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Active Learning

Active learning: reduce data requirement in supervised learning by
studying the design of algorithms that can learn and generalize from
a small subset of the training data.

Version 1: Pool Based Active Learning

Has access to a large unlabeled set of data points;

Can ask for a subset of the data to be labeled

Version 2: Sequential/Streaming Active Learning (our focus)

Data points arrive in a streaming manner, adversarially or i.i.d.

The algorithm must decide whether to query the label of a given
point or not
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Active Learning Model

Agnostic statistical learning model:

A pre-specified class H of functions either containing the Bayes
classifier or has a good approximation inside

(data, label) pairs are generated in an i.i.d. fashion

Goal: query a small number of labels and produce a hypothesis
of low error, i.e., get fast convergence rate w.r.t the number of
queries the algorithm makes
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Two learning settings

Parametric Setting: H has finite VC-dim (or finite disagreement
coefficient)

Excess risk decays at least as ν N−1/2, ν being the infimum of
population loss in class H

When ν > 0 active learning ≈ passive learning

Fast rates only under ν ≈ 0

When ν ≈ 0: there are (adaptive) algorithms achieving minimax
active learning rate N−

α+1
2 [Hanneke, 2009, Koltchinskii, 2010],

where α is the low noise exponent

To shrink the approximation error ν, consider wider class of functions,
leading to non-parametric learning.
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Two learning setting

Non-Parametric Setting: minimax active learning bounds achieved
[Locatelli A. and Kpotufe, 2017, Minsker, 2012] assuming

Marginal distribution DX is (quasi-)uniform

Low noise condition with exponent α

Regression function is β-Hölder smooth

The results in [Locatelli A. and Kpotufe, 2017, Minsker, 2012]
recovers the parametric setting when β →∞. However, such
algorithms are not efficient (curse of dimensionality).

Popular empirical approach: use DNNs to perform active learning, no
provable guarantees.

Is provable and computationally efficient active learning possible in
non-parametric setting?
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Our Contributions

Our answer: yes! We provide computationally efficient algorithms for
active learning in sequential setting based on DNNs.

Avoid fixing a function class a-priori

Use over-parametrized DNNs

Propose a simple algorithm that forms an uncertainty estimate
for the current data point based on the output of a DNN

Use theory of Neural Tangent Kernel (NTK) approximation to
analyze the dynamics of GD by considering linearization of the
network around random initialization
[Arora et al., 2019, Allen-Zhu et al., 2019, Cao and Gu, 2019]

Have fast rate of convergence which depend on a
data-dependent complexity term under low-noise condition

Algorithms automatically adapt to the magnitude of the unknown
complexity term by a novel model selection approach
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Preliminary and Notation
Binary classification: y ∈ {±1}.
Non-parametric setting: no assumption on h(x) = P(y = 1|x).
Low noise condition: [Mammen and Tsybakov, 1999]

P(|h(x)− 1
2
| < ε) ≤ εα, ∀ε ∈ (0,1/2).

Fully connected NN (ReLu activation): f (x , θ) =
√

mWnσ(...σ(W1x)).

NTK matrix: the Gram matrix H of the NTK is a data-dependent
matrix defined recursively which measures the complexity of the
network projected on given data points [Jacot et al., 2018].

Data dependent complexity terms:

LH = log det(I + H), ST ,n(h) =
√
~h>H−1~h.

Quantify the algorithms’ performance by (pseudo-)regret RT and
number of queries NT .

Goal: bound RT and NT simultaneously w.h.p over the generation of
the sequence {(xt , yt )}t=1,...,T .
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Base Learner: Frozen NTK Selective Sampler

Combining techniques from selective sampling [Dekel et al., 2012]
and Neural bandits [Zhou et al., 2020, Zhang et al., 2020] in an
original and non-trivial way.

