

Improved Transformer for High-Resolution GANs

Long Zhao¹ Zizhao Zhang² Ting Chen³ Dimitris Metaxas¹ Han Zhang³

¹ Rutgers University ² Google Cloud Al ³ Google Research

Introduction

- In this paper, we explore how to apply the Transformer to high-resolution image generation based on Generative Adversarial Networks (GANs).
- Challenges:
 - The quadratic scaling problem brought by the self-attention operation becomes even worse when generating pixel-level details for high-resolution images.
 - Generating images from noise inputs poses a higher demand for spatial coherency in structure, color, and texture than discriminative tasks, and hence a more powerful yet efficient self-attention mechanism is desired for decoding feature representations from inputs.

Contributions

- We propose HiT, a Transformer-based generator for high-fidelity image generation. The resulting architecture easily scales to high-definition image synthesis (with the resolution of 1024 x 1024) and has a comparable throughput to StyleGAN2.
- We present a new form of sparse self-attention operation, namely multi-axis blocked self-attention. It captures local and global dependencies within nonoverlapping image blocks in parallel, each of which uses a half of attention heads.
- We introduce a cross-attention module performing attention between the input and intermediate features. This module provides important global information to high-resolution stages where self-attention operations are absent.
- The proposed HiT obtains competitive FID scores of 31.87 and 2.95 on unconditional ImageNet 128 x 128 and FFHQ 256 x 256, respectively, highly reducing the gap between ConvNet-based GANs and Transformer-based ones.

Approach: Main Architecture

Approach: Two-Stage Framework

Approach: Multi-Axis Blocked Self-Attention

Approach: Multi-Axis Blocked Self-Attention

 The different stages of multi-axis self-attention for a [4, 4, C] input with the block size of b = 2. The input is first blocked into 2 x 2 non-overlapping [2, 2, C] patches. Then regional and dilated self-attention operations are computed along two different axes, respectively, each of which uses a half of attention heads. The attention operations run in parallel for each of the tokens and their corresponding attention regions, illustrated with different colors.

Approach: Cross-Attention for Self-Modulation

Approach: Cross-Attention for Self-Modulation

- Two benefits:
 - Self-modulation stabilizes the generator towards favorable conditioning values and also appears to improve mode coverage.
 - When self-attention modules are absent in high-resolution stages, attending to the input latent code provides an alternative way to capture global information when generating pixel-level details.

Results: ImageNet

Left: Comparison with the state-of-the-art methods on the ImageNet 128 × 128 dataset.
† is based on a supervised pre-trained ImageNet classifier.

Method	$ $ FID \downarrow	$IS\uparrow$
Vanilla GAN [12]	54.17	14.01
PacGAN2 [30]	57.51	13.50
MGAN [15]	58.88	13.22
Logo-GAN-AE [44]	50.90	14.44
Logo-GAN-RC [44] [†]	38.41	18.86
SS-GAN (sBN) [7]	43.87	-
Self-Conditioned GAN [31]	40.30	15.82
ConvNet- R_1	39.71	18.61
HiT (Ours)	31.87	21.32

Results: ImageNet

Left: Comparison with the state-of-the-art methods on the ImageNet 128 × 128 dataset.
† is based on a supervised pre-trained ImageNet classifier. Right: Reconstruction FID on the ImageNet 256 × 256 dataset. We note that VQVAE-2 utilizes a hierarchical organization of VQ-VAE and thus has two codebooks Z.

Method	FID \downarrow	IS \uparrow	Method	Embedding
Vanilla GAN [12]	54.17	14.01		size and $ \mathcal{Z} $
PacGAN2 [30]	57.51	13.50	VQ-VAE [56]	32, 1024 75.19
MGAN [15]	58.88	13.22	DALL-E [41]	32, 8192 34.30
Logo-GAN-AE [44]	50.90	14.44		64 512
Logo-GAN-RC [44] [†]	38.41	18.86	VQ-VAE-2 [42]	$\begin{vmatrix} 04, 512 \\ 32, 512 \end{vmatrix}$ 10.00
SS-GAN (sBN) [7]	43.87	-		52, 512
Self-Conditioned GAN [31]	40.30	15.82	VQGAN [11]	16, 1024 8.00
ConvNet- R_1	39.71	18.61	VQ-HiT (Ours)	16, 1024 6.37
HiT (Ours)	31.87	21.32		

Results: Ablation Study

• We start with the INR-based generator [5, 26] conditioned on the input latent code and gradually improve it with the proposed attention components and their variations. O/M denotes "out-of-memory" error: the model cannot be trained for the batch size of one.

