Compressive Visual Representations

Kuang-Huei Lee⁺, Anurag Arnab⁺, Sergio Guadarrama, John Canny, Ian Fischer⁺

+: Main contributors

The multiview self-supervised learning framework

InfoMax approaches (e.g. contrastive methods)

Bootstrap Your Own Latent (BYOL) approaches

maximum likelihood estimation

InfoMax and maximum likelihood are NOT ideal

Most contrastive and latent bootstrapping methods did not consider this

What all multiview self-supervised methods hope to achieve:

What InfoMax and maximum likelihood actually achieve by maximizing I(Y;Z):

A representation Z that captures only the invariant, i.e. I(X;Y) Any Z that contains I(X;Y) is valid at optimal, no matter it contains how much irrelevant info about X

This Z is obviously not the invariant you want.

InfoMax and maximum likelihood are NOT ideal

Most contrastive and latent bootstrapping methods did not consider this

A representation Z that captures only the invariant, i.e. I(X;Y) Any Z that contains I(X;Y) is valid at optimal, no matter it contains how much irrelevant info about X

This Z is obviously not the invariant you want.

InfoMax and maximum likelihood are NOT ideal

Most contrastive and latent bootstrapping methods did not consider this

What all multiview self-supervised
methods hope to achieve:What InfoMax and maximum likelihood
actually achieve by maximizing I(Y;Z):View1: XZView2: YView1: XZView2: YView1: XZView2: YView1: XView2: YView1: YView2: YView1: Y

A representation Z that captures only the invariant, i.e. I(X;Y) Any Z that contains I(X;Y) is valid at optimal, no matter it contains how much irrelevant info about X

This Z is obviously not the invariant you want.

The Conditional Entropy Bottleneck (CEB)

Explicitly compress self-supervised models with the CEB objective

Compressing a self-supervised model is very simple!

- 1. Convert the final output representations into explicit distributional forms
- 2. Replace the InfoMax or maximum likelihood objective with CEB

$$CEB \equiv \min_{Z} \beta I(X; Z|Y) - I(Y; Z)$$
$$\equiv \min_{Z} \beta (-H(Z|X) + H(Z|Y)) + H(Y|Z)$$

There is a tractable variational bound for CEB:

$$vCEB \equiv \min_{e(z|x), b(z|y), d(y|z)} \mathbb{E}_{x, y \sim p(x, y), z \sim e(z|x)} \beta(\log e(z|x) - \log b(z|y)) - \log d(y|z)$$

Google Research

Milestone: supervised-level, self-supervised results

We train a linear classifier on the self-supervised representation, learned without labels. It achieves results as good as fully supervised models, showing how general the representation is.

Comparison is system-wise as in prior work. We use reasonable supervised baselines reported in the SimCLR and BYOL papers.

Compressed models are robust to out-of-distribution

github.com/google-research/robustness_metrics

Method	ImageNet-A	ImageNet-C	ImageNet-R	ImageNet-v2	ImageNet-Vid	YouTube-BB	ObjectNet
SimCLR	1.3	35.0	18.3	57.7	63.8	57.3	18.7
C-SimCLR	1.4	36.8	19.6	58.7	64.7	59.5	20.8
BYOL	1.6	42.7	24.4	62.1	67.9	60.7	23.4
C-BYOL	2.3	45.1	25.8	63.9	70.8	63.6	25.5

ObjectNet Changing viewpoints & backgrounds

*The main paper introduces a new theoretical connection between CEB compression and the model's Lipschitz constant, helping to explain why compressed models are more robust.

Google Research

Compressed feature representations transfer better

Transfer self-supervised representations pre-trained on ImageNet to other classification tasks

Method	Food101	CIFAR10	CIFAR100	Flowers	Pet	Cars	Caltech-101	DTD	SUN397	Aircraft	Birdsnap
SimCLR	72.5	91.1	74.4	88.4	83.5	49.7	89.5	72.5	61.8	51.6	35.4
C-SimCLR	73.0	91.6	75 -2	89.0	84.0	52.7	91.2	73.0	62.3	53.5	38.2

Thank you!

arxiv.org/abs/2109.12909

Our implementation is available on github

For questions, reach out to Kuang-Huei Lee (leekh@google.com)

