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Introduction

• In this paper, we explore how to apply the Transformer to high-resolution image 
generation based on Generative Adversarial Networks (GANs).

• Challenges:

• The quadratic scaling problem brought by the self-attention operation becomes 
even worse when generating pixel-level details for high-resolution images.

• Generating images from noise inputs poses a higher demand for spatial coherency 
in structure, color, and texture than discriminative tasks, and hence a more powerful 
yet efficient self-attention mechanism is desired for decoding feature 
representations from inputs.



Contributions

• We propose HiT, a Transformer-based generator for high-fidelity image generation. The 
resulting architecture easily scales to high-definition image synthesis (with the resolution 
of 1024 x 1024) and has a comparable throughput to StyleGAN2.

• We present a new form of sparse self-attention operation, namely multi-axis blocked 
self-attention. It captures local and global dependencies within nonoverlapping image 
blocks in parallel, each of which uses a half of attention heads.

• We introduce a cross-attention module performing attention between the input and 
intermediate features. This module provides important global information to high-
resolution stages where self-attention operations are absent.

• The proposed HiT obtains competitive FID scores of 31.87 and 2.95 on unconditional 
ImageNet 128 x 128 and FFHQ 256 x 256, respectively, highly reducing the gap 
between ConvNet-based GANs and Transformer-based ones.



Approach: Main Architecture
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Approach: Two-Stage Framework
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Approach: Multi-Axis Blocked Self-Attention
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Approach: Multi-Axis Blocked Self-Attention

• The different stages of multi-axis self-attention for a [4, 4, C] input with the block size of 
b = 2. The input is first blocked into 2 x 2 non-overlapping [2, 2, C] patches. Then 
regional and dilated self-attention operations are computed along two different axes, 
respectively, each of which uses a half of attention heads. The attention operations run 
in parallel for each of the tokens and their corresponding attention regions, illustrated 
with different colors.



Approach: Cross-Attention for Self-Modulation
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Approach: Cross-Attention for Self-Modulation

• Two benefits:

• Self-modulation stabilizes the generator towards favorable conditioning values and 
also appears to improve mode coverage.

• When self-attention modules are absent in high-resolution stages, attending to the 
input latent code provides an alternative way to capture global information when 
generating pixel-level details.



Results: ImageNet

• Left: Comparison with the state-of-the-art methods on the ImageNet 128 × 128 dataset. 
† is based on a supervised pre-trained ImageNet classifier.



Results: ImageNet

• Left: Comparison with the state-of-the-art methods on the ImageNet 128 × 128 dataset. 
† is based on a supervised pre-trained ImageNet classifier. Right: Reconstruction FID 
on the ImageNet 256 × 256 dataset. We note that VQVAE-2 utilizes a hierarchical 
organization of VQ-VAE and thus has two codebooks Z.



Results: Ablation Study

• We start with the INR-based generator [5, 26] conditioned on the input latent code and 
gradually improve it with the proposed attention components and their variations. O/M 
denotes “out-of-memory” error: the model cannot be trained for the batch size of one.
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Results: Ablation Study

• Performance as a function of the number of self-attention stages on ImageNet 128 x 
128. The attention configuration is defined using the protocol [a, b], where a and b refer 
to the number of stages in the low-resolution and high-resolution stages of the model, 
respectively.



Results: ImageNet 128 x 128

• Uncurated ImageNet 128 × 128 samples from ConvNet-R1 (left, FID: 39.71, IS: 18.61) 
and the proposed HiT (right, FID: 31.87, IS: 21.32).



Results: Higher Resolution Generation

• Comparison with the state-of-the-art methods on CelebA-HQ (left) and FFHQ (right) with 
the resolutions of 256 x 256 and 1024 x 1024. bCR [70] is not applied at the 1024 x 
1024 resolution.
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Results: Higher Resolution Generation

• Comparison with the main competing methods in terms of number of network 
parameters, throughput, and FID on FFHQ 256 x 256. The throughput is measured on a 
single Tesla V100 GPU.



Results: CelebA-HQ

• Synthetic face images by HiT-B on CelebA-HQ 1024 x 1024 and 256 x 256.



Results: Latent Interpolation

• Latent linear morphing on the CelebA-HQ 256 x 256 dataset between two synthetic face 
images – the left-most and right-most ones. 



Results: Effectiveness of Regularization

• The effectiveness of bCR [70] on both StyleGAN2 and HiT. † indicates the results of 
StyleGAN2 are obtained from [22] which uses a lighter-weight configuration of [24].
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