	Model configuration	#params (million)	Throughput (images / sec)	FID↓	IS ↑
	Latent-code conditioned INR decoder [5, 26]	42.68	110.39	56.33	16.19
+	Cross-attention for self-modulation	61.55	82.67	35.94	19.42
	All-to-all self-attention [58]	67.60	-	O/M	O/M
+ one of	Axial attention [14, 60]	67.60	74.21	35.15	19.79
	Blocked local attention [57, 67] Interleaving blocked regional and dilated attention Multi-axis blocked self-attention (Ours)	67.60	75.54	33.70 32.96 32.23	19.96 20.75 20.96
+	Balancing attention between axes (Full model)	67.60	75.33	31.87	21.32

References

[5] Bepler et al. "Explicitly disentangling image content from translation and rotation with spatial-VAE". NeurIPS, 2019.[26] Kleineberg et al. "Adversarial generation of continuous implicit shape representations". Eurographics, 2020.

Results: Ablation Study

 Performance as a function of the number of self-attention stages on ImageNet 128 x 128. The attention configuration is defined using the protocol [a, b], where a and b refer to the number of stages in the low-resolution and high-resolution stages of the model, respectively.

Attention configuration	[0,5]	[1, 4]	[2, 3]	[3,2]	[4, 1]
#params (million)	61.55	66.01	67.19	67.52	67.60
Throughput (images / sec)	82.67	80.88	80.22	78.06	75.33
FID↓	35.94	34.16	33.69	32.72	31.87

Results: ImageNet 128 x 128

 Uncurated ImageNet 128 × 128 samples from ConvNet-R1 (left, FID: 39.71, IS: 18.61) and the proposed HiT (right, FID: 31.87, IS: 21.32).

Results: Higher Resolution Generation

 Comparison with the state-of-the-art methods on CelebA-HQ (left) and FFHQ (right) with the resolutions of 256 x 256 and 1024 x 1024. bCR [70] is not applied at the 1024 x 1024 resolution.

	FID \downarrow (CelebA-HQ)			FID \downarrow (FFHQ)	
Method	$\times 256$	$\times 1024$	Method	$\times 256$	$\times 1024$
VAEBM [62]	20.38	-	U-Net GAN [46]	7.63	-
StyleALAE [39]	19.21	-	StyleALAE [39]	-	13.09
PG-GAN [21]	8.03	-	VQGAN [11]	11.40	-
COCO-GAN [28]	-	9.49	INR-GAN [50]	9.57	16.32
VQGAN [11]	10.70	-	CIPS [1]	4.38	10.07
StyleGAN [23]	-	5.17	StyleGAN2 [24]	3.83	4.41
HiT-B (Ours)	3.39	8.83*	HiT-B (Ours)	2.95	6.37*

References

[70] Zhao et al. "Improved consistency regularization for GANs". AAAI, 2020.

Results: Higher Resolution Generation

 Comparison with the main competing methods in terms of number of network parameters, throughput, and FID on FFHQ 256 x 256. The throughput is measured on a single Tesla V100 GPU.

Architecture	Model	#params (million)	Throughput (images / sec)	$ \begin{array}{c} \text{FID} \downarrow \\ \text{(FFHQ \times256$)} \end{array} $
ConvNet	StyleGAN2 [24]	30.03	95.79	3.83
INR	CIPS [1]	45.90	27.27	4.38
	INR-GAN [50]	107.03	266.45	9.57
Transformer	HiT-S	38.01	86.64	3.06
	HiT-B	46.22	52.09	2.95
	HiT-L	97.46	20.67	2.58

Results: CelebA-HQ

• Synthetic face images by HiT-B on CelebA-HQ 1024 x 1024 and 256 x 256.

Results: Latent Interpolation

 Latent linear morphing on the CelebA-HQ 256 x 256 dataset between two synthetic face images – the left-most and right-most ones.

Results: Effectiveness of Regularization

• The effectiveness of bCR [70] on both StyleGAN2 and HiT. † indicates the results of StyleGAN2 are obtained from [22] which uses a lighter-weight configuration of [24].

+ bCR [70]	StyleGAN2 [24] [†]	HiT-S	HiT-B	HiT-L
×	5.28 3.91	6.07 3.06	5.30 2.95	5.13 2.58
Δ FID	1.37	3.01	2.35	2.55

References

[22] Karras et al. "Training generative adversarial networks with limited data". NeurIPS, 2020.

[24] Karras et al. "Analyzing and improving the image quality of StyleGAN". CVPR, 2020.

[70] Zhao et al. "Improved consistency regularization for GANs". AAAI, 2020.

Thanks!