

Topological Attention for Time Series Forecasting

Florian Graf[†] Ch

Christoph Hofer[†]

Roland Kwitt †

[†]University of Salzburg

NeurIPS 2021

We consider the problem of point-forecasting of **univariate** time series.

We consider the problem of point-forecasting of **univariate** time series.

We consider the problem of point-forecasting of **univariate** time series.

We consider the problem of point-forecasting of **univariate** time series.

We assume that a corpus of N time series is available.

We consider the problem of point-forecasting of **univariate** time series.

We assume that a corpus of N time series is available.

Typically, statistical/learning methods operate on raw observations, i.e.,

$$x_{t_1}, \dots, x_{t_T} \longrightarrow Model \qquad \theta \longrightarrow \hat{x}_{t_{T+1}}, \dots, \hat{x}_{t_{T+H}}$$

We consider the problem of point-forecasting of **univariate** time series.

We assume that a corpus of N time series is available.

Typically, statistical/learning methods operate on raw observations, i.e.,

$$x_{t_1}, \dots, x_{t_T} \longrightarrow Model \quad \theta \longrightarrow \hat{x}_{t_{T+1}}, \dots, \hat{x}_{t_{T+H}}$$

Q: Can we leverage **topological** information?

Why not compute such topological features across **sliding windows**?

✓ Locality

X Little information per window

(as we need to chunk up the windows)

Why not compute such topological features across **sliding windows**?

 Locality
Little information per window (as we need to chunk up the windows)

Why not compute such topological features across **sliding windows**?

 Locality
Little information per window (as we need to chunk up the windows)

Why not compute such topological features across **sliding windows**?

 Locality
Little information per window (as we need to chunk up the windows)

Why not compute such topological features across **sliding windows**?

 Locality
Little information per window (as we need to chunk up the windows)

Why not compute such topological features across **sliding windows**?

 Locality
Little information per window (as we need to chunk up the windows)

Why not compute such topological features across **sliding windows**?

 Locality
Little information per window (as we need to chunk up the windows)

Why not compute such topological features across **sliding windows**?

 Locality
Little information per window (as we need to chunk up the windows)

Why not compute such topological features across **sliding windows**?

 Locality
Little information per window (as we need to chunk up the windows)

Why not compute such topological features across **sliding windows**?

 Locality
Little information per window (as we need to chunk up the windows)

Why not compute such topological features across **sliding windows**?

 Locality
 Little information per window (as we need to chunk up the windows)

Why not compute such topological features across **sliding windows**?

 Locality
 Little information per window (as we need to chunk up the windows)

Why not compute such topological features across **sliding windows**?

 Locality
 Little information per window (as we need to chunk up the windows)

Why not compute such topological features across **sliding windows**?

Locality
 Little information per window

(as we need to chunk up the windows)

Why not compute such topological features across **sliding windows**?

 Locality
 Little information per window (as we need to chunk up the windows)

Why not compute such topological features across **sliding windows**?

Little information per window (as we need to chunk up the windows)

<sup>Locality
Little information</sup>

Why not compute such topological features across **sliding windows**?

 Locality
 Little information per window (as we need to chunk up the windows)

Why not compute such topological features across **sliding windows**?

 Locality
 Little information per window (as we need to chunk up the windows)

Why not compute such topological features across sliding windows?

- ✓ Locality
 - Little information per window (as we need to chunk up the windows)

We will only consider 0-dimensional (**connectivity**) features in this work!

Vectorizing persistence barcodes

Barcodes are multi-sets of (birth, death) tuples.

To vectorize the multi-set we choose an approach from [Hofer et al., 2019]

We aim to allow attendening to **local** topological features.

We will use the representation v as a complementary signal to a forecasting model

Topological Attention (TAN)

We aim to allow attendening to **local** topological features.

Persistent homology of time series function graph

Barcode vectorization (into \mathbb{R}^e)

We aim to allow attendening to **local** topological features.

