Dynamic Trace Estimation

Prathamesh Dharangutte, Christopher Musco
New York University
Conference on Neural Information Processing Systems (NeurIPS 2021)

Implicit trace estimation

- A basic problem in linear algebra

Given matrix $A \in \mathbb{R}^{n \times n}$ and access to A via matrix vector products $A v \in \mathbb{R}^{n}$, for $v \in \mathbb{R}^{n}$ (implicit access), approximate $\operatorname{tr}(A)=\sum_{i=1}^{n} A_{i j}$.

Implicit trace estimation

- A basic problem in linear algebra

Given matrix $A \in \mathbb{R}^{n \times n}$ and access to A via matrix vector products Av $\in \mathbb{R}^{n}$, for $v \in \mathbb{R}^{n}$ (implicit access), approximate $\operatorname{tr}(A)=\sum_{i=1}^{n} A_{i j}$.

- Computing Hessian if often impractical but Hessian-vector product ($\left.\nabla^{2} f(x) v\right)$ can be efficiently computed using finite difference method.

Implicit trace estimation

- A basic problem in linear algebra

Given matrix $A \in \mathbb{R}^{n \times n}$ and access to A via matrix vector products $A v \in \mathbb{R}^{n}$, for $v \in \mathbb{R}^{n}$ (implicit access), approximate $\operatorname{tr}(A)=\sum_{i=1}^{n} A_{i j}$.

- Computing Hessian if often impractical but Hessian-vector product ($\left.\nabla^{2} f(x) v\right)$ can be efficiently computed using finite difference method.

Figure 1: Ghorbani et al. [2019] analyze spectrum of Hessian for Resnet-32.

Implicit trace estimation

- For matrix functions $A=f(B)$, we can leverage iterative methods to approximate $A v=f(B) v$. (e.g. $\left.A=B^{-1} / \exp (B) / \log (B)\right)$. Typically, runtime is $O\left(n^{2}\right)$ compared to $O\left(n^{3}\right)$ for explicitly forming A.

Implicit trace estimation

- For matrix functions $A=f(B)$, we can leverage iterative methods to approximate $A v=f(B) v$. (e.g. $\left.A=B^{-1} / \exp (B) / \log (B)\right)$. Typically, runtime is $O\left(n^{2}\right)$ compared to $O\left(n^{3}\right)$ for explicitly forming A.
- Measure the computational cost in number of matrix-vector products required $A v_{1}, \ldots, A v_{\ell}$.

Hutchinson's estimator (Hutchinson [1990], Girard [1987])

- Approximate $\operatorname{tr}(A)$ as $h_{\ell}(A)=\frac{1}{\ell} \sum_{i=1}^{\ell} g_{i}^{\top} A g_{i}$ where entries in $g_{i} \in \mathbb{R}^{n}$ are random i.i.d. ± 1.

Hutchinson's estimator (Hutchinson [1990], Girard [1987])

- Approximate $\operatorname{tr}(A)$ as $h_{\ell}(A)=\frac{1}{\ell} \sum_{i=1}^{\ell} g_{i}^{\top} A g_{i}$ where entries in $g_{i} \in \mathbb{R}^{n}$ are random i.i.d. ± 1.

$$
\mathbb{E}\left[g^{\top} A g\right]=\mathbb{E}\left(\sum_{i=1}^{n} g_{i}^{2} A_{i j}+\sum_{i=1}^{n} \sum_{\substack{j=1 \\ i \neq j}}^{n} g_{i} g_{j} A_{i j}\right)=\sum_{i=1}^{n} A_{i i} \mathbb{E}\left[g_{i}^{2}\right]=\sum_{i=1}^{n} A_{i i}=\operatorname{tr}(A)
$$

Hutchinson's estimator (Hutchinson [1990], Girard [1987])

- Approximate $\operatorname{tr}(A)$ as $h_{\ell}(A)=\frac{1}{\ell} \sum_{i=1}^{\ell} g_{i}^{\top} A g_{i}$ where entries in $g_{i} \in \mathbb{R}^{n}$ are random i.i.d. ± 1.

$$
\mathbb{E}\left[g^{\top} A g\right]=\mathbb{E}\left(\sum_{i=1}^{n} g_{i}^{2} A_{i i}+\sum_{i=1}^{n} \sum_{\substack{j=1 \\ i \neq j}}^{n} g_{i} g_{j} A_{i j}\right)=\sum_{i=1}^{n} A_{i i} \mathbb{E}\left[g_{i}^{2}\right]=\sum_{i=1}^{n} A_{i i}=\operatorname{tr}(A)
$$

- $h_{\ell}(A)$ approximates $\operatorname{tr}(A)$ in expectation.