Input: complexity parameter S that upper bounds ST ,n(h)

Initialization: sample neurons’ weights independently from
Gaussian distribution with appropriate variance

Feature map: ∇f (x ; θ0)/
√

m, where θ0 is the (frozen) weight
vector of the neural network generated during init

Generate upper confidence bound and uncertainty threshold

Query condition: if |u.c.b − 1/2| is less than the threshold

If query condition triggered: updates least-squares estimator θt
using the feature map
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Guarantees for Base Learner

Theorem

Let Frozen NTK Selective Sampler be run with parameter S on an
i.i.d. sample (x1, y1), . . . , (xT , yT ) ∼ D, where the marginal distribution
DX fulfills the low-noise condition with exponent α ≥ 0 and such that
ST ,n(h) ≤ S. Then w.h.p RT and NT are simultaneously upper
bounded as follows:

RT = O
((

LH(LH + S2)
)α+1
α+2

T
1
α+2

)
NT = O

((
LH(LH + S2)

) α
α+2

T
2
α+2

)
,

where LH = log det(I + H), H being the NTK matrix of depth n over
the training set.
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Remark on the guarantees

Takes as input the complexity parameter ST ,n(h) which
quantifies the complexity of the function h to be learned
projected onto the data

If h too complex, i.e. S2
T ,n(h) = Ω(T ), all bounds vacuous

If h belongs to the RKHS induced by the NTK, then S2
T ,n(h) is

upper bounded by the RKHS norm of h

LH measure the complexity of DNN in terms of the NTK matrix

LH is tightly related to the decaying rate of the eigenvalues of
NTK matrix, and is poly-log(T ) in many important cases
[Valko et al., 2013]
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Online to batch conversion

Pick one function uniformly at random, excess risk is bounded w.h.p
by (LH(LH + S2)

NT

)α+1
2

LH(LH + S2) plays the role of a compound complexity term
projected onto the data x1, . . . , xT

When restricted to VC-class, the convergence rate N−
α+1

2
T is the

minimax rate

When LH is poly-log(T ) and S2 = O(T β) (β < 1), the excess risk
is bounded by

N
− (1−β)(α+1)

2+αβ
T
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Model Selection

In practice, LH and S are a-priori unknown.

To make the algorithm oblivious to these complexity terms, we
operate on a pool of base learners, each being parametrized by
(Si ,di ).

Si plays the role of S

di plays the role of LH(LH + S2)

Choose over pool of base learnersMt with a probability distribution
~pt where

pt,i =


d−(α+1)

i∑
j∈Mt

d−(α+1)
j

, if i ∈ Mt

0. otherwise

The algorithm undergoes a series of ad hoc elimination tests
(inspired by [Pacchiano et al., 2020a, Pacchiano et al., 2020b]) to
drop mis-specified models on the fly.
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Guarantees for Base Learners with Model Selection

Theorem

Let base learners with model selection be run on a pool of base
learnersM1 = {(2i1 ,2i2 )} for (i1, i2) ∈ [log T ]× [log T ] on an i.i.d.
sample (x1, y1), . . . , (xT , yT ) ∼ D, where the marginal distribution DX
fulfills the low-noise condition with exponent α ≥ 0. Then w.h.p.,

RT = O
((

LH
(
LH + S2

T ,n(h)
))α+1

T
1
α+2

)
,

NT = O
((

LH
(
LH + S2

T ,n(h)
)) α

α+2 T
2
α+2

)
.

Excess risk bound:

(
[LH(LH+S2

T ,n(h))]
3α+2
α+2

NT

)α+1
2

If LH is poly-log(T ) and S2 = O(T β), then excess risk is

N
− (1−β(α+1))(α+1)

2+βα
T
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Non-Frozen Version of Base Algorithm

In practice it is believed that training the DNN parameter by (S)GD is
better than fixing the parameters.

We extend all our results to the case where the network weights are
not frozen, but are updated according to a GD procedure based on
the (data,label) pair queried so far.

