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Q: Can we leverage topological information?




Global topological features of time series
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This tracks global topological changes!
(and locality is lost)
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We will only consider 0-dimensional (connectivity)
features in this work!
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Setup:

> We follow the ensemble approach of [Oreshkin et al., 2019]

> Different (1) random seeds, (2) historical time horizons and (3) losses

> Forecast = median across ensemble forecasts
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> Corpus of 100k time series from various subgroups (yearly, monthly, ...)
> Different forecasting horizons (H) / subgroup
> Fix evaluation protocol & scores (sSMAPE, MASE, OWA)
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Overall performance comparison (across all 100,000 time series):

Method SMAPE| OWA |

N-BEATS 11.324  0.814
N-BEATS + TAN 11.291 0.811

"Winner M4 11.374 0.821
TBenchmark 12.555  0.898
TNaive2 13.564  1.000

see paper for final results

I from [Makridakis et al., 2018]
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Experiments — Ablation

Next, we successively deactivate TAN parts (on a smaller ensemble):

Method SMAPE| OWA|
N-BEATS 11.488  0.827

+ Top 11.505 0.920
+ Attention 11.492 0.826
+ TAN 11.466 0.824

see paper for final results
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Runtime of 0-dim. persistent homology as a function of window size m:
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#reasonable window sizes are in that range
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inverse Ackerman function
window size
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Possible future direction

> Learn a parameterized “filter” f for PH

> Requires to backprop through PH computation
see [Hofer et al., 2020], [Carriere et al.,2021]




Thank You!

Source code & Slides are available at

https://github.com/plus-rkwitt/TAN
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