Hutchinson's estimator (Hutchinson [1990], Girard [1987])

Main takeaways from the Hutchinson's estimator (Avron and Toledo [2011], Roosta-Khorasani and Ascher [2015], Cortinovis and Kressner [2020]):

Hutchinson's estimator (Hutchinson [1990], Girard [1987])

Main takeaways from the Hutchinson's estimator (Avron and Toledo [2011], Roosta-Khorasani and Ascher [2015], Cortinovis and Kressner [2020]):

- Variance of $h_{\ell}(A) \leq \frac{2}{\ell}\|A\|_{F}^{2}$

Hutchinson's estimator (Hutchinson [1990], Girard [1987])

Main takeaways from the Hutchinson's estimator (Avron and Toledo [2011], Roosta-Khorasani and Ascher [2015], Cortinovis and Kressner [2020]):

- Variance of $h_{\ell}(A) \leq \frac{2}{\ell}\|A\|_{F}^{2}$
- For $\ell=O\left(\frac{\log (1 / \delta)}{\epsilon^{2}}\right)$, with high probability, $\left|h_{\ell}(A)-\operatorname{tr}(A)\right| \leq \epsilon\|A\|_{F}$

Dynamic setting

Time step \longrightarrow

Want good approximations $t_{1}, t_{2}, \ldots, t_{m}$ across all time steps.

Dynamic setting

Time step \longrightarrow

Want good approximations $t_{1}, t_{2}, \ldots, t_{m}$ across all time steps.
Naively, would require total $O\left(\frac{m \log (1 / \delta)}{\epsilon^{2}}\right)$ mat-vec products.

Dynamic setting

Time step \longrightarrow

Want good approximations $t_{1}, t_{2}, \ldots, t_{m}$ across all time steps.
Naively, would require total $O\left(\frac{m \log (1 / \delta)}{\epsilon^{2}}\right)$ mat-vec products.
A natural question: Can we achieve $\ell_{\text {total }}<O\left(\frac{m \log (1 / \delta)}{\epsilon^{2}}\right)$?

Dynamic setting

Time step \rightarrow

Want good approximations $t_{1}, t_{2}, \ldots, t_{m}$ across all time steps.
Naively, would require total $O\left(\frac{m \log (1 / \delta)}{\epsilon^{2}}\right)$ mat-vec products.
A natural question: Can we achieve $\ell_{\text {total }}<O\left(\frac{m \log (1 / \delta)}{\epsilon^{2}}\right)$?
Our result: Yes and can obtain quadratic improvements under certain assumptions!

Problem formulation

Problem (Dynamic trace estimation)

Let A_{1}, \ldots, A_{m} be $n \times n$ symmetric matrices satisfying:

1. $\left\|A_{i}\right\|_{F} \leq 1$, for all $i \in[1, m]$.
2. $\left\|A_{i+1}-A_{i}\right\|_{F} \leq \alpha$, for all $i \in[1, m-1]$.

Given implicit matrix-vector multiplication access to each A_{i} in sequence, the goal is to compute trace approximations t_{1}, \ldots, t_{m} for $\operatorname{tr}\left(A_{1}\right), \ldots, \operatorname{tr}\left(A_{m}\right)$ such that, for each $i \in 1, \ldots, m$,

$$
\mathbb{P}\left[\left|t_{i}-\operatorname{tr}\left(A_{i}\right)\right| \geq \epsilon\right] \leq \delta
$$

Dynamic setting

Dynamic setting

Dynamic setting

Dynamic setting

Observation: If $\left\|\Delta_{i}\right\|_{F} \ll\left\|A_{i}\right\|_{F}$, we should be able to accurately estimate $\operatorname{tr}\left(\Delta_{i}\right)$ with a lot less matrix-vector products.

