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Sparse is Enough in 
Scaling Transformers
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Motivation

Figure 1.2 from Language Models are Few-Shot 
Learners, Brown et al. 2020

Larger models make increasingly efficient use 
of in-context information.

Over time bigger models are used, as they use 
data more efficiently.

What about running fast inference on 
non-specialized hardware?

We look at big Transformer models for text 
synthesis.
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Motivation - Inference with Large Models

Running unbatched text generation on non-specialized hardware (just CPU):
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~4 seconds per sentence ~90 seconds per sentence



Motivation - Inference with Large Models

Running unbatched text generation on non-specialized hardware (just CPU):
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2.62x
speed-up! 20x

speed-up!

~4 seconds per sentence

to ~1.5 seconds
~90 seconds per sentence

to ~4.5 seconds!



Reducing Inference Cost: Prior Approaches 
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Prior approaches to reduce inference time include:

● Model distillation[1]

● Model compression/pruning[2]

● Quantization [3]

Our work focuses instead on conditional skipping of parameters, like in Mixture of 
Experts[4].

[1] Kim et al., 2020,  Fastformers: Highly efficient transformer models for natural language understanding
[2] Li et al., 2020, Train big, then compress: Rethinking model size for efficient training and inference of transformers
[3] Shen et al., 2020,  Q-bert: Hessian based ultra low precision quantization of bert
[4] Shazeer et al., 2017, Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. 



Are sparse models enough?
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We show that sparse model can perform just as well as a dense model 
with the same number of parameters.

To achieve this we designed:

● Sparse Feed Forward
● Sparse QKV



Sparse Feed Forward
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Standard
Feed Forward Layer
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Sparse Feed Forward
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Sparse Feed Forward:
Controller
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How to design Controller?
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How to design Controller?
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How to design Controller?
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Results
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Sparse FF

doesn't impact

model quality!
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Neg-log-perplexity of sparse models with 800M parameters with 

proposed sparsity mechanisms matches baselines.

Our model is also competitive with strong baselines on ArXiv summarization task.



How to design Controller?

1.72x
speed-up!

2.31x
speed-up!
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~4 seconds per sentence

to ~2.3 seconds
~90 seconds per sentence

to ~40 seconds!



Sparse QKV Layer
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Sparse QKV Layer - Simple Variant
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Our sparse variant:

● has order of magnitude less 
parameters:
down to even O(dmodel

1.5) 
instead of O(dmodel

2)
● can express any 

permutation!



Sparse QKV Layer - Simple Variant
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Our sparse variant:

● has order of magnitude less 
parameters:
down to even O(dmodel

1.5) 
instead of O(dmodel

2)
● can express any 

permutation!

We increase dff to keep #params 
in the model

● basically moving params 
from QKV layer to FF!



Sparse QKV Layer - Convolution Variant
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We can join this permutation layer 
with convolution in order to get 
better speed at no cost in model 
quality.

Please refer to our paper for 
details.



Sparse QKV - Inference Time Improvement
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2.62x
speed-up! 20x

speed-up!

~4 seconds per sentence

to ~1.5 seconds
~90 seconds per sentence

to ~4.5 seconds!



Enabling gains for Long 
sequences
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Integration with prior approaches
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To enable decoding on long sequences we've added to our models:

● reversibility[1]

● LSH attention[1]

● recurrence in the form of SRU[2]

The project and code is open-source.

[1] Kitaev et al., 2020,  Reformer: the efficient Transformer
[2] Lei et al., 2017, Training rnns as fast as cnns



Future Work
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Future Work
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We have shown sparse models perform as well as dense models with same # of 
params with an order of magnitude speedup in decoding.

● Enable gains for Batched inference
● Use Sparse FF layer to improve training time
● Enable gains for other domains, for e.g. vision transformers
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