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Implicit trace estimation

• A basic problem in linear algebra
Given matrix A ∈ Rn×n and access to A via matrix vector products
Av ∈ Rn, for v ∈ Rn (implicit access), approximate tr(A) =

∑n
i=1 Aii.

• Computing Hessian if often impractical but Hessian-vector
product (∇2f(x)v) can be efficiently computed using finite
difference method.

Figure 1: Ghorbani et al. [2019] analyze spectrum of Hessian for Resnet-32.
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Implicit trace estimation

• For matrix functions A = f(B), we can leverage iterative methods
to approximate Av = f(B)v. (e.g. A = B−1/ exp(B)/ log(B)).
Typically, runtime is O(n2) compared to O(n3) for explicitly
forming A.

• Measure the computational cost in number of matrix-vector
products required Av1, ...,Avℓ.
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Hutchinson’s estimator (Hutchinson [1990], Girard [1987])

• Approximate tr(A) as hℓ(A) = 1
ℓ

∑ℓ
i=1 gTi Agi where entries in

gi ∈ Rn are random i.i.d. ±1.

E[gTAg] = E
( n∑
i=1

g2i Aii +
n∑
i=1

n∑
j=1
i̸=j

gigjAij
)
=

n∑
i=1

AiiE[g2i ] =
n∑
i=1

Aii = tr(A)

• hℓ(A) approximates tr(A) in expectation.
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Hutchinson’s estimator (Hutchinson [1990], Girard [1987])

Main takeaways from the Hutchinson’s estimator (Avron and Toledo
[2011], Roosta-Khorasani and Ascher [2015], Cortinovis and Kressner
[2020]):

• Variance of hℓ(A) ≤ 2
ℓ∥A∥

2
F

• For ℓ = O( log(1/δ)ϵ2 ), with high probability, |hℓ(A)− tr(A)| ≤ ϵ∥A∥F
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Dynamic setting

Want good approximations t1, t2, ..., tm across all time steps.

Naively, would require total O(m log(1/δ)
ϵ2 ) mat-vec products.

A natural question: Can we achieve ℓtotal < O(m log(1/δ)
ϵ2 ) ?

Our result: Yes and can obtain quadratic improvements under
certain assumptions!
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Problem formulation

Problem (Dynamic trace estimation)

Let A1, ...,Am be n× n symmetric matrices satisfying:

1. ∥Ai∥F ≤ 1, for all i ∈ [1,m].
2. ∥Ai+1 − Ai∥F ≤ α, for all i ∈ [1,m− 1].

Given implicit matrix-vector multiplication access to each Ai in
sequence, the goal is to compute trace approximations t1, . . . , tm
for tr(A1), ...., tr(Am) such that, for each i ∈ 1, . . . ,m,

P[|ti − tr(Ai)| ≥ ϵ] ≤ δ.
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Dynamic setting

Observation: If ∥∆i∥F << ∥Ai∥F, we should be able to accurately
estimate tr(∆i) with a lot less matrix-vector products.

∆1 = A2−A1, tr(∆1) = tr(A2−A1) =
1
ℓ

ℓ∑
i=1

gTi (A2−A1)gi =
1
ℓ

ℓ∑
i=1

gTi (A2gi−A1gi)
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DeltaShift

Instead of estimating ti+1 = ti + hℓ(Ai+1 − Ai)1

Estimate, for 0 < γ < 1

DeltaShift : ti+1 = (1− γ)ti + hℓ(Ai+1 − (1− γ)Ai)

• ti’s are still unbiased estimators of the trace.

• Multiplying by (1− γ) reduces the variance of the leading term.

1Note: hℓ is the Hutchinson estimator with ℓ mat-vec products.
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DeltaShift

For any ϵ, δ, α ∈ (0, 1), the DeltaShift algorithm solves Dynamic Trace
Estimation problem with

O
(
m · α log(1/δ)

ϵ2
+

log(1/δ)
ϵ2

)

total matrix-vector multiplications involving A1, . . . ,Am.

For α ≈ ϵ, DeltaShift requires O( log(1/δ)ϵ ) total matrix-vector products.
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Selecting γ

• How do you choose the parameter γ?

• Can estimate near-optimal γ at each time-step with very little
overhead. Let vi be the variance of estimator at time-step i.

• Use: For any matrix A, ∥A∥2F = tr(ATA)

γ∗
j = min

γ

[
(1− γ)2vj−1 +

2
ℓ
∥∆j∥2F

]
= 1−

2hℓ(ATj−1Aj)
ℓvj−1 + 2hℓ(ATj−1Aj−1)

• Note: We can reuse the same matrix-vector products used by
trace estimation.

10



Selecting γ

• How do you choose the parameter γ?

• Can estimate near-optimal γ at each time-step with very little
overhead. Let vi be the variance of estimator at time-step i.