Dynamic setting

Observation: If $\left\|\Delta_{i}\right\|_{F} \ll\left\|A_{i}\right\|_{F}$, we should be able to accurately estimate $\operatorname{tr}\left(\Delta_{i}\right)$ with a lot less matrix-vector products.
$\Delta_{1}=A_{2}-A_{1}$,

Dynamic setting

Observation: If $\left\|\Delta_{i}\right\|_{F} \ll\left\|A_{i}\right\|_{F}$, we should be able to accurately estimate $\operatorname{tr}\left(\Delta_{i}\right)$ with a lot less matrix-vector products.

$$
\Delta_{1}=A_{2}-A_{1}, \operatorname{tr}\left(\Delta_{1}\right)=\operatorname{tr}\left(A_{2}-A_{1}\right)
$$

Dynamic setting

Observation: If $\left\|\Delta_{i}\right\|_{F} \ll\left\|A_{i}\right\|_{F}$, we should be able to accurately estimate $\operatorname{tr}\left(\Delta_{i}\right)$ with a lot less matrix-vector products.

$$
\Delta_{1}=A_{2}-A_{1}, \operatorname{tr}\left(\Delta_{1}\right)=\operatorname{tr}\left(A_{2}-A_{1}\right)=\frac{1}{\ell} \sum_{i=1}^{\ell} g_{i}^{\top}\left(A_{2}-A_{1}\right) g_{i}
$$

Dynamic setting

Observation: If $\left\|\Delta_{i}\right\|_{F} \ll\left\|A_{i}\right\|_{F}$, we should be able to accurately estimate $\operatorname{tr}\left(\Delta_{i}\right)$ with a lot less matrix-vector products.

$$
\Delta_{1}=A_{2}-A_{1}, \operatorname{tr}\left(\Delta_{1}\right)=\operatorname{tr}\left(A_{2}-A_{1}\right)=\frac{1}{\ell} \sum_{i=1}^{\ell} g_{i}^{\top}\left(A_{2}-A_{1}\right) g_{i}=\frac{1}{\ell} \sum_{i=1}^{\ell} g_{i}^{\top}\left(A_{2} g_{i}-A_{1} g_{i}\right)
$$

DeltaShift

$$
\text { Instead of estimating } t_{i+1}=t_{i}+h_{\ell}\left(A_{i+1}-A_{i}\right)^{1}
$$

[^0]
DeltaShift

$$
\begin{aligned}
& \text { Instead of estimating } t_{i+1}=t_{i}+h_{\ell}\left(A_{i+1}-A_{i}\right)^{1} \\
& \text { Estimate, for } 0<\gamma<1 \\
& \text { DeltaShift : } t_{i+1}=(1-\gamma) t_{i}+h_{\ell}\left(A_{i+1}-(1-\gamma) A_{i}\right)
\end{aligned}
$$

[^1]
DeltaShift

$$
\begin{aligned}
& \text { Instead of estimating } t_{i+1}=t_{i}+h_{\ell}\left(A_{i+1}-A_{i}\right)^{1} \\
& \text { Estimate, for } 0<\gamma<1 \\
& \text { DeltaShift : } t_{i+1}=(1-\gamma) t_{i}+h_{\ell}\left(A_{i+1}-(1-\gamma) A_{i}\right)
\end{aligned}
$$

- t_{i} 's are still unbiased estimators of the trace.

[^2]
DeltaShift

$$
\begin{aligned}
\text { Instead of estimating } t_{i+1}= & t_{i}+h_{\ell}\left(A_{i+1}-A_{i}\right)^{1} \\
& \text { Estimate, for } 0<\gamma<1 \\
\text { DeltaShift : } & t_{i+1}=(1-\gamma) t_{i}+h_{\ell}\left(A_{i+1}-(1-\gamma) A_{i}\right)
\end{aligned}
$$

- t_{i} 's are still unbiased estimators of the trace.
- Multiplying by $(1-\gamma)$ reduces the variance of the leading term.

[^3]
DeltaShift

For any $\epsilon, \delta, \alpha \in(0,1)$, the DeltaShift algorithm solves Dynamic Trace Estimation problem with

$$
O\left(m \cdot \frac{\alpha \log (1 / \delta)}{\epsilon^{2}}+\frac{\log (1 / \delta)}{\epsilon^{2}}\right)
$$

total matrix-vector multiplications involving A_{1}, \ldots, A_{m}.

DeltaShift

For any $\epsilon, \delta, \alpha \in(0,1)$, the DeltaShift algorithm solves Dynamic Trace Estimation problem with

$$
O\left(m \cdot \frac{\alpha \log (1 / \delta)}{\epsilon^{2}}+\frac{\log (1 / \delta)}{\epsilon^{2}}\right)
$$

total matrix-vector multiplications involving A_{1}, \ldots, A_{m}.
For $\alpha \approx \epsilon$, DeltaShift requires $O\left(\frac{\log (1 / \delta)}{\epsilon}\right)$ total matrix-vector products.

Selecting γ

- How do you choose the parameter γ ?

Selecting γ

- How do you choose the parameter γ ?
- Can estimate near-optimal γ at each time-step with very little overhead. Let v_{i} be the variance of estimator at time-step i.