Persistent homology of time series function graph

vec Barcode vectorization (into \mathbb{R}^e)

We aim to allow attendening to **local** topological features.

Persistent homology of time series function graph

Barcode vectorization (into \mathbb{R}^e)

We aim to allow attendening to **local** topological features.

Persistent homology of time series function graph

Barcode vectorization (into \mathbb{R}^{e})

Positional encoding

We aim to allow attendening to **local** topological features.

We aim to allow attendening to **local** topological features.

We will use the representation v as a complementary signal to a forecasting model

Topological Attention (TAN)

Setup:

- ▷ We follow the **ensemble** approach of [Oreshkin et al., 2019]
- Different (1) random seeds, (2) historical time horizons and (3) losses \triangleright
- ▷ Forecast = **median** across ensemble forecasts

Experiments

Dataset: M4 competition data [Makridakis et al., 2018]

Experiments

Dataset: M4 competition data [Makridakis et al., 2018]

▷ Corpus of 100k time series from various subgroups (yearly, monthly, ...)

Experiments

Dataset: M4 competition data [Makridakis et al., 2018]

- ▷ Corpus of 100k time series from various subgroups (yearly, monthly, ...)
- ▷ Different forecasting horizons (H) / subgroup
Dataset: M4 competition data [Makridakis et al., 2018]

- ▷ Corpus of 100k time series from various subgroups (yearly, monthly, ...)
- Different forecasting horizons (H) / subgroup
- ▷ Fix evaluation protocol & scores (sMAPE, MASE, OWA)

Overall performance comparison (across all 100,000 time series):

Method	$sMAPE\!\downarrow$	OWAigcup
N-BEATS	11.324	0.814

Overall performance comparison (across all 100,000 time series):

Method	$sMAPE \downarrow$	OWAigcup
N-BEATS	11.324	0.814
N-BEATS + TAN	11.291	0.811

Overall performance comparison (across all 100,000 time series):

Method	sMAPEig vert	OWAigcup
N-BEATS	11.324	0.814
N-BEATS + TAN	11.291	0.811
[†] Winner M4	11.374	0.821
[†] Benchmark	12.555	0.898
[†] Naive2	13.564	1.000

see paper for final results

[†] from [Makridakis et al., 2018]

Next, we successively deactivate TAN parts (on a smaller ensemble):

Method	sMAPE ig vert	OWAig angle
N-BEATS	11.488	0.827

Next, we successively deactivate TAN parts (on a smaller ensemble):

Method	$sMAPE \downarrow$	$OWA{\downarrow}$
N-BEATS	11.488	0.827
+ Top	11.505	0.920

Next, we successively deactivate TAN parts (on a smaller ensemble):

Method	$sMAPE \downarrow$	$OWA{\downarrow}$
N-BEATS	11.488	0.827
+ Тор	11.505	0.920
+ Attention	11.492	0.826

Next, we successively deactivate TAN parts (on a smaller ensemble):

Method	sMAPE↓	$OWA \downarrow$
N-BEATS	11.488	0.827
+ Top	11.505	0.920
+ Attention	11.492	0.826
+ TAN	11.466	0.824

see paper for final results

Experiments – Runtime

Runtime of 0-dim. persistent homology as a function of window size m:

Experiments – Runtime

Runtime of 0-dim. persistent homology as a function of window size m:

We propose an approach ...

- $\triangleright \ \ldots$ to attend to local topological time series features
- \triangleright ... that is easy to integrate at moderate computational overhead
- \triangleright ... that supplies complementary information beyond raw observations

We propose an approach ...

- $\triangleright \ \ldots$ to attend to local topological time series features
- \triangleright ... that is easy to integrate at moderate computational overhead
- \triangleright ... that supplies complementary information beyond raw observations

Possible future direction

vec

 f_{Ω}

Thank You!

Source code & Slides are available at

https://github.com/plus-rkwitt/TAN