Difference compared to frozen version:

The feature map becomes ∇f (x ; θt−1)/
√

m

θt trained by GD on the labeled data gathered so far

Key Ingredient: the approximation result between the neural network f
and its first order approximation in the over-parametrized regime.
[Arora et al., 2019, Allen-Zhu et al., 2019, Cao and Gu, 2019]
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Conclusions

A rigorous analysis of selective sampling and active learning in
general non-parametric scenarios

We are in the most liberal non-parametric regime without any
constraint on the regression function h, with the consequence
that all key complexity terms are data-dependent

Algorithms automatically adapt to the magnitude of the unknown
complexity term by model selection

Gives rise to efficient and manageable algorithms for modular
DNN architecture design and deployment

Zhilei Wang Neural Active Learning with Performance Guarantees



References I

Allen-Zhu, Z., Li, Y., and Song, Z. (2019).
A convergence theory for deep learning via
over-parameterization.
In Chaudhuri, K. and Salakhutdinov, R., editors,
Proceedings of the 36th International Conference on
Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pages 242–252. PMLR.

Arora, S., Du, S. S., Hu, W., Li, Z., Salakhutdinov, R., and
Wang, R. (2019).
On exact computation with an infinitely wide neural net.
In Advances in Neural Information Processing Systems.
Curran Associates, Inc.

Zhilei Wang Neural Active Learning with Performance Guarantees



References II

Cao, Y. and Gu, Q. (2019).
Generalization bounds of stochastic gradient descent for
wide and deep neural networks.
In Advances in Neural Information Processing Systems.
Curran Associates, Inc.

Dekel, O., Gentile, C., and Sridharan, K. (2012).
Selective sampling and active learning from single and
multiple teachers.
J. Mach. Learn. Res., 13(1).

Hanneke, S. (2009).
Adaptive rates of convergence in active learning.
In Proc. of the 22th Annual Conference on Learning
Theory.

Zhilei Wang Neural Active Learning with Performance Guarantees



References III

Jacot, A., Gabriel, F., and Hongler, C. (2018).
Neural tangent kernel: convergence and generalization in
neural networks.
In Advances in neural information processing systems,
page 8571–8580. MIT Press.

Koltchinskii, V. (2010).
Rademacher complexities and bounding the excess risk of
active learning.
Journal of Machine Learning Research, 11:2457–2485.

Locatelli A., C. A. and Kpotufe, S. (2017).
Adaptivity to noise parameters in nonparametric active
learning.
In Proceedings of the 2017 Conference on Learning
Theory, volume 65 of Proceedings of Machine Learning
Research, pages 1383–1416.

Zhilei Wang Neural Active Learning with Performance Guarantees



References IV

Mammen, E. and Tsybakov, A. (1999).
Smooth discrimination analysis.
The Annals of Statistics, 27(6):1808–1829.

Minsker, S. (2012).
Plug-in approach to active learning.
Journal of Machine Learning Research, 13:67–90.

Pacchiano, A., Dann, C., C., G., and Bartlett, P. (2020a).
Regret bound balancing and elimination for model selection
in bandits and RL.
arXiv preprint arXiv:2012.13045.

Zhilei Wang Neural Active Learning with Performance Guarantees



References V

Pacchiano, A., Phan, M., Abbasi Yadkori, Y., Rao, A.,
Zimmert, J., Lattimore, T., and Szepesvari, C. (2020b).
Model selection in contextual stochastic bandit problems.
In Advances in Neural Information Processing Systems,
volume 33, pages 10328–10337. Curran Associates, Inc.

Valko, M., Korda, N., Munos, R., Flaounas, I., and
Cristianini, N. (2013).
Finite-time analysis of kernelised contextual bandits.
In arxiv:1309.6869.

Zhang, W., Zhou, D., Li, L., and Gu, Q. (2020).
Neural thompson sampling.
In arXiv:2010.00827.

Zhilei Wang Neural Active Learning with Performance Guarantees



References VI

Zhou, D., Li, L., and Gu, Q. (2020).
Neural contextual bandits with ucb-based exploration.
In Proceedings of the 37th International Conference on
Machine Learning.

Zhilei Wang Neural Active Learning with Performance Guarantees