Selecting γ

- How do you choose the parameter γ ?
- Can estimate near-optimal γ at each time-step with very little overhead. Let v_{i} be the variance of estimator at time-step i.
- Use: For any matrix $A,\|A\|_{F}^{2}=\operatorname{tr}\left(A^{\top} A\right)$

Selecting γ

- How do you choose the parameter γ ?
- Can estimate near-optimal γ at each time-step with very little overhead. Let v_{i} be the variance of estimator at time-step i.
- Use: For any matrix $A,\|A\|_{F}^{2}=\operatorname{tr}\left(A^{\top} A\right)$

$$
\gamma_{j}^{*}=\min _{\gamma}\left[(1-\gamma)^{2} v_{j-1}+\frac{2}{\ell}\left\|\Delta_{j}\right\|_{F}^{2}\right]
$$

Selecting γ

- How do you choose the parameter γ ?
- Can estimate near-optimal γ at each time-step with very little overhead. Let v_{i} be the variance of estimator at time-step i.
- Use: For any matrix $A,\|A\|_{F}^{2}=\operatorname{tr}\left(A^{\top} A\right)$

$$
\begin{aligned}
\gamma_{j}^{*} & =\min _{\gamma}\left[(1-\gamma)^{2} v_{j-1}+\frac{2}{\ell}\left\|\Delta_{j}\right\|_{F}^{2}\right] \\
& =1-\frac{2 h_{\ell}\left(A_{j-1}^{\top} A_{j}\right)}{\ell v_{j-1}+2 h_{\ell}\left(A_{j-1}^{\top} A_{j-1}\right)}
\end{aligned}
$$

Selecting γ

- How do you choose the parameter γ ?
- Can estimate near-optimal γ at each time-step with very little overhead. Let v_{i} be the variance of estimator at time-step i.
- Use: For any matrix $A,\|A\|_{F}^{2}=\operatorname{tr}\left(A^{\top} A\right)$

$$
\begin{aligned}
\gamma_{j}^{*} & =\min _{\gamma}\left[(1-\gamma)^{2} v_{j-1}+\frac{2}{\ell}\left\|\Delta_{j}\right\|_{F}^{2}\right] \\
& =1-\frac{2 h_{\ell}\left(A_{j-1}^{\top} A_{j}\right)}{\ell v_{j-1}+2 h_{\ell}\left(A_{j-1}^{\top} A_{j-1}\right)}
\end{aligned}
$$

- Note: We can reuse the same matrix-vector products used by trace estimation.

DeltaShift++

For a PSD matrix, recent algorithm by Meyer et al. [2021] obtains the (ϵ, δ) bounds with $\frac{\log (1 / \delta)}{\epsilon}$ matrix-vector products.

DeltaShift++

For a PSD matrix, recent algorithm by Meyer et al. [2021] obtains the (ϵ, δ) bounds with $\frac{\log (1 / \delta)}{\epsilon}$ matrix-vector products.
For stronger assumptions (in form of nuclear norm) on sequence of matrices:

$$
\underline{\text { DeltaShift++ }}: t_{i+1}=\gamma \cdot h_{\ell}^{++}\left(A_{i+1}\right)+(1-\gamma) \cdot\left(t_{i}+h_{\ell}^{++}\left(A_{i+1}-A_{i}\right)\right)
$$

DeltaShift++

For a PSD matrix, recent algorithm by Meyer et al. [2021] obtains the (ϵ, δ) bounds with $\frac{\log (1 / \delta)}{\epsilon}$ matrix-vector products.
For stronger assumptions (in form of nuclear norm) on sequence of matrices:

$$
\underline{\text { DeltaShift++ }}: t_{i+1}=\gamma \cdot h_{\ell}^{++}\left(A_{i+1}\right)+(1-\gamma) \cdot\left(t_{i}+h_{\ell}^{++}\left(A_{i+1}-A_{i}\right)\right)
$$

For $\left\|A_{i}\right\|_{*} \leq 1$ and $\left\|A_{i+1}-A_{i}\right\|_{*} \leq \alpha$ for all i, DeltaShift++ solves dynamic trace estimation problem with

$$
O\left(m \cdot \frac{\sqrt{\alpha / \delta}}{\epsilon}+\frac{\sqrt{1 / \delta}}{\epsilon}\right)
$$

total matrix-vector products with $A_{1}, A_{2}, \ldots, A_{m}$.

