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We consider the problem of point-forecasting of univariate time series.

Time

Historical observations xt1, . . . , xtT Forecast horizon (H)

We assume that a corpus of N time series is available.

Typically, statistical/learning methods operate on raw observations, i.e.,

Q: Can we leverage topological information?

Model
θ

xt1 , . . . , xtT x̂tT+1 , . . . , x̂tT+H
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Global topological features of time series

Classicially, one would first embed the time series into Rn . . .

. . . and then compute Vietoris-Rips persistent homology!

[de Silva et al., 2012; Perea & Harer, 2015]
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This tracks global topological changes!
(and locality is lost)
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Local topological features for time series

Why not compute such topological features across sliding windows?

3

7
(as we need to chunk up the windows)

Instead, we extract topological features directly from the function graph.

Barcode (H0)

f−1(−∞, ε]

f(t) Birth event

Death event

PH

Li�le information per window
Locality

We will only consider 0-dimensional (connectivity)
features in this work!



Vectorizing persistence barcodes

To vectorize the multi-set we choose an approach from [Hofer et al., 2019]
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An incarnation of TAN

TAN + (generic) N-BEATS [Oreshkin et al., 2019]
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Setup:
. We follow the ensemble approach of [Oreshkin et al., 2019]

TAN

. Di�erent (1) random seeds, (2) historical time horizons and (3) losses

. Forecast = median across ensemble forecasts
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Experiments

Dataset: M4 competition data [Makridakis et al., 2018]

. Corpus of 100k time series from various subgroups (yearly, monthly, ...)

. Di�erent forecasting horizons (H) / subgroup

. Fix evaluation protocol & scores (sMAPE, MASE, OWA)
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N-BEATS 11.324 0.814
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†Winner M4 11.374 0.821
†Benchmark 12.555 0.898
†Naive2 13.564 1.000
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N-BEATS + TAN 11.291 0.811
†Winner M4 11.374 0.821
†Benchmark 12.555 0.898
†Naive2 13.564 1.000

y y

† from [Makridakis et al., 2018]

see paper for final results
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N-BEATS 11.488 0.827

+ Top 11.505 0.920
+ A�ention 11.492 0.826
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vec vec vec
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Experiments – Runtime

Runtime of 0-dim. persistent homology as a function of window sizem:

Complexity: O(mα−1(m)

α−1

m

= inverse Ackerman function
= window size

reasonable window sizes are in that range
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Conclusion

We propose an approach ...
. . . . to a�end to local topological time series features

. . . . that is easy to integrate at moderate computational overhead

Possible future direction

. . . . that supplies complementary information beyond raw observations

vec

PHPH

fΩ . Learn a parameterized “filter” fΩ for PH

. Requires to backprop through PH computation

see [Hofer et al., 2020], [Carrière et al.,2021]



Thank You!

Source code & Slides are available at

https://github.com/plus-rkwitt/TAN
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