• Use: For any matrix A, ∥A∥2F = tr(ATA)

γ∗
j = min

γ

[
(1− γ)2vj−1 +

2
ℓ
∥∆j∥2F

]
= 1−

2hℓ(ATj−1Aj)
ℓvj−1 + 2hℓ(ATj−1Aj−1)

• Note: We can reuse the same matrix-vector products used by
trace estimation.

10



Selecting γ

• How do you choose the parameter γ?

• Can estimate near-optimal γ at each time-step with very little
overhead. Let vi be the variance of estimator at time-step i.

• Use: For any matrix A, ∥A∥2F = tr(ATA)

γ∗
j = min

γ

[
(1− γ)2vj−1 +

2
ℓ
∥∆j∥2F

]
= 1−

2hℓ(ATj−1Aj)
ℓvj−1 + 2hℓ(ATj−1Aj−1)

• Note: We can reuse the same matrix-vector products used by
trace estimation.

10



Selecting γ

• How do you choose the parameter γ?

• Can estimate near-optimal γ at each time-step with very little
overhead. Let vi be the variance of estimator at time-step i.

• Use: For any matrix A, ∥A∥2F = tr(ATA)

γ∗
j = min

γ

[
(1− γ)2vj−1 +

2
ℓ
∥∆j∥2F

]

= 1−
2hℓ(ATj−1Aj)

ℓvj−1 + 2hℓ(ATj−1Aj−1)

• Note: We can reuse the same matrix-vector products used by
trace estimation.

10



Selecting γ

• How do you choose the parameter γ?

• Can estimate near-optimal γ at each time-step with very little
overhead. Let vi be the variance of estimator at time-step i.

• Use: For any matrix A, ∥A∥2F = tr(ATA)

γ∗
j = min

γ

[
(1− γ)2vj−1 +

2
ℓ
∥∆j∥2F

]
= 1−

2hℓ(ATj−1Aj)
ℓvj−1 + 2hℓ(ATj−1Aj−1)

• Note: We can reuse the same matrix-vector products used by
trace estimation.

10



Selecting γ

• How do you choose the parameter γ?

• Can estimate near-optimal γ at each time-step with very little
overhead. Let vi be the variance of estimator at time-step i.

• Use: For any matrix A, ∥A∥2F = tr(ATA)

γ∗
j = min

γ

[
(1− γ)2vj−1 +

2
ℓ
∥∆j∥2F

]
= 1−

2hℓ(ATj−1Aj)
ℓvj−1 + 2hℓ(ATj−1Aj−1)

• Note: We can reuse the same matrix-vector products used by
trace estimation.

10



DeltaShift++

For a PSD matrix, recent algorithm by Meyer et al. [2021] obtains the
(ϵ, δ) bounds with log(1/δ)

ϵ matrix-vector products.

For stronger assumptions (in form of nuclear norm) on sequence of
matrices:

DeltaShift++ : ti+1 = γ · h++
ℓ (Ai+1) + (1− γ) ·

(
ti + h++

ℓ (Ai+1 − Ai)
)

For ∥Ai∥∗ ≤ 1 and ∥Ai+1 − Ai∥∗ ≤ α for all i, DeltaShift++ solves
dynamic trace estimation problem with

O
(
m ·

√
α/δ

ϵ
+

√
1/δ
ϵ

)

total matrix-vector products with A1,A2, ...,Am.
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DeltaShift++

We can estimate near-optimal γ for DeltaShift++ as well!

Let KA = ∥A− Ak∥2F

γ∗
j = min

γ

[
γ28KAj

ℓ
+ (1− γ)2(vj−1 +

8K∆j

ℓ
)

]

=
8K∆j + ℓvj−1

8KAj + ℓvj−1 + 8K∆j

Similar to DeltaShift, we can reuse matrix-vector products from trace
estimation!
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Empirical results

For the dynamic trace problem, we compare using the same number
of total matrix-products for

• Hutchinson’s estimator at each time step
• Estimate tr(∆i) at each time step and add to tr(Ai) (NoRestart)
• DeltaShift
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Empirical results
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(a) Synthetic data with total matrix-
vector products= 8 ∗ 103
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(b) Graph data with total matrix-vector
products= 104
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Empirical results

• For estimating spectral density, trace of polynomials of the
Hessian is used.

The three term recurrence relation for Chebyshev polynomials is:

T0(H) = I, T1(H) = H, Tn+1(H) = 2HTn(H)− Tn−1(H).
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Empirical results

Table 1: Average error for trace of polynomials of Hessian with learning rate
0.001 and total matrix-vector products = 2000

HUTCHINSON NORESTART DELTASHIFT

T1(H) 2.5E-02 3.7E-02 1.7E-02
T2(H) 1.2E-06 1.7E-06 8.0E-07
T3(H) 4.0E-02 4.1E-02 3.1E-02
T4(H) 1.5E-06 1.7E-06 1.0E-06
T5(H) 2.1E-02 4.3E-02 1.9E-02
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Future work

• Current choice of γ is a greedy heuristic, but works well
empirically. Can we do better?

• Can we do better when ∆ matrices have additional structure?
Partial progress in form of DeltaShift++.
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Thank you!
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