DeltaShift++

We can estimate near-optimal γ for DeltaShift++ as well!

$$
\text { Let } K_{A}=\left\|A-A_{R}\right\|_{F}^{2}
$$

$$
\gamma_{j}^{*}=\min _{\gamma}\left[\frac{\gamma^{2} 8 K_{A_{j}}}{\ell}+(1-\gamma)^{2}\left(v_{j-1}+\frac{8 K_{\Delta_{j}}}{\ell}\right)\right]
$$

DeltaShift++

We can estimate near-optimal γ for DeltaShift++ as well!

$$
\text { Let } K_{A}=\left\|A-A_{R}\right\|_{F}^{2}
$$

$$
\begin{aligned}
\gamma_{j}^{*} & =\min _{\gamma}\left[\frac{\gamma^{2} 8 K_{A_{j}}}{\ell}+(1-\gamma)^{2}\left(v_{j-1}+\frac{8 K_{\Delta_{j}}}{\ell}\right)\right] \\
& =\frac{8 K_{\Delta_{j}}+\ell v_{j-1}}{8 K_{A_{j}}+\ell v_{j-1}+8 K_{\Delta_{j}}}
\end{aligned}
$$

DeltaShift++

We can estimate near-optimal γ for DeltaShift++ as well!

$$
\text { Let } K_{A}=\left\|A-A_{R}\right\|_{F}^{2}
$$

$$
\begin{aligned}
\gamma_{j}^{*} & =\min _{\gamma}\left[\frac{\gamma^{2} 8 K_{A_{j}}}{\ell}+(1-\gamma)^{2}\left(v_{j-1}+\frac{8 K_{\Delta_{j}}}{\ell}\right)\right] \\
& =\frac{8 K_{\Delta_{j}}+\ell v_{j-1}}{8 K_{A_{j}}+\ell v_{j-1}+8 K_{\Delta_{j}}}
\end{aligned}
$$

Similar to DeltaShift, we can reuse matrix-vector products from trace estimation!

Empirical results

For the dynamic trace problem, we compare using the same number of total matrix-products for

- Hutchinson's estimator at each time step
- Estimate $\operatorname{tr}\left(\Delta_{i}\right)$ at each time step and add to $\operatorname{tr}\left(A_{i}\right)$ (NoRestart)
- DeltaShift

Empirical results

(a) Synthetic data with total matrix- (b) Graph data with total matrix-vector vector products $=8 * 10^{3}$ products $=10^{4}$

Empirical results

- For estimating spectral density, trace of polynomials of the Hessian is used.

Empirical results

- For estimating spectral density, trace of polynomials of the Hessian is used.

The three term recurrence relation for Chebyshev polynomials is:

$$
T_{0}(H)=I, \quad T_{1}(H)=H, \quad T_{n+1}(H)=2 H T_{n}(H)-T_{n-1}(H) .
$$

Empirical results

Table 1: Average error for trace of polynomials of Hessian with learning rate 0.001 and total matrix-vector products $=2000$

	HUTCHINSON	NORESTART	DELTASHIFT
$T_{1}(\mathrm{H})$	$2.5 \mathrm{E}-02$	$3.7 \mathrm{E}-02$	$1.7 \mathrm{E}-02$
$T_{2}(\mathrm{H})$	$1.2 \mathrm{E}-06$	$1.7 \mathrm{E}-06$	$8.0 \mathrm{E}-07$
$T_{3}(\mathrm{H})$	$4.0 \mathrm{E}-02$	$4.1 \mathrm{E}-02$	$3.1 \mathrm{E}-02$
$T_{4}(\mathrm{H})$	$1.5 \mathrm{E}-06$	$1.7 \mathrm{E}-06$	$1.0 \mathrm{E}-06$
$T_{5}(\mathrm{H})$	$2.1 \mathrm{E}-02$	$4.3 \mathrm{E}-02$	$1.9 \mathrm{E}-02$

Future work

- Current choice of γ is a greedy heuristic, but works well empirically. Can we do better?

Future work

- Current choice of γ is a greedy heuristic, but works well empirically. Can we do better?
- Can we do better when Δ matrices have additional structure? Partial progress in form of DeltaShift++.

Thank you!

[^0]: ${ }^{1}$ Note: h_{ℓ} is the Hutchinson estimator with ℓ mat-vec products.

[^1]: ${ }^{1}$ Note: h_{ℓ} is the Hutchinson estimator with ℓ mat-vec products.

[^2]: ${ }^{1}$ Note: h_{ℓ} is the Hutchinson estimator with ℓ mat-vec products.

[^3]: ${ }^{1}$ Note: h_{ℓ} is the Hutchinson estimator with ℓ mat-vec products.

