$$T_0(H) = I,$$
 $T_1(H) = H,$ $T_{n+1}(H) = 2HT_n(H) - T_{n-1}(H).$

Table 1: Average error for trace of polynomials of Hessian with learning rate0.001 and total matrix-vector products = 2000

	Hutchinson	NoRestart	DeltaShift
$T_1(H)$	2.5E-02	3.7E-02	1.7E-02
$T_2(H)$	1.2E-06	1.7E-06	8.0E-07
T₃(H)	4.0E-02	4.1E-02	3.1E-02
$T_4(H)$	1.5E-06	1.7E-06	1.0E-06
$T_5(H)$	2.1E-02	4.3E-02	1.9E-02

- Current choice of γ is a greedy heuristic, but works well empirically. Can we do better?

- Current choice of γ is a greedy heuristic, but works well empirically. Can we do better?
- Can we do better when Δ matrices have additional structure? Partial progress in form of DeltaShift++.

Thank you!